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Abstract

We provide a new constructive method for grammatical inference of linear
languages. We first show that there exists a fixed linear grammar by which
any linear language is generated with a regular control set. From this, the
problem of identifying an unknown linear language is reduced to the problem
of identifying a regular control set for the fixed linear grammar. With
structural informations of a linear language L, given an oracle for L and some
auxiliary information about the linear grammar which generates L, the
algorithm we describe makes a polynomial number of queries and outputs a
description of a finite automaton accepting the regular control set with which

L is generated by the fixed linear grammar.



L Introduction

A language is identified by specifying a grammar which generates it. The
problem of specifying a grammar from finite number of strings in a language is
known as grammatical inference. It is convenient to classify the methods for
grammatical inference into two categories, constructive methods and
enumerative methods. Constructive methods systematically use sample strings
to construct the grammar. On the other hand, enumerative methods use them to
select the grammar which generates the language among enumerated
candidates. Constructive methods have one important advantage over
enumerative methods, that is, they frequently require only modest amounts of
computation. But most of known constructive methods can solve only
grammatical inference for the class of regular languages. There is a few studies
of constructive methods for more general classes.

Biermann (1971) developed a computer program which constructs grammars
for a linear language from finite subsets of the language. Tanatsugu (1987)
constructed a practical inference procedure for linear languages. Both of them
find, using some given parameters for bounding computation, the self-
embedding substrings in the linear language. But procedures for finding self-
embedding substrings are not so efficient.

In this paper, we provide a new constructive method for the grammatical
inference of linear lanpuapes. We first show that there exists a fizxed linear
grammar by which any linear language is generated with a regular control set
(Theorem 3.2). In this case, self-embedding variables of a linear grammar
correspond to the states on loops in the transition diagram of the finite state
automaton which accepts the regular control set. From this, the problem of
identifying an unknown linear language L is reduced tn the problem of
identifying a regular control set for the fixed linear grammar. It is well known
{Anglun,1981; Biermann,1972) that any regular set is identified by some effective

algorithms.



With structural informations of L, given an oracle to answer membership
questions about L and some auxiliary information about a linear grammar
which generates L, our algorithm makes a polynomial number of queries and
outputs a description of a finite automaton accepting the regular control set with
which L is generated by the fixed linear grammar {Algorithm LID in section 4.2),

Although the algorithm LID can only identify the class of linear languages,
this method may be extended to cover significantly more general classes of

context-free languages.

2. Preliminaries

Let T be a finite alphabet containing k symbols for some k22, Let Z* denote the
set of all strings over I including the null string i. Let u and v be two strings.
Then, uv denotes the concatenation of u and v, and lul denotes the length of u. A
string u is said to be a prefix of a string w if and only if there exists a string v
such that w=uv. If W is a set of strings, we denote by Pr(W) the set of all prefixes
of strings in W. We note that if W is not empty then Pr{W) contains i.

Let X be a set. We denote by 2% the power set of X, i.e., the set of all subsets of
X, For two sets X and Y, X®Y denotes the symmetric difference of X and Y, ie,,
X8 Y=(XuY)«{EnY).

A deterministic finite automaton (abbreviated as DFA) M over I is a 5-tuple
<K,Z,0,q¢,F>, where K is a finite nonempty set of states, I is a finite input
alphabet, § is a transition function from KxZI to K, qo=K is the initial state, and
FCKis the set of final states.

We extend § to a function from KxZ* to K such that for all qeK, 8(q,A)=q and
5(q,uv)=8(8(q,u),v) for all strings u and v in Z*. The set accepted by M, denoted
T(M), is the set of strings u such that 8(qg,u)isin F, 1.e., T(M)={ueZ* | 5(qgq,u)sF}.

A nondeterministic finite automaton (abbreviated as NFA) M is a 5-tuple
<K,E,8,q0,F>, where K, L, qp, and F have the same meaning as for a DFA, but &
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is a function from KxI to 2X. The transition function §' can be extended to a
function from 2XxI* to 2¥ such that for all strings u and v in Z*, §'(g,A)={q)} and
3'(q.uv)=(p!for some state r in &'(qu), p is in &'(r,v) } for all q=K, and
5'(Q,u)=Uqeq8'(q,u) for QT 2K T(M) is the set [ ul &'(gg,u)nF=el. A DFA is an
NFA by definition.

It is well known that if a set R is accepted by an NFA then there exists a DFA
that accepts R.

A subset R of £* is called regular if and only if R is accepted by a DFA. If R is
regular, then there is a minimum state DFA, unique up to isomorphism, which
accepts R. This is called the canonical finite automaton for R.

Let M=<K,Z,5,a0,F> be an NFA. A state q is called live if and only if there exist
strings u and v in Z* such that uveT(M) and g=8(qg,u). A state which is not live is
called dead. Tt is easy to verify that the canonical finite automaton has at most
one dead state.

A context-free grammar G over I is a 4-tuple <N,Z,IT,S>. N is a finite
nonempty set and called variables. We assume that N and I are disjoint, and
denote NUE by V. T1 is a finite nonempty set of productions; each production is of
the form A3u, where A is a variable and u is a string in V*. We distinguish each
production in I by its label x;. S is a special variable called the start symbol.

A linear grammar G is a context-free grammar such that each production in
ITis of the form

AsuBv or Asu
where A BelN and u,veL*.

Let G=<N,LII,S> be a linear gramumar. We define the relation =" between
strings in V*. For x,yeV*, x =T v if and only if x=vAw, y=vuw and 7yAsu1s a
production of IT for some v,weX* We say that the production xiA>u is applied to
the string x to obtain y.

Let Xg, Xy ..y Xi be strings in V*, where k=1, If

Xq :}Gﬂ:1 Xy Xy :551'1:-2 b - JRUR {78 :ka Xy,



then we denote xg =& X, , Where a=n,..7, , which is called a derivation from
xo to %, with an associate word «in G.
Let L(A.G) denote the set [weZ* | A =5* w, xxe[I*}. The language generated
by G, denoted L(G), is the set L(5,G), i.e.,
L{G) = [wel* | S =52 w, aslT?).
A language L is said to be linear if and only if there exists a linear grammar
(3 such that L=L{G) holds.
A linear grammar G=<N,LI1,S> is called in linear normal form if and only if
each production is of the form
S3A, Ara, A»aB or A»Ba,
where A BelN, a=L,

Proposition 2.1

Any linear language is generated by a linear normal form grammar G.

Proof. Without loss of generality, we may assume that any linear
language is generated by a linear grammar G'=<N",Z,I1',5> which has no
production of the form A>A or Bk, where A=N', BeN'-{S}.

We construct a linear normal form grammar G=<N,I,II,S> from G as
follows: Each production of the form S+, A>aB, A>Ba or AsainT'isin Il Ifa
production of the form A%aas..a, (k=2) isin IT, then we introduce new variables
C,Cgy - » Cyy into N and new productions AzaCy, CpasCy, ..., Cy_pay into TL If
a production of the form A3ags...aBbys...bjis in IT', where i22 and j20, or i20
and j22, then we introduce new variables Gy, Co, ... » Cisjoy into N and new
productions A»aCy, CpasCay -, Cipali CaCivby Ciwp Ciyzba, ooy Cinp? Bbj

into IL. It is easily seen that S = ® wif and only if S =¢% w.

In what follows, we assume that G is in linear normal form, and also

assume that for weL(G), every variable A appears in some derivation S =4%w,

i.e., there exists a dertvation S5 =P uAv =57 w, where a=fy.



3. Representation Theorem for Linear Languages

In this section, we show that there exists a fixed linear grammar G9 by

which any linear language L is generated with a regular control set C.

DEFINITION. A linear grammar G%=<(S%,2,11°,8% is said to be universal if
and only if 1% consists of the following productions,
m°={ 8%a,8% 8%a,8° .., 58%4a,S°,
5%8%a, §%8%a,,...,8%8%a,,
S%a,, S%a,, ..,S%a,
S%A,

where Z={a,a-,...,a,}.

Note that for a given alphabet I, the universal linear grammar GY is uniquely

determined.

DEFINTTION., Let G=<N,ZII,5> be a linear grammar, and C be a subset of [T*.
Then
LG} = [weZ* | S =% w, aeC}

is called the language generated by G with control set C.

Let G=<N,Z,I1,8> be a linear grammar, and G%=<(S9),%,1719,8% be the
aniversal linear grammar. We define a homomorphism h from IT* to % such

that

( 'n:ﬂi where KUFSD% aS% if n:A>aB,
hix)= 1 =° j where x? j:SG-}SQa, if m:A>Ba,
?Eﬂh where 1%:8%a, ift:A»a,

L 9 where x%:8%2, if ©:S>A.




We construct the corresponding NFA M=<K,[1°,5,5,F> to G, where K, , F are
defined as follows;
1. K=NU{qg} where qp¢N.
2. (qe) if 12524, 8%, and =eh(x9),
5(S,x%)=
g if t9:8%2 and h~i(x%)=g.
(Bl m:A>aBell, neh'(n® M if x° j:Su-i-aSﬂ,

(A0 )=
{BI ;A Baell, meh™'(x0 )} if n° :8%:8%.
{qe) if m:A>aell, 1°:5%a and n,=h (%),
8(A,x%)=
g if 1°:S%a and h™'(z%)=s.
3. F={ggl.

Now we have the following Lemma.

Lemma 3.1
For any weX¥* AeN and aell*, A =;% w if and only if SO:-:-EH“E w and

S5(A, a9sqs, where a=h(a).

Progf. The argument is an induction on the length of associate words «
and aP, If A =47 a, then n:A3a is in I1, so S° = goh(®) a. By definition of 8,
8(A,h(r))2qp. Conversely, if S° ::-Gu“FD a and &A,x%sqg, then by definition of 8,
there exists a neh™'(r?):A»a and A =gT a.

Inductively suppose that for any o in [1* and any «? in IT9* such that lal<n
and laf1<n the assertion holds. If A =4 aB =;* aw, then S° = go(@) w and
8(B,h(w))sqf by the inductive hypothesis. Since m:A»aB is in II, we have
8(Ah(x))2B by definition of 8. Therefore, S? = ;0b(%) a8% = ;ol(®) aw and

S(8(A, h(r)), h(e))=8(A himlh(a))=8(A, h(na))=qf.



Conversely, suppose that S© =Jr|3r:ﬁ“:¢:J aS% ::-Gclaﬁaw and 8(A,n%)sB and
8(B,x")2qf. Then B =% w where aeh™'(a®) by the inductive hypothesis. By
definition of §, for x%:5% a8 in I1? there exists neh~'(x%:A3aB and A =T aB,

therefore, A =45™% aw.

The next theorem follows immediately from this Lemma by putting C=T(M).

Theorem 3.2.

For any linear language L, there exists a regular control set C such that for
the universal linear grammar G° L=L G9 holds.

We can also prove the converse case.

Theorem 3.3.

Let G°be the universal linear grammar over X and C be a regular control

set for GY Then, L=L LG9 is a linear language.

Proof. Let M=<K,I19,5,5,F> be a DFA such that C=T(M) holds. We define a
linear grammar G=<K,I,I1,8>, to which M is corresponding, and a
homomorphism h from IT* to TI°* as follows:

1. If 8(A,x%)=B and =% is S%»aS°, then n;A»aB is in T and h(x)=rC,

2. If 8(A,x°)=B and =°; is %58, then x A>Ba is in ITand h(x )=r?;

3. If 8(A,x°eF and 7%, is $%a, then m,:A3a is in [Tand him,)=n",.

4. If 8(A,x")eF and 79 is S%%, then m:AsA is in [T and h(rm)=x®,
By Lemma 3.1, for any weE*, 8° :GU“G w and &S,a®)eF if and only if S =% w,

where aeh ' (a?).

Thus, we may reduce the problem of identifying a linear language L to the

problem of identifying a regular control set C such that L:Lﬂ{GD} holds for the

universal linear grammar G° To identify C, we construct a DFA M over [1°



corresponding to a linear grammar G which generates L. However, we have

further difficulties in identifying a regular control set from examples of L

because of the universal property of G°. That is, for any linear grammar G which
generates L, there exists a regular control set C such that L(G}=LC{G°} holds.
Therefore, in general, it is unknown whether the set
C'=a® | §° =50%° w, weL) = Uyg) =, h({a] 8 =% w, weL))

is regular or not because there exist infinite number of linear grammars which
generate L. If the procedure for identifying C from given examples of L might
consider all derivations of them in G9, then it should construct infinite number of
candidates of C. Hence, we give some sufficient condition for the procedure to

identify some C and halt.

DEFINITION. A linear grammar G=<N,IZ I1,S> is canonical if and only if it
satisfies the following conditions:

1. There is no pair of productions A3aB, A»aC or A>Ba, A>Ca, where B2C.

2. For any distinct variables A, BeN, L(A,G)=L(B,G).

Since the equivalence problem for the class of linear grammars is not
decidable, the condition 2 in the definition of the canonical linear grammar is not
effective.

We show that, given a linear language L, there exists a canonical grammar
which generates L. But it is not unique in general, so we use the term
"sanonical” for a linear grammar in a different way from a canonical finite

automaton.

cwina 3.4,

Given a linear grammar G, one can get a linear grammar G’ such that
L(G)=L(G) and G’ has no pair of productions AsaB, A»aC or A+Ba, A>Ca,
where B=C.



Proof. Given a linear grammar G, by Theorem 3.2, we can get an NFA M
corresponding to G. Let M' be the DFA such that T(M)=T(M") holds. By Theorem
3.3, we can get a linear grammar G’ from M'. Then, clearly, L[G}:Lc(Gﬂsz(G‘}
holds. The construction of G' ensures that G' has no pair of productions A»aB,

AsaC or A+»Ba, A>Ca.

Lemma 3.5.
For any linear language L, there exists a linear grammar G such that

L=L(G) and for any distinct variables A and B of G, L(A,G}=L(B,G).

Proof. Let H=<N,EII,5> be a linear grammar such that L=T1{H) holds. For
any variables A, BeN, if L{A H)=L{B,H), then we remove B from N and replace all
occurrences of B in each production of II by A. Let N' be the new set of variables
and IT' be the new set of productions. Then H'=<N"Z]IT",S> is a linear grammar.
Clearly, S =4* w if and only if S ==H-“'w. Therefore, L{H)=L(H"). By repeating

this procedure the proof is completed.
From Lemmas 3.4 and 3.5, we get the following result.

Proposition 3.6
For any linear language L, there exists a canonical linear grammar G such

that L=L{(3) holds.

Proposition 3.7.
Let G 1s a linear grammar and M is a finite automaton corresponding to G.

Then, if G is canonical, M is canonical.

Proof. Since G 1s canonical, M is a DFA. Since for any distinct variables A
and B of G, there exists a string w in £* such that weL(A,G) but w&L(B,G), for



any distinct states p and q of M, there exists an associate word a such that

&lp,a)elF and 8(q,a)¢F, or vice versa.

Unfortunately, the converse case does not hold in general. For example,
suppose that G=<N,LII,S> is a linear grammar, where N={5,A,B8,C,D}, Z=(a,b),
T={Ssb, S+bA, S5 Bb, A»aC, C3S5a, B#Da, D+aS). Then, (7 is not canonical because
L{A,G)=L(B,G). The universal linear grammar over I is Gﬁzdeﬂ],E,lla,Sﬂb,
where IT%=(x%:3%a80 2,:5%b8% r%5:5% 8%, 29,:8% 8%, n%5:5%a, n%:S%b,
795:5%1). The DFA corresponding to G is M=<N,11°,5,5,(qr}>, where the
transition function 5 is defined as &(S,n%)=q, 8(8,n%,)=4, §3,7%,)=8, 5(A,x%)=C,
EfC,n':'g):S, 5{5,71:03}=D. 8(D,x%)=8. It is easy to verify that M is canonical.

The next theorem follows immediately from Propositions 3.6 and 3.7.
Theorem 3.8,

For any linear language L, there exists a canonical finite automaton M
such that C=T(M) and L=L4G 9 hold.

Thus, to identify a linear language L, we may construct a canonical finite
autcmaton M corresponding to a canonical linear grammar which generates L.
4. Inference of Linear Languages

In this section, based on the results described in above sections, we provide

the algorithm LID which efficiently identifies a linear language L.
4.1 Consistency for the membership oracle

Let L be any linear language. Let G be a canonical linear grammar such that

L=I{G) holds and G%=<(89,2.J71%,5% be the universal linear grammar over X. Let
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C be a regular control set such that L=L(GY) holds. In order to determine
whether an associate word «® is in C or not, LID asks the oracle whether w is in
L(G) or not for the string w such that 89 :Guﬂﬁ w. But in general, even if weL(Q),

a? is not always in C.

DEFINITION. A regular control set C is said to be consistent for G if and only

if for any a?<[1°* and the string w such that S° ==J~r,,-":l'5’-l:l w, %« C whenever

wel{(G).

If any string in L{G) has the unique derivation, then G is said to be

unambiguous. The next Proposition immediately follows from the definition.

Proposition 4.1

If G is unambiguous, then any C is consistent for G.

In order to make G unambiguous, we introduce a parenthesis grammar
which displays the derivations of the corresponding strings in L{G) by the nesting
brackets.

DEFINITION. Let G=<N,E,I1,S> be a linear grammar. The parenthesis
grammar of G is denoted by [Gl=<N,ZU{[]),IT,S>, where "[" and "T" are special
symbols not in £ and [1' is obtained from [T by replacing every production A»u
by As+{ul. '

A parenthesis grammar [G] is backwards-deterministic if and only if no two
productions in [G] have the same right side. Note that a backwards-deterministic

parenthesis grammar [G] is unambiguous, Clearly, the parenthesis prammar

[GP] of any universal linear grammar is backwards-deterministic. Therefore, the

following Proposition holds.

-11 -



Proposition 4.2
Any regular control set is consistent for [G].

4.2 Inference Algorithm LID

Let L be any linear language. Let G be a canonical linear grammar such that
L=I{C) holds and G° be the universal linear grammar over L. Let [G]=<IN,Z,I1,5>
be the parenthesis grammar of G and [G%=<(89,2,11°,S% be the parenthesis
grammar of G° Let M=<K]JI1°3,S,F> be the canonical finite automaton

corresponding to [G®] and C be the set T(M).

DEFINITION. The representative sample of L{[G]) is a finite subset R, of L{[G])
such that for every production n of [G] there exists a string w in R, such that =
appears in the derivation S =% w.

A finite subset R_ of TI°* is said to be the associate representative sample of
C with respect to R, if and only if it satisfies

R.={ «? | 8° :{Gﬂlau w, weR ],

We note that for every variable A of [G], A appears in a derivation S =5 w
for some weR,.
Let P, denote the set Pr(R,). Let dg be a new symbol which is not contained in
P.. We denote the augmented set P ,U{dgl by P,
We define a function f on P_*I1° by for all x%I1°
fldgn%= dq
dg if u=R,,
flp,x %)=
ur? if peP R,
Let T, denote the set P_/'U (fe,x® | ueP_ and n%iI1°%, and T_ denote T.'-(dg). Let

T’ denote TU{[,]].

-12-



To account for the relation between associate words of [GY] and elements of
L([G]), we define a partial function g from II°* to Z* such that if S° :'-[GGIED w for
%1% and weL'* then g{u”}:w. ptherwize g‘({:‘j} is undefined. If g{u”} is
undefined, then clearly w is not in L{G]), where S° ﬁ{ﬁujﬁa w.

Next we define a series of equivalence relations =; on T.". Let Ni={1}. we define
a function E, from T’ to 2N1such that E(dg)=e and for ueT,,

(A} if g(p)eL(GD),
Efw=
¢ otherwise.
Let =4 be a relation on T.' such that for any p and p' p=,u' if and only if
Edu)=E{n".

Assume that for i21, N, E; and =; are defined. For any pair of ppu'eP/, if usp’
but fip,x%)% M’ 7% for some production 7%119, then let N;,=NU{x%}, where
veE{flu,x?)@ E(fln',n?). We define a function E,,, from T, to 2Nis1 such that
Ei.(dg)=¢ and E;, (u}= (veN;, | guv)el{[G])} for neT,. Let =;,, be a relation on T,
such that for any p and p' p=;,,u' if and only if E;, {w)=E;, {u"). Clearly, =;,is an
equivalence relation. We denote by [u]= . an equivalence class of T, which

contains [. Since T is finite, there exists a positive integer m such that

Lemma 4.4.
For any peTg if E (1) is not empty then there exists a u'=P_ such that u=_u’

holds.

Proof. Clearly, if ueP, then the assertion holds. Suppose that ueT_-P_ and
I, ul#p. Then, for any veE (1), since gluv)eL{{(G]), there exists a variable A of [G]
such that 8 =5™® uAv :"’[E]B w, where w=g({uv), hia)=u, h(B)=v and u,veZ* By
definition of R,, there exists a string w'eR, such that 5 ::-[,3]3' u'Av’ =:~[G][T w,

where u',v',w'eZ* Therefore, there exists a @'=h(a)eP . Hence, p=_u"

-13-



Given an oracle to answer membership questions about L{{G]) and a
representative sample Ra of L{[G]), the inference algurithm LID constructs the
canonical finite automaton M’ such that C=T(M") holds.

LID vonstruets a finite antomaton M':-::K',H”,E‘qu',F':-.- as follows; The set of
states K' is T,/=,,, the initial state qq' is ['l]_:_m, and the set of final states F' is
{[p]Eml En(p)ah}. The transition function &' is defined as follows; if E_ (1) is
empty, then 5'{[}1.]Em,:r|:ﬂ}=[11]5m for all x%I10. If E (1) is not empty, then since by
Lemma 4.4 there exists a p'eP_ such that p=_p', 3'{[|.L}Em,:r:ﬂ}=[ﬂu',rt°}]ﬁm for all
n9er1C.

Ifpu'eP, are such that p=_y', then flp,x%=_fu'x% for all x%I1°. Hence, the

transition function &' is well defined and M' is a well defined DFA. We note that if
there exists peT, such that p=_,dg, then the state [u]s_ is the dead state of M.

Having constructed M', LID outputs a description of it and halts.

Algorithm LID
input: oracle for L{{G]) and a representative sample R, of L{[{G]).
output: description of the canonical finite automaton M' such that C=T(M"
and L{[G])=Le(G°]) hold.
procedure:
begin

/* construct the following sets from input R, */

R, :=(a® | 8% =50/%° w, weR, ) ;

P, :=Pr(R));

P. :=P.Uldg ;

T. =P, U{ fip,x® | peP, and n%n°} ;
Te =T -{dgt ;

/* initialization */
for all ueT.'do Eglu):=90;
vii=h;

/* MAIN LOOP #/
for i:=1 to infinite do
begin
E{dg) =9 ;
/* construct E{p) by querying the oracle for L{{[G]) about the string g(pv,)
for each peT ¥/
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for all ueT_ do
if glpveLIG])
then E{u):=E;{(wUiv)
else E{fu):=E; {p);

if
found a pair of u,ueP. and a production x%119 such that p=y'
but i, %Ak, x°)
then
begin
choose some associate word vtEi{ﬂp,na})QEﬁﬁp',x”}} :
Vigp = w0V
end
else
begin
m:=1i:
construct a finite automaton M and halt
end
end
end.
Example.

Consider a linear language L={ a™ba" | n20}. Let G=<N,Z,I1,S> be a linear
grammar, where N={S,A}, Z=(a,b}, [1=(S>aA, S3b, A3Sa}. Then, G is canonical
and generates L. Let [G]=<N,Z,IT',S> be the parenthesis g'ra.m.;nar of (z, where
T1'={Ss[aA], S+[b], A>{Sa]). The parenthesis grammar of the universal linear
grammar over £ is [G%=<(S%,2,119,8%, where [T1%=(x?:5%[aS7], n°,:5%(bS"],
1%2:8%[S%], 7%,:5%5(S%], n%5:5%(al, n%:5%[b]). A representative sample R, for
L{GD is {{2[[bla]l). Then, the associate representative sample R_ with respect to
R, is (%% %}, P, is (&, n%, x%x°s, 1%n05n%) and T, is (&, 10, %, n%, n%,

0 0 o

0.0 _0_0_ _0_0 0 L,0.0_ ,0_0 _0_ 0 _0 _0_.0
G L Mg 2, R 3, B g, Bt 75, O gy g "3 gy T4 3R 2,

'.I'L'D1JT. ':'311" 2 0 1n°3m°4, 31:0 Imﬂ

nls,
3705, 1003n%).

In the final partition, E(u)=(1) for p=n%, n%x%5x%, E(w={n") for p=A4,
7%n0s B (w=(n%5n0) for u=r2, x®x%:n%, and E (=0 for all other p from T,
The output of LID is the DFA M'=<K.I1°3,q0,F> as follows;

1. K ={qq, 94 92, a3}, where

qp=it, n%m%3l,
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=ty 10Oz,

DSKDG-}!

Q2=f“°sx s
qz=ld, 7%, 773, 1%, 1%, 1%, %m0, nOn%, x%nC, x0nO, xOn5n°,,
Tcﬂﬁc':';ﬂﬂ;, T N
2, F ={q-},
3. the transition function §:KxI1%K is defined as follows
agxp=qy
8(qg, " )=qz,
5(q 7 3)=a0,
8(q,t%=qz for all other x%I1° and qeK
Regarding states of M' as variables, we get a grammar G'=<N".Z,I1',8'>, where
N' is (S A"} and S'=qg, A'=qy and II' is {S'+[aA"], S'+[b], A'>(S'a]}. Clearly,

L{G)=L(G").

5. Correctness and Effectiveness for LID

In this section, we prove the correctness of the algorithm LID and give an
upper bound on the number of queries it must make.

Let L be a linear language over I. Let G be a canonical linear grammar
which generates I, and [G]=<N,ZIT,S> be the parenthesis grammar of G. Let G°
be the universal linear grammar over I, and [G%]=<{59),£,119,5%9 be the
parenthesis grammar of G°.

Let M:::K,HO,E,{;U,F'; be the canonical finite automaton corresponding to [G],

and M’:{K',!‘Tﬂ,ﬁ',qu',F'} be the canonical finite automaton which LID has

sonstrcted,

First we prove that LID always halts.

Lemma 5.1.
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Let k be the size of the alphabet L and n is the number of prefixes of
elements of R. LID executes the MAIN LOOP at most (3k+1)n times and halts.

Proof. Clearly, the parenthesis grammar [G°] of the universal linear
grammar over L has 3k+1 productions. Since the cardinality of P_is n, T,
contains no more than (3k+l)n elements. The final partition of T,' contains at
most (3k+1)n equivalence classes, so it is achieved after at most (3k+l)n

executions.

Next we define a funetion 9 from the set of states of M' to the set of states of M
by mapping [1.1:]!“,I to &lgg,u) for all peT.. The following lemma ensures that 4 is

well defined.

Lemma 5.2,
For aifl distinet pypzel’y, if qopui=dqgps), then p# s

Proof. Let C be a regular control set T(M). For distinct p,u,eT,, if
8(qg.uy=dlgg,p ), then there exists an associate word v such that uwveC and
p-va&(, or vice versa because M is canonical. We will prove that p 1> by an
induction on the length of v. Clearly, if v=A, then pC and u-,4C, therefore,
g(uypel([G]) and g(u-)¢L([G]), or vice versa. Hence, veE (W)BE (j15) and w15,
Inductively suppose that for some n=0, whenever u,, u-€T, are such that
uveC and poveC for some v of length at most n, then pyF ; holds. Suppose that
for puy, po&T_ and some associate word 7%, pmPveC and ],Lz'.r:":'vlt{: hold. Since
d(qp,uy is a live state of M, there exists an associate word p,eP_ such that
8aqg.np=5(qe,i;), so wylveC. If Hqg,u,) is a live state of M, then there exists an
associate word p,'«P, such that 8(q®u,)=58(q%p,"), therefore, u,'n%4¢C. Since
wyxPveC and |vi<n, pyr% u,'7° by the inductive hypothesis. But fll,,x%=u,r°
%

and flp, % =p.'z% so we have u % o' Since py= 1 and p,=_p,', we have

Wi o If 8lqg,po) is the dead state of M, then E_(us)=p and g(p,vi&L{[G]). Since
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w,wveC and Ivi<n, winP% s by the inductive hypothesis. Thus, E_ (i1 )}#8, for
otherwise we must have u,=,dg, p/x°= iy, 7xN=_fdgx° and E (1;7%=9, a
contradiction. Hence, E_ (1) and E_ (1} is not empty and py=11y% nMo. This

completes the proof of the Lemma.

Lemma 5.3.

4 is bijective.

Proof. By Lemma 5.2, 4 is well-defined. Since for all p,p-eT,,
8(gg.i)=8ag,ll») implies w=H4, 9 is injective. If q is a state of M, then &(qp,pn)=q
for some peT,, so E (1) is mapped to q, and 4 is surjective.

THEOREM 5.4.
Given an oracie for a linear language L({G]) and a representative sample R,

of L{{G]), LID outputs a description of the finite automaton which accepts the
regular control set C such that L{[G]) is generated by [G % with C.

Proof. By Lemma 5.1, LID halts and outputs a description of the finite

automaton M'. Let C be a regular control set which M accepts.
By Lemma 5.3, 4 is bijective. The initial state [Alz_ of M’ is mapped to the

initial state 8(gq,A)=qg of M. Ii."[|.L]E"_lI is a final state of M, then since E_ ()24 and
g(n)eL(@), peC. Therefore, 8(qq,u) is a final state of M. For peT, and n%=11°, if
E(it)=¢g, then [u]gm is mapped to the dead state of M, and these two states map to
themselves under the input xC. If E_(1)}2a, the transition on input n° from =

is to state [fﬁl-f-',n:ﬂ)]—;m. which is mapped to 8(qg,n'w%)=8(8(qg,n"),x°). Thus, the

following diagram commutes;

EHIEM _}ﬂ Hqg ,u-}
&l 15
B(lude w9 Saou®

Therefore, M' is isomorphic to M. This completes the proof.
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THEQREM 5.5.
Given an oracle for L{[{G]) and a representative sample R, of L([G]), LID

makes no more than ((3k+1n) % queries, where k is the size of the alphabet I,

and n is the number of prefixes of elements of R .

Proof. By Lemma 5.1, after at most (3k+1)n executions, LID halts and

outputs a description of the finite automaton M. Each execution requires at most

one query for each element of T, so the total number of queries is no more than

((3k+1)n)2.

THEOREM 5.6.
LID can be implemented to run in time polynomial in the size of the

alphabet Zand the input K,

Proof. Constructing R, from R, takes time polynomial in the length of
element of R, by Earley's algorithm (Earley, 1970). Searching for a pair to refine

the current partition in the obvious way takes time polynomial in the
representation of T.. Therefore, the running time of LID will be polynomial in k

and the size of the input R,.
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