ICOT Technical Repaort; TR-323

TR-323

Efficient Stream Processing in GHC
and lts Evaluation on a Parallel
Inference Machine

by
N. Ttoh, E. Kuno & T. Oochara

MNovember, 1987

eRT, 1COT

Mita holusan Bldg, 2101 (4 da6-53181~ 5

“ O l 4-7% Alita B=Chome Teles 10N §al4aeg

Mimato=ku Tokyo [08 Tapan

Institute for New Generation Computer Technolbgy"

Efficient Stream Processing in GHC
and Its Evaluation on a Parallel Inference Machine

Noriyoshi Tto, Eiji Kune, and Teruhiko Ochara
OKI Electrie Industry Co., Lid.

ABSTRRCT

A set of primitives to implement efficient stream processing in GHC,
Guarded Horn Clauses, and its evaluabion results on PIM-D, Parallel Inference
Machine based on the Dataflow model, are presented. The langquage is efficient
as the conventional procedural languages, because stream processing, the hasie
operation in GHC, is implemented as machine primitives rather than creating
encrmous nerge processes. In order to support such primitives with preserving
"logically correctness, ™ only one extra bit shared flag added to every pointer
is sufficient. The evaluation results show that performance is improved by
introducing such primitives.

J. INTRODOCTICN

The authors are investigating a parallel inference machine aiming at the
Fifth Generation Computers. The target language is called KL1, Kernel Language
version one, whose basis is on a stream AND-parallel logic language called GHC
(Guarded Horn Clauses) [14]. GHC provides powerful description power and has
clear semantics. In the GHC programs, goal activation is assumed as process
invocation. Cammunication between these processes is performed via unification
on logical variables shared among the processes, The processes invoked by the
goal attempt to unify the shared variables with sequences of messages (streams)
to be sent or received,

The typical applications of the parallel inference machine include
generate-—and-test problems. - In these problems, a producer process generates a
stream of candidate solutions, while a consumer process gets the candidates via
the stream and tests 1f they satisfy the specified conditions. Again, new
generate-and-test phases may be initiated nsing these scolutions until the finsl
solutions are obltained. Here, we can initiate multiple producer processes in
parallel if possible; the solutions generated by these processes are merged
inte a2 single stream in nondeterminate manner and then sent to the consumer.

In GHC, such stream merging is logically performed by creating perpetual
processes; a strean merge process is created when two or more streams are
merged. The merge process waits for solutions from the multiple producers and
produce a merged stream to send to e conswer. If such stream merglng iLs
inplemsnted directly as the perpetual processes, heavy overhead to create and
manage the merge processes may degrade system performance.

The proposed stream primitives can support efficient stream processing as
in the conventicnal procedural languages, such as FORTRAN or language €. In
order to support such primitives with preserving "legically cerrectness,” only
one extra bit shared flag added to every pointer is sufficient [8].

e the [irst step of the project, we developed an ewperimentzl machine
wvalied FIM-D (Parallel Inference Machine based on the Dataflow model) [107.
Programs in the dataflow model are represented by dataflow graphs, where nodes
cerrespond to operators and directed arcs correspond to data paths along which
operands are sent. Execubtion of the graphs is performed in a data driven
manner. That is, each node becomss executable only when all the opsrands a:zc
arrived on its input arcs; 1t performs the operation and puts the results on
1ts ouput arecs without side—weffect. This functionzlity of the operators
assures independent executlon of the vperators whose operands are ready; thoy
are executed in parallel without affecting the othor active operators [1] (2]

Fage 2

[€]. The machine, therefore, can easily exploit the parallelism in the
programs.,

The machine is constructed from multiple processing element module and
structure meamory modules interconnected by a network. Fach processing element
module interprets the data flow graphs in parallel and transfers packets
to/from other processing element modules or the structure memory modules. Each
structure memory module stores structured data and is responsible to the
structure accessing comand packets from the processing element modules. ‘The
evaluation results of the stream merging primitives on PIM-D show that
pecformance is significantly improved.

The informal semantics of GHC and stream processing in GHC are outlined in
Section 2, and the efficient stream primitives are proposed in Section 3.
Section 4 shows a brief description of PIM-D machine architecture, and the
evaluation results of the stream processing are deseribed in Section 5.

£, SHMANTICS OF GHC

CHC is a basic language of KLl (Kernel Language version one), which is a
machine-independent language of the parallel inference machine. GHC is one of
MD-parallel logic languages, such as PARLOG (5] or Concurrent Prolog [13]. Of
these, GHC is simplest because it is a minimum extension of Horn Clauses; only
the guards are added td Horn Clauses. In full GHC which allews any
user—defined predicates in the gquards, compile—time detection of suspensive
unification is difficult; the compiler must generate codes so that unification
operations to unify unbound gquard variables with ron-variable terms are
suspended until the guard variables are instantiated. Therefore, flat GHC,
which allows only built-in predicates in the guards, was selected as the basic
language of KL1 [11].

But flat GHC still provides powerful description power and has clear
semanti¢s. In the GHC programs, goal activation is assumed as process
invocation. Commnication between these processes is performed via unification
on logical variables shared among the processes. The processes invoked by Lhe
goal attempt to unify the shared variables with sequences of messages (streams)
o be sent or received,

A sinple producer/consumer problem is described as folleows:

?- p(l, 5}, q(8). ... Goal
p(l, §) :- N <100 | 8= [N[S1], N1 := N+ 1, p(Nl, s1). ... Cl
pi¥, 5) :- N =100 | 5 = []. ees C2
g5} = 5 = [N[S1] | print(N}, g(5l). ee. C3
gi{8) =5 = [] | true. N

The first statement is a goal to be solved. When the goal is invoked it
activates subgoals p(l,8) and g(S), Each subgoal consists of a predicate ('p'
or 'g') and zero or more arguments, Here note that an unbound wvariable § is
shared among these subgoals. GHC has no sequential semantics; the subgoals
pi{l, 8} and gQ(5) can be activated in parallel,

Ihe sccond through fifth statements (C1 through C4) are called clauses.
The symbol ';-' specifies inplication, and the left side of this symbol is
called a clause head. Each clause consists of a guard and body separated by a
symbol '|', which is ecalled a commit operator. 'The commit operater plays a
role of the guarded cammand [7]; when a suhaoal is given, the clauses whose
hezd predicates are matched with the subgoal are invoked, and only one clavss
whose guard succeeds can proceed to its body. Exscution of the other c¢lauses
may be terminated,

Page 3

Another rele of the comit operator is that it controls the direction of
unification. A clause which attempts to unify the goal variable with an
instance in its body can instantiate the variable, while a cdlause which
attempts to unify the goal wariable with a non-variable temm or other goal
variable in its guard will be suspended until the variable is instantiated.

In the above example, the subgoal p(l, S) will imvoke the clauses with
head predicate 'p' (i.e., Cl and C2). Of these, only the guard of Cl succeeds
for the given subgoal because the first argument of the subgoal is a rumber
less than 100, Clawvse Cl, therefore, proceeds to its body and instantiates the
shared variable to a list [1]51]. The body of clause Cl zlso activates a new
subgoal p{2, 81} recursively, which then instantiates the new shared variakble
Sl to a list [2]52]. This recursion is repeated until the first argument of
the s=subgoal becomes to 100, The clauses with head predicate 'g' (C3 and C4),
on the other hand, will be suspended until the variable S is instantiated to a
list or nil by clauses Cl or C2. 1If the variable S is instantiated to a list,
the ¢lause C3 prints the list elements.

Here, the clauses activated by the subgoal p(l, S) and g(S) play a role of
& producer and consumer, respectively, of a segquence of messages which consists
of a list [1,2,3,...]. The messages are sent from the producer to the consumer
on each time the partial solutions are obtained. As the messages are
asynchronously sent from the producer to the consumer, the sequence of the
messages is said a stream. The streams play a role of I-structures
{incremental structures) [3], where the elements of the stream aro
incrementally produced or consumed.

Stream merging, which is often used for parallel search, is written as
follows:

- merge (S, T, U), pl(S), p2(T), q(U).

where the definition of the rerge predicate is given as:

merge (S, T, U} := 5 = [E|51] | U = [E|ULl], merge(Sl, T, ULl).
rerge(s, T, U} = T= [E|T1] | U= [E|ULl], merge(sS, Ti, Ul).
merge(sS, T, U) (=5 =[] |U="m,
merge(sS, T, U) (= T= (] | U =5,

The goal activates four subgoals; & merge process invoked by the subgoal
merge (s, T, U) consumes two streams 5 and T produced by processes invoked by
the subgoals pl(S) and p2 (T), respectively, and generates a new stream U which
is then consumed by a process invoked by the suhgoal q(U). The streams, here,
are represented by a list and have only one producer and one consumer.

4. EFFICIENT STREAM FRIMITIVES

As mentioned above, many GHC programs can be considered as
producer-consumer problems, where producer processes produce sbtreams of
messages and consumer processes receive the messages from them. GHC programs
use legical wvariables for message passing. Each logical variable can be bound
to only one instance and may be immediately discarded after the consumers read
the instance from it. That is, the life span of each logical variable is very
short and fregquent memory allocation and deallocation for the logical variables
are necessary,

Tne main idea of this section is to hide the dctailed structure of the
stream from the programmer's point of view and to develop 2 more efficient
siream structure and primitives instead of using logical wvarisbles directly.
An efficient stream, which is called a packed stream, is represented oy
pointers and a buffer as shown in Fig. 1. Each pointer points te a stream

Page 4

buffer entry to be accessed and the stream elements are stored in the stream
buffer. The streams here are "packed" into the stream boaffers (i.e., (IR parts
of the lists are omitted) by using the CIR coding schene [12].

3.1 Stream Creatlion

. When a new stream 1s creabed, a createSstream primitive is executed which
initializes a stream boffer and returns two or more pointers pointing to the
buffer. uUsually, one of the pointers is used in the producer to append stream
elements to the buffer and the others are used in the consumers to oet the
elements,

The following goal shows an example:

?- createSstream (S, T, pisS), alT).
p(5) :- true | ..., put$stream(s, E, S1), p(Sl).
g(S§) :- get$stream{s, E, S1) | ..., g(81).

Logically, the create$stream predicate unifies its first argqument with the
second argument as defined:

createSstream(S, T) :- true | § =T,

Actual implementation of the createS$stream primitive forces the wariable S and
T +to be instantiated to two independent buffer pointers. They are initialized
to point to the head of the buffer. The processes activated by p(5) and g(T)
will execute put$stream or getSstream primitives., Logically, these primitives
are defined as:

put$stream(S, E, S1) := true [8
getSstream(s, E, 51) := true | S

[E[51].
[E]51]).

actually, each putSstream primitive unifies the argument E with a stream
element pointed to by the buffer pointer S; if the stream element is
undefined, E is stered to the entry. ‘Then the pointer is incremented te point
to the newt entry. The incremented pointer 1s unified with the variable 51,
Each getSstream primitive gets a stream element from the stream boffer and also
increments the pointer when the stream element is defined (i.e., if the element
is already defined). If the element is undefined, the getSstream primitive
will be suspended (hooked to the buffer entry) until the element is written by
a putSstream primitive; the putSstream primitive activates the suspended
getSstream primitive before it writes the element.

A special symbol 'EOS' (end-of-stream) 1is used to signal the end of
stream; the producer processes put the 'EOS' - symbol when no more stream
elements are sent to the consuner processes, This will be done by executing a
put$stream(S, 'BOS', 51}, or a special primitive put$ZOS(S), where § and 51 are
streams.

S Btream Sharing

When a strean is shared among processes, eacth process should have
independent buffer pointers; the original buffer pointer is copied and
distributed to these processes. The following clause shows an example when a
variable is shared among processes.
pls) :— true | pli(3), p2(5).

To ensure this pointer copying, shareSstream primitive is used in the wmachine
langquage:

Page 5

piS) := true | sharelstream(s, 81, 52), pl(81l), pZ(s2).

The stream pointer S is copied to 81 and 82, which is then used as the
argqurents of the subgoals pl(Sl) and p2(52), respectively. To be noted here is
that the share$stream primitive simply copies (passes) its first argument to
its second and third arguments when the first argument is a stream pointer or
an atomic value, but copying will be deferred until the object pointed to by
the pointer is referred when its first argument is a reference pointer to an
unbound variable or strocture. In order to support such deferred pointer
copying, the shared flag scheme is introduced.

3.3 Shared Flag Scheme

When a structure is shared among multiple processes, it is sufficient to
copy its reference pointers to these processes. A problem, however, is caused
when a structure including streams or unbound variables is passed among the
subgoals. The following goal shows an example where a struckure £({...5.,.)
which includes a stream S is shared among subgoals,

= p(5), gis).
pis) := true | T= £(...5...), pL(T), p2(T}.

Here, we can rewrite this program by using the stream primitives:

7- createjstream (51, $2), p(5l), g(s2). :

When an eager pointer copying schene is used, the whole structure of
f(...51...) should be copied before activation of two subgoals pl(Tl) and
p2{T2), in order to create copies of the stream pointer 51. Thus, variables T1
and T2 wiil be instantiated to copied structures £(...81'...) ard
£(...51""...}, respectively, where 51' and 51'' are copled buffer gpointer of
51. "If the following definitions are given, the invoked clauses pl or p2 may
put the stream elements to or get the stream clements from the stream boffer
pointed to kv the stream pointers S1' eor 51'' included in the copied
structures.

pl{T1) := TL

= -|.er1|+} | Wtﬁttm{s; Er U}; e w
p2(T2) :~ T2 =

£{
£{...5...) | getSstream(s, E, U}, ...

This eager copying may waste the processing time if structures to be
copied is wvary large or if they are freguently shared among processes.
Furthermore, the copying will cause heavy communication traffic in the network,
because the substructures may be distributed among many storage units in the
parallel machine such as PIM-D.

The deferred pointer copying can be implemented by adding an extra bit to
each pointer, which is called a shared flag; the shared flag is implemented by
extending the tag field to specify the data type., The shareSstream primitive
in the above case will only set the shared flag of the reference pointer to
f{...51...), which is passed to the processes, This shared flag is inherited
o its substructures; unification to decamose the shared structure inte the
substructures is extended to:

(L} create coples if the substructures are stream buffer pointers,

{2) set shared flags of the substructures on if they are reference

pointers,

(3) perform normal unification if the subsirectures are atomic valves.
Thus, if the clavse pl is defined as:

PLTLY := Tl = £4...5...}) | putSstream(3, E;), ...

—_ 2

Page 6

and if its given goal arqument is a structure [(...5l...}, where S1 is a stream
buffer pointer, copy of the buffer pointer Sl is created and instantiated to
the variable S on its quard's unification between the original structure
£fi{...51..:)-and the structure £{...5...) in the guazd,

3.4 Nondeterminate Stream Merging

_ Stream merging is performed by sharing the stream pointers. The following
goal shows an example of stream merging, where two subgoals, pl(S) and p2(T),
generate two independent streams S and T consisting of lists [al,a2,...] and
{bl,b2,...], respectively, that are merged into a single stream UJ consiumed by
two independent subgoals ql and g2.

7= merge (§,T,U), pl(S), p2(T), ql(0), g2(U).

Figure 2 shows a direct implementation schema of this goal. The producer
processes create lists oontaining the stream elements which may be immediately
discarded after the merge process consumes them and creates a new list for the
merged stream. In this implementation, the memory manager may suffer from
heavy list cell allocation or reclamation overhead and stream merging is wvery
expensive because it is performed by an independent process.

 Mhe efficient stream merging 1is implemented by the packed stream
primitives depicted in Fig. 3. tThis figure shows that every producer process
shares an indirect stream pointer cell and appends new stream elements to the
stream buffer. In order to create the indirect stream pointer cell, which is
called a merged stream descriptor, & mergeSstream primitive is executed instead
of the merge predicate as:

7- mergeSstream(s,T,U), pl(S), p2(T}, sharesstream(U,Ul,02), gi{Ul}, g2 (UZ].

The putSstream and getSstream primitives are extended to handle both non-merged
stream” pointers and- merged stream descriptors; they are identified by their
tag field, The mergeSstream primitive creates a stream buffer and a merged
stream descriptor which will be unified with the first and second arguments (S
and T), if its third argument U is undefined. If U is already instantiated to
2 descriptor, 5 and T are unified with the descriptor; processes referring =
and T will share the descriptor. This nerge$stream primitive is also used for
consumer processes; the consumers sharing the stream descriptor will cbtain
independent stream elerents from the stream in a nondeterminate manner.

When a stream is merged by multiple producer processes, the 'EOS' symbol
should be put inte the buffer when all the producer processes sharing the
merged stream descriptor have executed the pulSECS primitives. In ocder detect
this situation, a reference count scheme is used; a reference count field,
which is called the descriptor reference count, to maintain the nuober of
pointers pointing to the merged stream descriptor is stored with the indirect
stream pointer as shown in Fig., 3. The descriptor reference count is

(1} incremented when a mergeSstream primitive is ewecuted (i.e., when a2 new

process to merge the stream is created), and

(2) decremented when a pub$E0S primitive is executed (i.e., when a process

merging the stream is terminated, or when it no longer refers to the

stream).
Note that update of the reference count is only necessary in the above cases
and the ordinal put$stream or get$stream primitives don't affect the reference
count. The 'B0S' symbol is stored into the stream buffer when the reference
count is reached to zero. As the stream descripter is neo loneger ceferred, it
will be reclaimed.

-/ —

Page 7

3.5 Stream Buffer Management

Because almost all the process comminication is performed via streams in
GHC, frequent stream buffer allocation or reclamation will be necessary. A
simple but inefficient solution is to leave the garbage collector to reclaim of
such stream buffers. In this case, however, the garbage collector will suffer
from exhaustive memery consumption.

Real-time garbage collection can be inplenented using the reference count
scheme; amother reference count field, which is called a buffer reference
count, is added to each stream buffer as shown in Fig. 4. The buffer
reference comnt is

{L) incremented when a share$stream is executed, and

(2) decremented when the stream buffer pointer exoceeds the tail buffer

address by executing a put$stream or getSstream primitive, or when a

process no longer refers to the stream,

When the buffer pointer exceeds the buffer, a new buffer is allocated if
the buffer reference count of the old buffer is not zero, and the allocated
buffer is chained to the old buffer as shown by a broken line in FPig. 4,
Other processes referring the old buffer will follow the new buffer chain if
thelr stream pointers exceed the old buffer. If the buffer reference count of
the old buffer is zero, it is reused.

To ensure that the stream primitives can update the buffer reference
count, the stream pointer may be extended to another stream descriptor as shown
in Fig. 5, that holds the pointer to the buffer reference ocount field, the
buffer size, as well as the buffer pointer; in this case, each process has a
reference pointer to the descriptor. This scheve, however, needs an extra
indirect memory access to put or get a stream element.

Therefore, we introduced an optimized version of packed streams called
standard streams, that have fixed-sized buffers. The standard stream buffers
are aligned to N—word address, where N is a buffer size, and the reference
count field is located at the head of the buffer. Because the address of
reference count field is easily obtained by the stream buffer pointer, no
stream descriptor as shown in Fig., 5 is necessary for non-merged streams,
Furthemore, memory management of the standard stream bhuffers is easily
implemented because every buffer is fixed-sized and a simple free list
managament scheme can be used; buffers whose boffer reference ounts are
decremented to zero are chalned to a free list, and new buffers are allocated
from the free list.

‘The machine is constructed of multiple processing element modules and
multiple stoucture memory modules connected by a hierarchical network as shown
in Fig. 6. Each processing element module consists of a packet gueue unit, an
instruction control unit, two atamic processing units, and a network interface
unit; these units operate independently and construct a pipeline architecture.
The programs, represented by dataflow graphs, are stored in the instruetion
control unit, which receives the packets from the packet quewe unit, detects
the readiness of the operands, and sends the executable instruction to one of
the atomic processing units if all the operands of the instructions are ready,

The atomic processing units interpret the executable instructions, access
the local memory wunib if necessary, generate new results packets, which are
agzin sent to the instruction control unit wia the packet guewe unit, and
generate structure cammand packsts sent to the structure memory modules.

Page B

The local memory unit is used to store the local information such as
process control blocks or remote resource management tables; in order to
perform remote resource allocation guickly, each local memory unit has a
process management table containing reserved process identifiers of the other
processing elevent modules, and a structure management table contalning the
reserved structure cell addresses of the whole structure memory modules. When
a new process which should be distributed to other module is created, a process
jdentifier of the other processing element module is cbtained from the remote
process management table; the packets foc the new process are sent to the
processing element module specified by the process identifier via the network.
The structure memory allocation is performed in the same manner.

The structure memory modules are responsible to the structure camand
packets fram the atanic processing units and used to store structure data.
Current version of packed stream implementation uses local memories to allocate
stream buffers, because locality can be exploited to access the stream buffers;
if many producer and consumter processes are created and there IS locality in
commurication among these processes, the processes can be aligocated to the
local processing element modules so that most of stream accesses can be
performed on the local memories. To contrel such allocation, local process
invocation primitives are introduced [10].

When a createSstream primitive is executed in an atomic processing unit, a

new stream buffer is allocated and all the buffer entries are initialized to be

undefined. The stream buffer pointer is sent to the next instroctions to

rerform put or get stream elements. IL the put$stream or getfstream primitives

are executed and if the stream buffers are not resident im its own local

memory, they are sent to the processing element modules designated by their
operands (stream pointers).

5. EVALUATTON RESULTS

Two versions of sinmple GHC benchmark programs are examined. The first one
is a non-packed version, where all the streams are represented by lists and
stream merging to collect every solution is performed by perpetual merge
processes. The other is a packed stream version, where stream processing is
performed by the stream primitives described in Section 3. The benchmark
programs include 6-gueens and prime number generator up to number 500.

Because only the top level stream is used to merge all final solutions in
the 6-queens program, the packed stream version of this program uses the packed
stream primitives to merge the top level sclutions, in order to examine
effectiveness of packed stream merging; all the other streams are implementead
by non-packed streams. In the packed stream version of the prime number
generator, on the other hand, no stream merging is performed and all the
streans are inplemented by packed streams; it is used to examine effectiveness
of the putSstream or getS$stream primitives.

Figure 7 shows performance comparison of these programs. In this fiqure,
rerformence is given by Tl/ti, where ti is the execution time needed to search
all solutions when the number of both moduwles (the processing elements and
structure memories) is i (i=1,2,4,8), and 11 is the executicn time of the
non—packed stream version when the number of modules is one. Because each
cluster has up to four processing elements and also up to four structure
memories, only one cluster is used when the number of moduies is less than ot

equal to four, and two clusters are used when it is eight.

for all these programs, performance is significantly improved when the
number of the modules is increased fram one to four, but shows a tendency o be
saturated when the mnumber of modules is eight because parallelism irherent in
these programs is not so large. Compared with the nop-packed 6-gueens program,

- B -

rage 9

performance of the packed é-queens program is sixteen to forty percent higher,
even though only ten percent of the total executed instructions are reduced
than that of the non—packed version; only the stream merge processes are
replaced by the stream merging primitives.

performance of the packed prime number progran (packed primes) 1s
significantly increased; it is about more than twice than that of the
non-packed version (non-packed primes), independent of the number of modules.
This improvement is achieved mainly by the reduction of the structure memory
camands, that is about one third of that of the non-packed version.

6. CONXTUSTON

A set of primitives to support efficient stream processing in GHC is
presented. Te detailed structure of the streams is hidden fram the
programers and a more efficient stream structure and primitives are provided
instead of using logical variables directly. An efficient stream, which is
called a packed stream, 1is represented by pointers and a buffer. Each pointer
points to a stream buffer entry to be accessed and the stream elements are
stored in the stream buffer.

The language is -efficient as the comwentional procedural languages,
because Stream processing, the basic operation in the AMD—parallel logic
language, is implemented as machine primitives rather than creating enormous
merge processes. In order to support such primitives with preserving
"logically correctness,” only one extra bit chared flag added to every pointer
ie sufficient. This shared flag scheme is currently extended to the multiple
reference bit to reclaim structure cells [4]. The evaluation results on PIM-D
show that performance is improved about ten to forty percent by intreducing
such primitives.

<acknowledgments>

The authors extend their thanks to Director Kazuhire Fuchi at IQOT, who
afforded them the opportunity to pursue this research. A&lso mach appreciated
are Dr. Shun—ichi Uchida, Chief of the Fourth Research Laboratory, and Drc.
Atsuhire Goto (IOOT) for their valuable advice and carments, Masasuke Kishi and
Masayuki Tomisawa (OKI) for their hardware implementation of PIM-D, and other
10T research members for their fruitful discussion.

References

(1] Amamiya,M., R.Hasegawa, O,Nakamura, and H.Mikami, "A List-processing
criented Data Flow Architecture," HNational Computer Conference 1982, pe.
143-151, June, 1982.

2] Arvind, K.P.Gostelow, and W.E.Flouffe, "An Asynchronous Programming
Language and Computing Machine,” Th-114a, Dept. of ICS, University of
california, Irvine, Dec., 1578.

(3] Arvind and R.E.Thomas, "I-Structures: An Efficient Data Type for
functional Languages", TM-118, Laberatory of Computer Science, MIT, 1380.

[4] Chikayama,T. and Y.Kimura, "Multiple meference Management in Flat
GHC," Proc. of 4th Int'l Conf., on Logic Programuing, May 1947. -

(5} Clark,K. and S.Gregory, "PRRLOG: Parallel Programming in Prolog, "
research Report DOC 84/4, Imperial College of Science and Technology, Rpril,
1984,

Page 10

[6] Dennis,J.B. and D.P.Misnus, "A Preliminary Architecture for A Basic
Data Flow FProcessor,” Proc. of 2nd Symp. on Computer Architecture, Jan.,
1575,

{71 Dijkstra,EBE.M., "A Discipline of Programming, " Prentice-Hall, 1976.

(8] Ito,N., H.Shimizu, M.Kishi, E.Kuno, and K.Rokusawa, "Data-flow Based
Execution Mechanisms of Parallel and Concurrent Prolog,” New Geperation
Camputing, Vel. 3, No. 1, 1985,

(9] Tte,M., M.Kishi, E.Runo, and X.Rokusawa, "The Dataflow-Based Parallel
Inference Machine To Support Two Basic Languages in KL1," Proc. of IFIP TC-10
Working Conference on Fifth Generation Computer Architecture, UMIST
(Manchester), July 1985,

[10] Tteo,N., S.Masatoshi, E.HKuno, and E.Rokusawa, "The Architecture and
Preliminary Evaluation Results of the Experimental Parallel Inference Machine, "
Froc, of 13th Annual Int'l Symp. on Computer Architecture, Jun. 1986,

[11] Kimura,¥. and T.Chikayama, "An Abstract FKL1 Machine and Its
Instroution Set, ™ Proc. of 4th Symposium on Loglc Programming, Aug. 1987,

[12] Enight,T., CONS, MIT AT Working Paper 80, 1984.

[13] shapiro,E.Y., "A Subset of Concurrent Prelog and its Interpreter,”
TR-003, Institute £for New Generation Computer Technologqy, Tokyo, Japan, Jan.,
1983,

[14] Ueda,K., "Guarded Horn Clauses, ™ TR-103, Institute for New Generation
Computer Technology, Tokyo, Japan, 19835.

1

Stream Buffer
glement J

BB &

Buffer Pointer——— > element

element
guffer Pointer——= element
puffer Pointer = "undefined”

"undefine

¥ig.l Representation of A Packed Stream

[al,bl,b2,22,...1

“bl,b2,...]

Fig.2 Stream Merging Schema

(::ij;g:::1)
- Stream Buffer —

putSstceam getistream
MSD al |
: bl J*’f
UBP b2
DRC ! az?
/J = "updefined” *R\
—._putistream cen getSstrean.
-
P2 g2
_‘ _,..-f

MSD: Merged Stream Descriplor
SBEP: Stream Buffer Pointer
NRC: Descriptor Reference Count

Fig.3 Stream Merging by A Packed Stream

= 11 —

Buffer Pointer ———==

Buffer Pointer —=

Buffer Peointer—=

Fig.d

0ld S8tream Buffer

BRC
element
el ement
element
element

element
KB —

— e E— —— e o —

“ MNew Stream Buffer

=3 BRC
element

"undefined”

"undefined”

. e owm

BRC: Duffer Reference Count
HBC: Mew Buffer Chain

Representation of A Packed Stream

Fig.s

Stream Buffer

BRC ' Iy
element !
el ement i
element]

"undefined”
-,If

BRC:
NSD -
SEP:
ARF:
M: Buffer Size

Buffer Reference Count
Non-merged Stream Descriptor
Stream Buffer Pointer

puffer Reference Count Pointer

Stream Descripter of the Norn-merged Stream

12 —

£rg

PE :Processing Element
PQU : Packet Queus Unit
U :imstruction Control Unit
APU : Atomic Processing Unit
LMU : Local Memory Unit

SM : Structure Memory
SPU : Structure Pracessing Unit

SMU : Structure Memary Unit < T-BUS
MM : Network Node NI
BA :Bus Arbitor . o w

FIFQ : First-ln First-0Out Memaory

-

Fig.6 Machine Architecture of FPIM-D

performance
packed primes

B~ &

pACKED 6-QUEENS
6 - -
_—"" non-packed 6-gueens
+
..--""’Hf.r

4 e
e _,_,_F—F"""

e

T non-packed primes
2'—

0! [L L
o 2 4 & a

Numher of Modules

Flg.7? Performance Comparison between Won-packed and Packed Streams

- 13

