ICOT Technical Report: TR-318

TR-318
Parsing Gapping Grammars in Parallel

by
Y. Matsumoto

MNovember, 1987

CN987, 1COT

Mita Kokusai Bldg. 21F 03} 456-3191—5

IDDT 4 28 Mita 1-Chome Telex ICOT J32964

Minato-ku Takvo 108 Japan

Institute for New_-G'eneration Computer Technolog}

Parsing Gapping Grammars in Parallel

Yuji Matsumoto
institute for New Generation Computer Technology
Mita Kokusai Building 21F
1-4-28 Mita, Minato-ku, Tokyo, 108, Japan
e-mail: ymatsumoto@icot.junet

1. Introduction

This paper describes a parallel parsing method for Gapping Grammars
{GGs) [Dahl 84a] [Dahl 84b] which 1s suitable for committed-choice parallel logic
programming languages such as Guarded Horn Clauses (GHC) (Ueda 85] and
Parlog [Clark 84]. GG iz a very powerful grammar formalism that enables
grammar writers to specify grammar rules concentrating on the constituents of
the input sentences that are not necessarily adjacent. The parallel parsing
method presented here is based on the author's previous work on a parallel
parsing algorithm for context-free grammars [Matsumoto 86].

The parsing algorithm for context-free grammars will be described first by
an inlerpreler writlen in Prolog. This is a metadescription of the parsing
algorithm and the final parsing program can be obtained by partially evaluating
(or translating) the given grammar rules accordingly to the interpreter.
Although the programs are written in Prolog, it is not essential. The Prolog
program ohtained through the translation is a deterministic Prolog program with
arguments of specific Input/Output modes and can easily be transferable to
parallel logic programming languages.

We give a slight modification to the interpreter enabling it to handle GGs.
Partial evaluation of the interpreter with GG rules produces an efficient bottom-
up parser for the given GG. The derived program does not involve any
backtracking and all the Prolog goals are inherently operable in parallel. When a
clause corresponding to a grammar rule with a gap isinvoked, the parsing process
splits into distinct parallel processes. However, all the other parts in the input
sentence are shared by these processes. The parser inherits most of the
advantages of our parallel parser for context-free grammars. The basic algorithm
employs a bottom-up strategy with top-down prediction, which contributes to the
reduction of parsing space. Nonterminal symbols are represented as goals of
Prolog (or GHC etc) that operate as parallel processes. Each of these processes
corresponds to a parse tree with the nonterminal symbol as its root. They need not
be kept as side-effects, Moreover, no identical parse trees are constructed
duplicatedly.

2. Metadescription of Parser

Basically, the algorithm for the parallel parsing of Gapping Grammars is an
extension of our parallel parsing algorithm for context-free grammars, Appendix
I shows the main part of the interpreter written in Prolog that explains the

parsing algorithm for context-free grammars. Grammar rules are expressed in
reverse order (the part normally called the right-hand side of a grammar rule is
written on the left-hand side) as in the last clauses in Appendix 1. For instance,

rule([np, vp, '=>", s]).
corresponds to the context-free grammar rule normally written in DCG like:
5 ==2>np, vp.

To avoid confusion, we will use the terminology, head and body (or parent
and sons) of a grammar rule. In thisexample, 's" is the head of the grammar rule
and "'np,vp’ is the body.

Here is the explanation of the program shown in Appendix 1. We do not deal
with terminal and nonterminal symbols differently, The input sentence
represented as a list of any words and nonterminal symbols and is given to
'start’. The predicate 'parse’ gives each of the symbol in the input list to
‘expand’. Two jobs are allocated to the symbol, specified by the predicates
"typel’ and 'type2’, which comprises the main part of the algorithm.

‘Typel' selects grammar rules that have the specified symbol as their
leftmost son, where there are two possibilities. One case is when the son is the
leftmost son of several sons in the rule, and the other is when the son is the only
son in the rule. The former case is handled by 'hag _of’ (the definition is the
same as bagof except it returns [] when there is no answer substitution), which
picks up a grammar rule whaose first element of the body coincides with the given
word or nonterminal symbol and returns the remaining elements in the grammar
rule after taking off the first element. Top-down prediction is also taken into
consideration, though we omitted it in the program of Appendix 1. Suppose that
the given symbol is 'det,” it returns the structures [noun,'=>' np] and
[noun,rel_c,"=>" ,np], (provided a noun phrase is expected by the preceding
context, when the top-down prediction is taken into consideration). The meaning
of these structures is straightforward, that is, after getting a determiner, a noun
phrase is obtained if we have a noun or if we have a noun and a relative clause.
Note that the produced fragments of grammar rules are paired with the received
list, "InS," since it should be the input list for the head symbol when it is
constructed and expanded. The latter case mentioned above is handled by
"immediate_rules,’ that immediately 'expand' the head of the rules since no
other element is left in the body.

The second job for "expand' (corresponding to 'type?')istoreceive the data
structures such as the ones shown above and to produce another data structure or
to call 'expand’ with the head of the newly completed grammar rule. All the data
produced by these two jobs are merged into one list, which is received by the word
or the grammatical symbol that follows these processes,

Readers who are familiar with Kay's Chart Parsing [(Kay 80] may have
noticed the similarity between his method and ours. A call of "expand’ with a
grammatical symhbol coincides with the creation of an inactive arc of that symbol.
Creation of a data structure in our parser corresponds to the creation of an active

—_ R -

s d

arc. The location of an inactive arc is represented by the locus and length of the
are, and it is represented by the list the corresponding process (the call of expand)
receives and the list of the fragments of grammar rules it passes fo the next
process. The locus of an active arc is represented by the list which is paired with it
and the list which it is put into. This shows that the complexity of our algorithm
is almost the same as that of Chart Parsing. The advantage of our system is that
inactive arcs are implemented as parallel processes and active arcs are localized
as streams (ie, lists) received by inactive arcs so that a global table or side-effect is
not necessary, which makes our parser suitable for parallel implementation. The
actual implementation is done by partially evaluating or compiling the
metainterpreter and the grammar rules into a specialized parallel logic program,
The specialization is mainly done in two aspects. One is to encode the fragments
of grammar rules that appear in the parsing process into simpler symbols
(identifiers). Since the set of grammar rules is finite and the fragments of
grammar rules appear only in the form of postfixes of the grammar rules, it is
possible to assign an distinct symbol to each of fragments of grammar rules, The
ather is to specialize both types of processes {i.e. typel and type2 processes) for
each nonterminal symbols. Since the metainterpreter is fixed, we have developed
a translator that produces the final program from a set of context-free grammar
rules. Appendix 2 shows such a program obtained from the program of Appendix
1.

3. Extending Parser for Gapping Grammars

We show that a little modification of the context-free parser enables it to
handle Gapping Grammars. A Gapping Grammar rule is, for instance, written as
follows:

rule([coconj,gap(1.[]).object, "=>",
object,coconj,gap(l),object]).

If we follow the original description of GG rules in [Dahl 84a][Dahl 84b|, it is
written like:

object,coconj,gap(G),object --> coconj,gap(G),object.

In our bottom-up interpretation, the meaning of this rule is that a configuration in
the input sentence consisting of a 'coconj’ (a coordinating conjunction) and an
'object’ that have any sequence of words (possibly a null sequence) in between
can be rewritten to the sequence shown in the head of the rule, provided
gap{1,{]) must be the same sequence of the words represented by gap(1). Note
that the head of the grammar rule is not a single grammatical symhol but a
sequence of symbols. The first argument in gap(1.[]) is necessary to identify the
position of the specific gap when there is more than one gap in grammar rules.
The second argument works as a stack to keep the skipped words and is initially
an empty list.

In order to deal with such rules, 'start’, 'parse’ and "type2’ are
redefined as in Appendix 3. There are mainly three modifications on the context-
free metainterpreter.

(1) When heads of grammar rules are called after successful analysis of hodies of
grammar rules, 'parse’ is used instead of 'expand'. This is because that the
head of a grammar rule is not only a single nonterminal symbol but is generally a
sequence of grammatical symbols.

(2) A new predicate 'gq’ is defined and added to each place where a word in the
input sentence is expanded. Predicate 'gg’ has four arguments, of which the first
is the input stream, the second is the word it is skipping and the third and the
fourth are the output streams. The third argument is the output to the process
(*expand’) that is dealing with the very same word, and the fourth argument is
the output to the next 'gg’. Fora "gg’ receiving a data beginning with a 'gap",
there are two options, whether to pass over the 'gap’ by skipping the word it is
currently dealing with, or to finish skipping the 'gap'. A 'gg' performs both of
the jobs since the parser is intended to produce all the possible parsing results. To
skip the word, it adds the skipped word (ie, "Word') on top of the stack in the
'gap’ it is passing to the next 'gq’. The main definition of 'gg" is deseribed by
the second and third clauses, in which a new 'gap’ with the skipped word on top
of the stack is put at the fourth argument. These two clauses are for the different
occurrences of 'gap’ in the bodies of grammar rules. Firstly, if 'gap' appears as
the last symbol in the body of a rule, the head can be immediately expanded. Tt is
done by replacing the corresponding 'gap’ in the head with the already skipped
words and by calling 'parse’ for the head. Secondly, if 'gap' is not the last
symbol in the body, 'gap’ must be also passed to the output stream at the third
argument of "gg’'. This is actually the case where skipping of words are
completed just before the word the 'gg ' is dealing with.

(3) The last modification is to add the clauses for handling gaps to the definition of
"type2." When 'gap’ is encountered by 'type2' and if the next element to the
gap is the same symbol as the one it is handling, il suppose that skipping the
words by the 'gap' has completed and discards the 'gap’ and the symbol next to
the "gap’, after replacing the corresponding 'gap's in the head by the skipped
words.

The actual parsing program is obtained by partially evaluating the
metainterpreter and the grammar rules in the same way as the case of context-
free grammars.

4. Gapping Grammars and Extraposition Grammars

Extraposition Grammars proposed by Pereira [Pereira 81] provide a way to
' "he left extrapositions. In the syntactic viewpoint, Gapping Grammars
subsume Extraposition Grammars. For example, an Extraposition Grammar
rule:

rel_marker ... trace --> rel_pro.
is equivalent to the following Gapping Grammar rule:
rel marker,gap(G),trace ==> rel_pro,gap(G}.

which is equivalently written in our way of writing grammar rule as follows:

- .1 —

rule([rel_pre,gap(1.[]),"'=>",rel_marker,gap(1),trace]).

Although the metainterpreter of Gapping Grammars shown in the preceding
section is able to handle this type of grammar rules, it becomes much simpler if
this type of grammar rules are prohibited. When 'gap 's are allowed only inside
of the bodies of grammar rules, the job done by the second clause of "gg’ is no
longer necessary. This restriction changes the definition of 'start' and "gg' as
follows:

start([],End,End).

start([Word|Rest],In,End} :-
ag{In,Word,Outl),
expand(Word,In,Qut2),
append(Outl,0ut2, Out),
start(Rest,0ut End).

gg([]._.[1).
gg([([aap(N.X)|Rule],In)|R],Word,
[([oap(N,[Word|X])|Rule],In)[R1]) :- !,
gg{R.Word,R1).
gg([_[Rest],Word,Restl) :- gg(Rest,Word,Rest1).

In this new definition, the only job 'gg' does is to skip the word it is handling.
The job to finish skipping is actually done by the modification on the definition of
"start’, where 'expand’ receives the same input stream as the one 'gg’
receives.

5. Discussion

The modifications to the parallel parser enables it to deal with Gapping
Grammars., We have to note that the Gapping Grammars we have been
discussing are not exactly the same as the Gapping Grammars proposed by [Dahl
84a, 84b]. Asis seen from the explanation in Section 2 and 3, only the surface
words are skipped. Although itis not a necessary condition for the algorithm, this
restriction greatly helps to reduce the search space.

There are another restriction and one augmentation to the form of grammar
rule. The first element of the body must not be a 'gap’ in our algorithm. This is
because the parsing process operates in a bottom-up manner and the first element
in the body is the key to select grammar rules. However, the first element of the
head need not be a nonterminal symbol unlike the original definition of Gapping
Grammars. As a matter of fact, such grammar rules are quite convenient to
describe typical phenomena frequently occurring in Japanese sentences. In
Japanese, modal expressions are always put at the end of a sentence. Therefore,
when a sentence includes some important modal information, a certain signal can
be put at an earlier place in the sentence. For example, "kesshite' is an adverb
which stresses that the speaker is uttering a negative sentence. This can be
expressed by the following grammar rule.

rule([kesshite, gap(1,[]).neg_aux,'=>",gap(l),neg_aux(stressed)]).

These kinds of rules are never invoked unless the input sentence contains
the key word. And once it is invoked, almost no useless process is generated when
the top-down prediction is incorporated in our system.

We have omitted the discussion on incorporating top-down prediction in the
algorithm. This is becanse we did not like to make the sample programs too
complicated. The idea is found in the authors previous paper on parallel parsing
of context-free grammars [Matsumoto 86], and the augmentation can be discussed
independently of the main parsing algorithm.

Appendix 1: Context-Free Parser Interpreter

start(Sent) :-
parse(Sent, [begin],Stream),
fin(Stream).

parse([],End,End}.

parse([Word|Rest],In,End) :-
expand(Word,In,Out),
parse{Rest,Out.End).

expand(Cat,InS, 0utS) :- typel(Cat,InS,0utS1), type2(Cat,InS,0utS2),
append(QutS1,0utS2,0utS), !.

typel(_.[1.[]).

typel(Cat,InS,Stream) :-
bag of((Rule,InS),(rule([Cat|Rule]) \+Rule=["=>"|_]},Streaml),
immediate rules(Cat,In5,5treamZ},
append(Streaml,Stream?, Stream).

type2(_.[].[]).
type2(s.[begin|Rest].[end|Restl]) :- !,
type2(s.Rest,Restl).
type2(Cat,[([Cat, =>",Head],InS)|Rest],0utS) :-
expand(Head,In5,0utl), !,
type2(Cat,Rest ,Out2),
append(Outl,0ut?,Quts).
type2(Cat,[({Cat|R_Rule],InS)|Rest],[(R_Rule,InS}|Restl]) :~ 1!,
type?(Cat,Rest, Restl).
type2(Cat,[_|Rest].Restl) :-
typeZ(Cat,Rest, Restl).

fin{([]}.

fin([end|Rest]) :-
write('parsed '), I,
fin{Rest}).

fin{[_|Rest]) :-
fin(Rest).

rule({ np, vp, "=>". s J).

rule{[det, noun, "=>", np]).

ruie([det, noun, rel_c, "=>', ap]).
rule{[verb, "=>", vp]).

rute([verb, np, '=>", vp]}.

rule([rel_pro, vp, '=>', rel_c J).
rule([every, '=>", det]).

rule([a. '=»", det]).

rule([the, "=>', det]}.

rute(| man, "=>"', noun]}.

rule([woman, "=>', noun]}.
rule([walks, "=>', verb]).
rule([loves, '=>", verb]).

rule([that, '=>", rel_pro]).

Appendix 2: Transferred Parsing Program (in GHC)

np(X.A1,B1) :- true |
npl{X,A1,C1),
npZ(X,C1,81).

s([].A.B) :- true | A=B.

s([begin(%)|T].A1,B1) :- true |
Al=[end(X}|C1],
s{(T.C1,B1).

s([_[T].A1.B1) :- true |
s{T,A1,B1).

npl(X, AL,B1) :- true |
A1=[id1(X)|B1].

np2([].A.B} :- true | A=B.

np2([id5(X)|T],A1,B1) :- true |
vp(X,A1,C1),
np2{T,C1,81}).

np2([|T].,AL,B1) :- true |
npZ{1,A1,81}.

vp([].A,B) :- true | A=B.
vp([id1(X)|T],A1,B1) :- true |
s{X,A1,C1),
vp(T,C1,B1).
vp([1dB(X)[T],A1,B1) :- true |
rel_c(X,A1,C1),
vp(T,C1,B1).
vp{[|T1.AL,B1) :- true |
vp(T.A1,B1).

det(X.A1,B1) :- true |
AL=[id2(X),1d3(X)|B1].

noun{[],A,B) :- true | A=B.
noun{[id2(X)|T].A1,B1) :- true |
np(X,A1,C1),
noun{T,C1,B1).
noun([id3(X)|T],A1,B1) :- true |
Al=[id4(X)|C1],
noun{T,C1,B1).
noun{[_|T],A1,81) :- true |
noun{T,A1,B1).

rel_c([],A,B) :- true | A=8.
rel_c([1d4(X)|T],A1,B1) :- true |

np(X,A1,C1),

rel_c(T.C1,B1).
rel_c([_|T].A1,B1) :- true |

rel e(T,Al1,B1).

verb(X,A1,B1) :- true |
Al1=[idb(X)|C1],
vp(X,C1,B1).

rel_pro(X,A1,81) :- true |
A1=[id6(X)|B1].

every(X,A1,B1) :- true |
det(X,A1,B1).

a(Xx,A1,B1) :- true |
det(X,Al1,B1).

the{X,A1,B1) :- true !
det(X,Al,B1).

man{ X, A1,B1) :- true |
noun{X,Al,B1).

woman(X ,A1,B1) :- true |
noun{ X, Al,B1}).

walks(X,A1,B1) :- true |
verb(X,A1,B1).

loves(X.A1,B1) :- true |
verb(X,A1,B1).

|.!.:.l1..5'-‘§~.la|1.51} e tl"IJE *
rel pro(X,Al,B1).

Appendix 3: Redefined Part for Parsing Gapping Grammar

start{Sent} :-
start(Sent,[begin],Stream),

-._S_

gg{Stream, ,New_stream,),
fin{New stream).

start([].End,End).

start([Word|Rest],In,End) :-
go(In,Word, New_in,0Outl),
expand(Word New in, Out2},
append(OQutl,0ut2,Out),
start(Rest, Out End).

parse([].End,End).

parse{([List|Rest],In,End) :-
Tist(List),
start(List,In, Out),!
parse(HRest,0ut,End).

parse([Word|Rest], In,End) :~-
expand(Word,In, Out),!,
parse(Rest,Out,End).

ga(L 1, .[1.[D)-
gg([([gap(N.X), =>"[Head],In)|R], Word,
New_in,[{[gap(N,.[Word|X]), =>"|Head].In)|R1]) :- !,
replace(N,Head, X, Headl),
parse(Headl, In Nin}),
append{Nin ,Nxt_in,New in}),
gg(R.Word,Nxt_in,R1).
9g9([([gap(N,X)[Rule],In}|R],Word,[([gap(N,X)|Rule],In}|Nxt_in],
[([gap(N,[Word|X])|Rule],In)|R1T]} - 1!,
gg(R,Word Nxt_in,R1).
gg([Id|Rest], Word,[Id|New_in],Restl) :-
gg{Rest ,Word,New_in,Rest1).

type2(_.[1.[1).
typeZ(s,[begin|Rest],[end|Rest1]) :- !,
type2(s,Rest,Restl).
type2(Cat,[([Cat,'=>"'|Head],InS)|Rest], OutS) :-
parse(Head,In5,0utl}), !,
type2{Cat,Rest,Out),
append(Qutl,Qut2, 0utS).
type2(Cat,[([Cat|R_Rule],InS)|Rest],[(R_Rule,InS)|Restl]) :- 1,
type2(Cat, Rest,Restl).
type2(Cat . [([gap(N,X).Cat,'=>"|Head],InS)|Rest] ,0utS) :- 1,
replace(N,Head, X Headl),
parse(Headl,InS,0utl),
type2(Cat Rest,Qut2),
append(0Outl,0utZ, OutS).
type2(Cat,[([gap(N.X).Cat|Rem],InS)|Rest],[(Reml,InS)|Restl]) :- !,
replace(N,Rem, X,Reml),

typeZ(Cat,Rest,Restl).
typeZ(Cat,[|Rest], Restl) :-
type2(Cat,Rest, Restl).

repiace(N,R, X,L} :-
reverse(X,Y),
rep{N.R.Y,L).

rep(N.[gap(N) [R].X,[X|L]) :- 1,
rep(N,R,X,L).
rep(N,[A|R]. X, [A|L]) :- 1,
rep(N,R,X,L}.
rep(_.[]._.1]).

References

[Clark 84] Clark, K.L. and S5.Gregory, "PARLOG: Parallel Programming in
Logie," Research Report DOC 84/4, Imperial College, April 1984.

[Dahl 84a] V. Dahl and H. Abramson, "On Gapping Grammars," Proc. 2nd
International Conference on Logic Programming, Uppsala, Sweden,
pp.77-88, 1984,

[Dahl 84b] V., Dahl, "More on Gapping Grammars," Proc. the International
Conference on Fifth Generation Computer Systems, Tokyo, Japan,
pp.669-677, 1984,

[Kay 80] M. Kay, "Algorithm Schemata and Data Structures in Syntactic
Processing,” Technical Report CSL-80-12, Xerox PARC, Oct, 1980.

[Matsumoto 86] Y. Matsumato, "A Parallel Parsing System for Natural
Language Analysis,” Proc. 3rd International Conference on Logic
Programming, London, 1986.

[Pereira 81] F. Pereira, "Extraposition Grammars," AJCL, Vol.7, No.4,
October-December, pp.243-256, 1981.

[Ueda 85] K. Ueda, "Guarded Horn Clauses,” [COT Tech, Report TR-103,
Institute for New Generation Computer Technology, Tokyo, 1985.

A revised version is in Proe. Logic Programming '85, E. Wada (ed.),
Lecture Notes in Computer Science 221, Springer-Verlag, pp.168-179, 1986.

