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Abstract

We often encounter a situation in which we are forced to make some decision even
if there is not enough information. In that situation, we normally use common sense to
draw a conclusion from the incomplete knowledge, This reasoning mechamsm can be
regarded as meta-reasoning which chooses the preferred models from several consistent
models. This paper formalizes commeon sense reasoning of tree-structured inheritance
systems and temporal projection into one framework, minimal chenge. Both types of
reasoning have a common mechanism to prefer a model which changes nunimally in one
direction. In inheritance systems, the direction is from superclass to subclass, and in
temporal projection, the direction is from earlier state to later state.

1. Introduction

To formalize commeon sense reasoning is a major problem in artificial intelligence
because it expresses the human way of making a decision when there is not enough
information. The results from that reasoning are not logically true, but it often works
surprisingly well becanse commeon sense 1z a collection of normal results.

We cannot formalize it in a classical logical way since classical logic is monotonic in
the sense that the derived results increase as more information is added, while commen
SENSE TeASONINg 15 nonmonaetonic. It sometimes produces false conclusions, and when a

result is found to be false, then that result is removed. Therefore, we must formalize it
in a different way.

Along this idea, several formalisms of non-monotonic reasoning are provided [Me-
Dermott80, MeCarthy80, and Reiter80]. [MecDermott80] and [ReiterS0] are types of
logic which incorporates the notion of unprovability. [McCarthy80)] formalizes that peo-
ple tend to think that given information is only true.

Unfortunately, their research 1s nol appheable o ressoning of inheritance systems
and temporal projection. [McCarthy84| points out that a simple abnormality formal-
wsm does not work by simple circumaseription in inheritance systems and introduces
priovitized cireumseriplion. [Etheringlon87] also points out that the normel default



theary does not produce a unique ertension in the inheritance system and introduces
the semi-narmal default theory. [HanksS6] points out that simple circumscripiion, nov-
mal default theory, and NML-T are not applicable to the temporal projection problem
(detuils are given in [Hanks87]), and several people suggest solutions [[Kantz86, Lifs-
chitz86, Shoham86 and more in Frame87].

The formalism presented here is another solution to these problems. Chur approach
is providing a preference criterion of cousistent models these problems. These prob-
lems are identified with reasoning in tree-structured multiple worlds, and common sense
reasoning of these problems is regarded as sclecting a preferred model from consisient
madels. A eriterion of selection of a model called mimimal change is formalized, Mini-
mal change means that our common sense prefers a model which has less change from
a current world to a new world.

2. Nonmonotonic Reasoning

As several people point out, circumscription, normal default theory and NML-1
are not applicable to such types of common sense reasoning as inheritance system and
temporal projection. We see the details by using normal defanlt theory. In the default
theory, there are some defaults additional to axioms. Defanlt is any expression of the
fﬁ}ﬂIl:

(= Mﬁ'l :---:Mﬁm

T

where @, 81, ..., A, are wife. The meaning of M is informally nnderstood as "it is
consistent to assume”.

Normal default is a default of the following form.

a1 Wl
1w

Normal default theary consists of axioms and pormal defanlts.

An extension is a set of derived result from default theory and sheuld be satisfied
with the following properties.
(1) It should contain set of axioms.
{2} It should be closed under logical consequence.
(3) Let (a: M3, ...,M3, /w) be a default. If an extension includes o and does not
include =, ..., =y, then an extension must include w.

2.1 Tree-structured Inheritance System

We use the followimg examyle.
(1) Amimals do not normally fiy
{2) Birds are animals but normally fly.
(3) Tengnins are birds but do not uermally fiy.
(4) Fish are animals and normally swimn.



(5) Mammals are animals.
(6) Dats are mammals but normally fly.

The above information seems to be expressed as the following axioms and defaults.

BIRD o ANIMAL (2.1.1)
PENGUIN o BIRD (2.1.2)
FISH o ANIMAL (2.1.3)
MAMMAL & ANIMAL [2.].4]
BAT o5 MAMMAT., (2.1.5)
ANIMAT : ]'\:J[-wl- LY (2.1.6)
-FLY
BIRD : MFLY
& S (2.1.7)
FLY
PENGUIN : M-FLY 2.1.8)
-FLY (&.1.8)
FISH : MSWTM (2.1.9)
SWIM I
BAT : MFLY
—— e 2.1.10}

However the above axioms and defaults do not work, because for example suppose
that BIRD is asserted, there are two exlensions which include the following facts.

E, D {BIRD,FLY, ANIMATL}
E, 3 {BIRD, ANIMAL, -FLY}

The above set of facts in E) 1s informally obtained as follows. Since BIRD is in the
extension, and it s consistent to assame FLY, FLY 15 i the extension by the default
(2.1.7). Since BIRD is in the cextension, ANIMAL is in the extension by the axiom
(2.1.1).

The above set of facts in Es is informally obtained as follows. Since BIRD is in the
extension, ANIMAL is in the extension bv the axiom (2.1.1}). Since ANIMAL is in the
extension, and it is consistent to assume ~FLY, =FLY is in the extension by the default
(2.1.6). Note that i this case =FLY is in the extension, therefore it 1s not consistent
to assume FLY, and FLY should not be in the extension,

Since L) includes LY while B includes ([I'LY, and there is no preference between
theo, we cannot tell whether birds fiy or not while our intention says that birds fiy.

2.2 Temporal Projection
We use the following example called the Yuale Shooting Problermn [Hanks86).

In the initial situation, Sy, the person is alive. The gun hecomes loadecd after an



action, LOAD, is perfornued, If the gun is loaded then the person will not be alive after
an actionr, SHOOT, is performed. Information about an action, WAIT, is not given.
Then what facts do people think hold in the sequence of actions LOAD, WAIT and
SHOOT ?

We use the sitwafton calenlusMeCarthy69] to express lhe above miormation.
T{F.5) expresses that the fact F s true in the situation 5. The function RESULT 15
the mapping from an action and a situation into another situation. For example, 1f 55
15 a situation and LOALD 15 an action, then RESULT({LOAD.S,) is also a situation. If
the fact, LOADED, is true in the situation after the action, LOAD, is performed [rom
the situation, Sy, then we can express it as foliows.

T(LOADED RESU LT{LOAD. S5, ))

Then, the ahove information of the shooting scenano scems to bhe expressed as the
following axioms and defanlis.

T{ALIVE,S;) (2.2.1)
vs|T{LOADED RESULT(LOAD,s))] (2.2.2)
Vs[-T(LOADED.s) Vv =T(ALIVE.RESU LT(SHOOT s )] (2.2.3)

T(f,s): MT(f,RESULT(a,s))
T(f RESULT{a,s)}

(2.2.4)

Informally, default [2.2.4} expresses that every fact, f, will hold continuously after
every action, ¢, from every situation, s, if it iz consistent to assume it.

However the above default theory does not work, becanse we can derive two exten-
sions which include the following facts.

E, O { T(ALIVE,S,), T(ALIVE,S, ), T(LOADLD,S, ), T{ALIVE, 5,)
T(LOADED.S,), ~T{ALIVE,S;} }

Fs o { T(ALIVE,S,), T(ALIVE,S; ), T{ALIVE,S.), T(ALIVE,Sy),
T(LOADED,S;), ~T{LOADED.S,) }

where §) = RESULT(LOAD.S,) and S; = RESULT(WAIT,S,) and §; —
RESULT(SHOOT.S,)

The above set of facts in E, is informally obtained as follows. Since T{ALIVEL.S,)
is in the extension, and it is consistent to assume T{ALIVE.,S;), it is in the ex-
tension by an instance of the default (2.2.4) where ALIVIS, 5y and LOAD are sub
stituted for f, s and o respectively,  Siealarly T(ALIVE,S)) s also in the exten-
gion., Since TILOADED. S} is in the extension by (2.2.2), and it 15 consistent to
assume YTLOADED 5, T(LOADED.S,) 1s in the extension by the default. Then
=T{ALIVE.53) is in the extension by [2.2.3).

The above set of facts in Ey is informally obtained as follows.,
T{ALIVE.S;), T(ALIVE.5 ) and TUALIVE, 5;} are in the extension in a similar way of



the above diseussion. Then TIALIVE,S:) is in the extension by the default. because it
15 consistent to assume it. Then =T{LOADED,5;) is in the extension by (2.2.3).

Since F, includes =T{ALIVE,S;) while Ey includes T{ALIVE,S;), and there is uo
preference between them, we cannot tell whether the person will be alive or not after the
actions LOAD, WAIT and SHOOT while the person will not be alive in our intended
models.

3. Reasoning in Tree-Structured Multiple Worlds

We think that the above multiple extension problem arises from a lack of preference
criterion which can not be expressed in theose formalisn such as ciremnseription, normal
defanlt theory and NML-1. Our selution s to map the above types of reasoning into
tree-structured multiple worlds and to provide preference criterion between consistent
maodels. This section shows how the above reasoning are mapped into tree-structured
multiple worlds.

A free 1s a directed graph with no cyeles which satisfies the fnﬂmwing conditions:

{1) There is only one node called the roof, which has no enteriug edges.
(2] Every node except the root has exactly one entering edge.
{3) There 1s & unique path from the root Lo cach node.

In the tree-structured inheritance system, classes correspond fto the nodes and
inheritance relations correspond to the edges. The root corresponds to the highest class.
The direction 15 from superclass to subclass. The properties of classes are associated with
the corresponding nodes. In the tree-structured inheritance system, once a property is
ziven in a class, it 15 inherited in lower elasses unless 1t 15 explicitly declared not to hold.
It can be formalized that in this inheritance mechanism. the set of properties does not
change with the inheritance relation until contradiction occurs, and if it occurs, the new
set of properties changes minimally from the previous one to maintain consistency.

In temporal projection, states correspond to the nodes and actions correspond to
the edges. The root corresponds to the initial state. The direction is from earlier state
to later state. The facts of a state are associated with the corresponding nodes. In
temporal projection, once a fact holds in a state, 1t continues to hold unless that fact 1s
explicitly declared not fo hold. It can be formalized that in this projection mechanism,
the zei of facts does not chan ge with the time until contradiction oceurs, and if 1 ocenrs,
the set of facts are changed minimally from the previeus ane.

4. Formalism

As stated above, properties or facts are not absolutely true, but relative to s node,
Therefore we use o predicate, T{P, W) {in a shmilar way in the previous example of
temporal projection}, to express that a property or a fact, P, is true at a node, W, For
simplicity, we use manyv-sorted logic. Variables py py.... range over properties or facts
and variables wy,we,... range over nodes. We denote the parent node of node w other
than the root by lastiw). Note that the parent node is unique, so0 we can define it as



a function. We define partial order relation "< over nodes: wy < wy il there is a path
from wy to ws.

A structure M for a second-order language consists of a domain D, which 15 a non-
empty set, and an interpretation function such that every n-ary function constant, F,,
is mapped into a function from D7 to D {written as M[F,]) and every n-ary predicate
constant, Py, is mapped into a subset of D™ (written as M[P,]). And, n-ary function
variables range over any function [rom: D" to D and n-ary predicate variables range
over any subset of D™. < ty, ... t, >y denotes an interpreied tuple where £, .. t are
terms. If Po(ty,....,tn) 35 true in M, we express this fact as < 1), ...,1n >0€ M[Pa]. A
model of a set of axioms 15 any struciure M such that every formula in the set 15 true
in M.

Now we define a relation =< over models,

Ay, = M. iff
(1) M, and M» have the same domain.
(2) Ewvery function constant, and predicate constant except T recelves the same inter-
pretation in M, and M;.
(3) The following statement is true{ We omit M, of < p,w =y, and My of < pyw >4,
becanse < p,w >p, =< pw >pp, by (2)).
Vpl< p,0 =& M |T] = < p,0 2 My{T|| A
Y|
0<w A Vo'[d<w <w 2Vp[< pw > M[T] = < pw' =€ MT]}] D
Vpl
[< plast{w) > My[T] = < p,w > M:[T]] D
[« p.last{w) =€ M|T] = < p,w > M|T]|

]
|

where (1 15 the root,

This definition means mformally that for every node w. if My and M agree on the
interpretation from root to last{w) then M changes less than M; at the point from
Eﬂ.&i{u-‘“_l to .

Theorem 1. = is a partial order relation, that is, < is a reflexive, transitive and
amti-svmmetric relation,

The minimal change models are those models M such that there is no model M’
such that M' < M (which is equivalent to M' = M and M' £ M).

We can give a circumscription-like formula to compute the theorems, which are
‘rue in all minimal change models. in a similar way of [IKautz86]. Let A(Y1') be an axiom
set ncluding predicate T oand A(r} be the set of sentences abtamed hy substituting 7
for any occurrence of T in A(T). v = T stands for ¥p¥u(T{p.w) = r(p,w)] and + < T
stands for the following expression.

Vo[T(p,0) = 7(p,0)A
V]|



N<wnh Velew <w D ¥Vp[Tipw') = rip,w]]] O
vp|[T(p, last{w)) = Tip,w) 2 [7iplastw)) = 7{p,w)]|

]

This expression means that T and 7 are equivalent at 0 and for any w if T and-+
are equivalent from 0 to last{w) then changes of 7 is less than clianges of T. Now we
give the circumseniption-like formula.

ATy n =3r[A(r) A 7 < T

where 7 < T stands for 7 = T and not = = T..

The above formula is equivalent to the following formula.
ATy nwefdir)nr<T D7r=T]

The above formula means informally that if an arbitrary predicate 7 which satisfies
the conditions satisfied by T, and 7 changes less than T at the earliest point which any
difference oceurs between T and 7, then T and 7 are identical.

The relalion between the above formula and nuiniinel change models 1s as follows,

Theorem 2. M is a model of A{T'} A —Jr[4A(7) A v < T] if M is a minimal change
model,

The proofs of the ahove thearems are found n appendir A,
5. Examples
5.1 Tree-structured Inheritance System

We use the same example in the subsection 2.1. In this example, the root is ANI-
MAL, and node variables range over the set of classes, {ANIMAL, BIRD, PENGUIN,
FISH, MAMMAL. BAT}, and property variables range over the set of properties, {
FLY, SWIM}.

To deliue a partial order relation "<' over classes, we first define the following
pureni-child relation ‘=" over classes {this relation also denotes the function last such
that wy = wy M lasiluw) = wy ).

ANIMAL — BIRD

BiRTY = PENGUIN

ANIMAL =- FISH

ANIMAL = MAMMAT,

MAMMAL = BAT

Then "< 1s defined as transitive closuie of the above relation, and if the pair of
classes, {1y, w9 ), 15 not in the closure, it means —{wy < ws ).

The information about properties 1s given as follows. Fig. 1 illustrates this in
formation. In Fig. 1, a circle expresses a class and an arrow expresses an inheritance
relation and a property is i a cirele. If T{ P W) 15 not true. the property in the circle
is expressed as - P



=T(FLY ANIMALY

T(FLY.BIRD)

=T{FLY PENGUIN}

T SWIM,FISH)

T(FLY.BAT)

Unique name axioms in classes and properties such as ANIMAL # BIRD or FLY

# SWIM, are not shown.

Then the interpretations of predicate T' by the minimal change models are as fol-
lows. Figs. 2 and 4 show these models.

M T) ={ «FLY.BIRD >, «<FLY.BAT>, <SWIM.FISH> }
M>IT] = { <«FLY.BIRD >, <«FLY.BAT>, <5WIMANIMAL>,
<SWIM.BIRD >, <SWIM.PENGUIN>, <SWIM,FISH >,
<SWIMMAMMAL>, «SWIMBAT> }
A common resuli is obtained for the lwo models lustrated in Fig. 4. Deduction
of the cotumon result by the formula in the previous section is found in appendix B.
It is easy to show that the other models change more than either of those models.
For exainple, let
M;[T) = { «<FLY BIRD>, <FLY MAMMAL>, <FLY BAT>, <SWIMFISH>
}(see Fig.8).
Then M, < Mz, hecause at the point from ANTMAT to MAMMAL, M; changes

mare than M), that is, <FLY ANIMAL> ¢ M, [T](and M;{T]) and <FLY MAMMAL>
2 M,[T], but <FLY MAMMAL3> ¢ M;[T).

5.2 Temporal Projection

We use the same example in the subsetion 2.2, ln this cxample, the root s Sy,
and action variables range over the set of actions, {LOAD, WAIT, SHOOT], aud node
variables range over the set of situations,

[Sy, RESULT(LOAD.S,), RESULT(WAIT.S;). RESULT({SHOOT, 5 ), ..... }.
and property variables range over the set of faces, {LOADED, ALIVE}.

To define a partial order relation "< over situations, we first define the following
pareni-child relation "= over classes {thi= relation also denotes the function last such
that 1wy = wy f lnst(w;) = 1w ).

YaVw| w = RESULT (.1}

Then "< is defined as transitive closure of the above relation, and if the pair of
classes, (w5, w02, 18 not in the closure. it means —(w; < ws .
The mformation about the state changes is expressed same as in subsection 2.2, Unique
uame axioms Iin actions and facts such as LOAD £ WAIT or LOADED £ ALIVE, and

unique situation axioms such as Sy £ RESULT(LOAD, 5;) are not shown,



Fig. 0 shows the facts to be true in all models of the above axioms.

The interpretations of predicate 1" by the minimal change inodels include the fol-
lowing results. Figs. 7 and 8 illustrale theso odels,

M[T} O { <ALIVE,Sy >, <ALIVE.S, >, <LOADED S, =, <ALIVE,S, >,
<LOADED.5; », <LOADED.S; » |

M[T] 5 { <ALIVE.S, >, <LOADED.Sy >, <ALIVE,S; >, <LOADED,S, >,
<ALIVE,S; >, <LOADED, S, >, <LOADED.S; > }

where §, = RESULT(LOAD,Sg) and Sy = RESULT(WAIT,S;) and S =
RESULT(SHOOT,S:)

A commeon result 15 obtained for the two models shown in Fig 9.

6. Related Research

Inn [Hanks87), it is pointed out that a problem in the temporal projection is to clear
a preference criterion and to compute theorems common in all preferred models. This
assertion can be also applied to tree-structured inheritance systems. We have eiven a
preference criterion in these domains and a second-order formula to deduce theorems.

In this approach, [Kautz86] and [Shoham86] provide similar formalisms to ours
in temporal projection. They formalize that people tend to think that facts persist
as long as possible. [Shoham86] minimizes abnormality in the chronological order and
[Kautz86] defines preferred models by later Clip of a fact. The difference between
those formalism and ours is that they compare changes at the carliest point where any
difference occurs hetween changes in models, while we compare them at the carliest
point where any difference occurs between models. We explain the details by using the
idea of [Kautz86)].

In tree-structured multiple worlds, thie idea of |Kautz86] can be translated into the
following relation of models.

M, < M, iff
(1) M; and M. have the same domain.
(2) Every constant, function, and predicate symbol except T receives the same inter-
pretation in M, and M.
(3] The following statement is true.
W
0= w0 A
V'
0w < w D
pl
[-< polast{w') > M[T] = < p,w'’ »€ M[T]] D
[< plast{w') € Ma[T] = < p,w' >€ Ma|Tj

]



=]

p| y
< plast{u) =€ Ma|T| = < p,w »€ M[T]} D
[« plast{i) >€ M |T} = < p.v >€ M[T]]

I'"

In this definition, if M, is strictly better than My, Afy; and M Liave identical
changes up to some node, w', and at w’, M; changes strietly less than M.

Thew, in the above example of mheritance sy Htun this criterion excludes the first
model, since at point, from ANIMAL to FISH, M, chauges strictly less than My since
M, has a change about the property, SWIM, Imr M5 not. The detailed disenssion is
found 1 appendix C.

7. Conclusion

This paper formalizes two types of commeon sense reasoning, that is, free-structured
inheritance system and temporal projection. The main idea is that these types of
reasoning can be regarded as meta-reasoning in tree-structured multiple worlds which
selects preferred models among consistent models with the given information, and those
preferred models change mi mmalh in the dircction of the tree. We believe that this
formalism can be used as a clear specification of conunon sense reasoning system.
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Appendix A. Proofs of Theorems
Theorem 1.

= 15 u partial order relatlon. that 15, = 1s a rellexive, transitive and anti-symmelric
relation.

Proof.

(1) reflexive property is trivial.

(2] transitive property
Suppose Ay < Als and My < A4y but not Af, < A5 Then,

There is a point W such that
0 < WAV [0 <w <W D Wpl< pow > MLIT| =< p,w’ =€ My [T]]]]A
3p
(< plastiW) >¢C Ms|T] =< p, W € M3 (T| A
[< plast{W) =>C M[T) Z< p, W =€ M,[T]]

Suppose there i= a point Wy and a property P such that
0< W, < W,
Vw(l < w < Wy DVp[< pw =€ M[T] =< p,w =€ M3[T}]] and
< P,W, =€ M[T] £ < P. W, >€ M,(T)].
Then
< P,W) >€ Mu[T] 2 < P.W; »€ M;[T),
becanse < P,W; = M{[T| = « P W, > M,(T].
It means that there is a point Wy and a property ' such that
0=< We < W, and
< P Wy =2 MR[T) 2 = P/ W, =2 M3[T).
Suppose Wy < W, then
< P\ Wy »e Mi[T] # < P, 1V > My[1Y,
because < P\ W, > My[I] = < P, Wy > Ma[T).
It contradicts:
Yu'll < w' < W 2Vp[< p,w' € AM,[T] =< p,w’ > M;[11)).
Suppose Wa = 11 then
[«< Plast(W,) =€ M,[T] =< P,W, >¢ M,!T]] 2
[< P last{Wy) > My[T] =< P,W, & M;{T] (because M, [T} < M;[T)),
< PlastiW) =€ M [T = < Plast(W,) =€ M[T] aud
< P,W) >€ M[TV # < P,W, >e My[T].
Therefore
{< P last{WW) > Ma[T] =< P, W, e M[T]). (A1)
And



< P last{W7) >¢€ Ma|T] =< PLW, =€ M|T]I D

[< P last{Wy) »€ M3[T) =< P,W, »€ My[T|] (because ML = M;[TT).

< Plast{Wy) =€ M,[T] = < P.last(Wy) > M3{T] and

< P,W) >€ M,[T] # < P.W, > M[T).
Therefore

[< Plast{W)) =& Ma[T] < P.W| =€ M,{T]]. (A.2)
(A2} contradicts (AL}

Therefore

"l:-"u.-[ﬂ ap < WD 'v'j:-{f‘: o, e A [T] =< phwr >C ﬁ-‘fg[T]]].
Therefore

Wpll< p,lost{W) € MG[T) =< p, W e M:[T]] D

< plast{WW) e M[T] =< p, W = M, [T]],

hecause M, [T] = M,|T].
And since Vw0 < w < W D ¥p[< pow > M [T] =< pyw >€ M5 (T},

Vw0 € w < W 2 ¥pl< p,w € AL[T) =< p,w »& M3[T]]].
Thercefore

Wpll< p,last(W) »C MG [T =< p W »e M3[T]] 2

[< plast(W) e Mo [T =< p. W > ML[T])i,

!.'.IECEIu._‘-'-‘:E ﬂi{g ET] j JMg[T].
Therefore

¥pll< p,last{W) € MiT) =< p, W =& M3[T] O

[< p,last{W) > M [T) =< p, W e M, [T1]].
it contradicts:

3|

[< plostiW) e MyiTl =< p. W =& M[T]|A
o plastWW) > AL[T  £< p, W = M [T
]-

(3) anti-symmetric property

Suppose My = My and My = M) and My 2 M. Since M; £ My, there is & point
W in a path where some difference ocours in My [T and A7, Then 1 is not the root
because ¥p[< p,0 =€ M, [T] = < p.0 > Mx{T]].
Sinee Yw[l < w < W 2 ¥p[< pow > M [T = < pow =€ Ma[T]]],

Wpl< plast{T7) > M [T} = < p,last{117) =€ ML[T])).

And since the left-hand side of the second conjunct of each statenent in M, < M,
and M, = M is true, the followinigs are true,

Wpl
e polest(W) e LT
(< p,last(W) »& M, [T)
| and
Wl
[< p lastiW) >e M|T) = < p. W >C MT]] 2
[< plastiW) =C AT = < p, W »¢ AT

< p. W =g AL TV 5
< p W =g M [TT
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]
Therefore, ¥pl< p, W =¢ M[T] = < p, W >¢ M[T]]l.
This contradiets the fact that W is the earliest point where any difference occurs in A,

and M.

Theorem 2.
Fr[Alr) A =< T]ff A is 2 minimal change madel.

M is a madel of A(T A
Proof.
(=) Suppose M = A(T) A —Z7[A{7) A 7 < T, but there is a model AM' of A(T)

and M’ < M.
Therefore

Tpl<t p.0 > M[T) =< p.0 5¢ M'[T]] A

Vw0 <w A Vu'll <uw' <wdVpl<pw >C M[T] =< p,w’ >C M'[TY] 2

vp|
[< p,last(w) »e M[I'] =< p.w > M[T]] >
[< plast{w) > M'[T} = < p,w > M'[T]]

]

| A
dpdw(< pw > M[T] # < p,w > M'[T]].
Let M|[r] = M'|T], where 7 is a predicate constant which is not in A(T), then since

M'E AT M = A(r).

And since

Yp[< p,0>€ M[T| =< p,0 > M{7]| A

“':-"w[[fl < M 1':-"i'_:."[{] < < w D "cr'p[-:: m w >E M[T] =< p, w' = M'[T]]] ]
=< puw = M[T] O

=< pw >€ Mr]]

¥
[ p last(w) =& M[T]

[< p, last(w) € M|[r]

]

Ia
Ipdw(< pow =€ M[T] £ < p,w >& M|}
by substituting M7} for M'(T) m the above statement,

MpEr<T.
It contradicts M = —=3rld{r) A + =« T).
(+=) Suppose M 15 a minimal change model and M = A(TY A3 [A{r) A 7 < T

W ke 7 such Llod A{r) n 7= T,
Then since M =+ < T,
Ypl< p,0 € M[T| =< p, 0 >€ Miz]] A
Ywl[0 < w A V'l < w' < w D Vpl< pow' > M[T] =< p,w’ > M[7]]] 2

wpl

— 15
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< pdastiw) e M[T) =< pow > MTY D

(< polast(w) =€ M7] = < pow = M7]]
1
J

| A
E]I}Ere'[-: o= M[T] £ < pyw >€ ;‘.-‘I[?]'j.

We can take M such that it has the same domain as W and every funetion and

Ypl< pll = M{T] =< p.0 = M'[T} A

Tuwlll<w A Vo'l w <wd¥l<pw ¢ MT] =< puw’ =€ 2

¥p]
(< plast{w) >€ M[T] =< p.w > M{T]] O
< opolastiw) =2 MUT] = < powe =6 MTH

K
SpJw|< pow »e M[T] £ < pw > M'[T]]
by substituting A7) for M (7} in the above statement,

M < M.

It contradicts the fact that M is a minimal change model.

Appendix B. Deduction of the Properties

Tt A{T) be the following axiom set

~T{FLY ANIMAL),

T{FLY.BIRD}.

-TIFLY.PENGUIN),

T(SWIMFISH),

T(FLY,BAT),

Y Vsl = s = |
ey — ANIMAL A wy — BIRD] v
;l'u'l = BIRD A wn = PE:‘-’GUIN] W
iy = ANIMAL A wy = FISH| v
ey ANIMAL A ey = MAMMAL v
ary = MAMMAL A wy = BAT]

I

Vi Vgl < wg = [wy = wy V Jwglweg < wy A wy < wei]

every predicate other than T receives the same interpretation in M and M', and M'(T]
= M[r]. Since M E A(+), M E A(T).

And sinee

Tl o

and there are axioms stating thar the ront 18 ANTMAT., and node variables range

20

over the set of classes, {ANTMAL, BIRD, PENGUIN, IS, MAMMAL, DALY, and

property variables range over the set of properties, {FLY, SWIM},



and there are unique name axioms in classes and properties such as ANIMAL #
BIRD or FLY # SWIM.

We will derive the cominon result in the minimal change models by the foripula:
AT)Y A VrlJA(r) A 721 D 7=T],
where 7 = T stands for:
vp[T(p, ANIMAL) = r{p, ANIMAL}[A
HTHE&NIMAL{ w A Yw' [ANIMAL< w' <w 2 Vp{Tip,w') = w(p,w')ll] 2
Vol(T(p,last(w)) = T(p,w)] D [r(p last(w)) = 7(p,w)]
]-
Let 7y be
Ap |
Ip=FLY D w = BIRD Vv w = BAT||A
[p = SWIM 2 [w = FISH]]
J.
Alm ) is true if A(T) is true.
Therefore [A(mi} A7 < T] 2 [ = T) is simplified to [n, 2 T] D {n = 17, if A(T}3s
true.
Now we simplify the statement [y = T| 2 [n = T assuming A({T).
At first, we simplify the first conjunel of 7y 2 T, that is,
vp[T(p., ANIMAL) = m(p ANIMALJ,

which 1s equivalent to
[T(FLY ,ANIMAL) = »,(FLY. ANIMAL)] A
[T(SWIMANIMAL) = 7 (SWIM,ANIMAL)].

Sinee —-T{FLY ANIMAL) and i (FLY,ANTMAL) and —r(SWIM,ANIMAL}, the
ubove is simplified to

=T{SWIM,ANIMAL).
Then we simplify the second conjunct of 73 = 7', that is,
V| .
[ANIMAL< w A Vw'JANIMAL< w' < w D ¥p[T(p,w') = n{p.w]|]] D
Vo[{T(p, lesi(w)) = Tip,w)] O [nlp last(w)) = nipow)]

which is equivalent to

[V [ANIMAL < w' < BIRD o ¥Wp|Tip,uw'} = n1(p,w'l]
wp[[4'{p. ANIMAL) = T(p, BIRD)] 2 [n(p, ANIMAL)
[V [ANIMAL < o' < TISH 2 ¥p[T(pw") = nilpw")]] 2
Wpl[[T(p, ANTMAL)) = T(p.FISH)] 2 [ri{p, ANIMAL) = 7, {p,FISH)[]] A

' [ANIMAL < w' < MAMMAL o Vp[T(p,w') = ny(p,w')]] 2

nm -

(. BIRD)TI| A

— 9] —



Wpl[T(p, ANIMAL) = T{p, MAMMAL}] O [r1(p, ANIMAL) = = (p. MAMMATL)]]IA
[V [ANIMAL < w' < PENGUIN 2 Vp{T(p,w") = r(p,w')]] D

Wp! [T'(p, BIRD) = T{p, PENGUIN)] o [r(p, BIRD) = 1 {p, PENGUIN)|]] A
W fANIMAL < w' < BAT 2 ¥p[T(p,w') = nip,w’)]] D

Wp! [T(p, MAMMAL) = T{p, BATY O [r:(p, MAMMAL)

The first conjunct is eguivalent to:

= nip, BATY]L

[[{{FLY ANIMAL) = T(FLY BIRD)] >
[71 (FLY ANTMAT) = n(FLY.BIRD)]} A
([T(SWIM,ANIMAL) = T(SWIM,BIRD)] >
[T (SWIM.ANIMAL) = 7 (SWIM,BIRD)]].

which is troe hecause T(FLY ANIMAL)} = I(FLY BIRD) and »(SWIM.ANIMAL) =
T SWIM.BIRD ).

The second conjunct is equivalent to:
[T(FLY ANIMAL) = T(FLY ,FISH}] >
m{FLY ANTMAL} = »(FLY FISH}[j A

([T(SWIM,ANIMAL) = T(SWIM,FISH)] D
(7 (SWIM.ANIMAL) = = {SWIM,FISH)]],

which is equivalent to ~T{SWIM,ANIMAL) because
m(FLY ANIMAL) = »(FLY ,FISH), T{SWIM.FISH) and
T SWIM ANTMAL)} # r (SWIM FISLL.

The third conjunct is equivalent to:

[[T(FLY,ANIMAL) = T(FLY MAMMAL)] 2
[71(FLY ,ANIMAL) = 7, (FLY MAMMALJ]] A
[T(SWIM,ANIMAL) = T{SWIM,MAMMAL)] >

(1 (SWIM,ANIMAL) = = (SWIMMAMMAT)]],

whicl is true because 7 {FLY ANTMAL) = » (FLY MAMMAL)
and 7 (SWIM,ANIMAL) = {SWTM MAMMAL).

The fourth conjunct is equivalent to:

[IT(FLY,BIRD) = n(FLY,BIRD)] A [T(SWIM,BIRD} = =, (SWIM BIRD)]] O
[IT(FLY,BIRD) = T(FLY.PENGUIN)] >
[7:(FLY BIRD} = 7 (FLY,PENGUIN}]; A
[[L(SWIM.BIRD) = T(SWIM.PENGUINJ] D
7 (SWIM,BIRD) = 7, (SWIMPENGUIN ).
which is true becsuse the right-hand side is true.

The fifth conjunel is cquivalent to:

(T(FLY MAMMAL) = +,(FLY MAMMAL)] A
[T(SWIMMAMMAL) = 7,(SWIMMAMMAL)]]

—
.



HTMFLY MAMMAL) = T{FLY B .‘"'LTZI; o
[rl[FLY,I'»'IﬁMMﬁL] = ﬁ[FT.’f’,H:‘-‘LT]]] A
[[T{SWII‘»’LM!‘;MME‘LL} = T[SW’IM,HAT]] o
[T]. (SWFIM,]VL'&LIVIMJ‘!LLJ =T l:S‘lﬁ."lM ?13 ."JEII‘:I” '
which 15 equivalent to:
[~T(FLY,MA MMAL) A ~T(SW [I'-.‘LI'I.-IAI\-'II'#IA.L-]] O -T(FLY MAMMAL)
which is true.
Therefore the above statement 15 simpliﬁed tw:

~I(SWIM,ANIMAL) D [, = 1, (B.1)
assuming A({T).

Let 72 be

f'n.p}.w[
(p=FLY O [w=DBIRD v w = BAT}jA
[p=5WIM >

[tn = ANIMAL v w = BIRD v w = FISH v
w=MAMMALVw = PENGUIN v w = BAT]

]
A(7a) is true if A{T) is true.
Therefore [A{m) A e = T) 5 [72 = T is simplified to [ro < T D [ = T, if A7) 3s
true,
Now we simplify the statement [r; = T] 2 [ = T assuming A(T).
At first, we simplify the first conjunet of 7, < T, that is,
Yp[T(p, ANIMAL) = m(p ANIMAL)j,
which is equivalent to
[T{FLY ANIMAL) = m(FLY ANIMAL)| A
[TISWIMANIMAL) = {SWIM,ANIMALY.
Sinee ~T(FLY ANIMAL) and ~r(FLY ANIMAL) and m{SWIM ANIMAL}, the above
15 sunplified to '
TSWIMANIMAL).
Then we simplify the second conjunet of 7 = T, that is,
L
IANIMAL< w A Yu'[ANIMAL< w' < w 2 ¥p[T(p,w') = w(p.u'l]]] 2
Yl dos) = Ll 3 T das)) = o)
which is equivalent to

[Va'[ANIMAL < w’ < BIRD > Vp[T(p,w') = wn(p,w')i] D



¥p[[T{p, ANIMAL) = T(p,BIRD)] = [r2(p, ANIMAL)} = =(p, BIRD)]]] A

Ww/[ANIMAL < w' < FISH D ¥p[T{p, ') = nip,w")]] D

¥pl[T(p, ANIMAL)) = T(p.FISH}] O [ra(p, ANIMAL) = my(p, FISH)[]] A

' [ANIMAL < «' < MAMMAL 3 Yp[T(p w') = fg{p_.w'}]} .

Vpl|T(p, ANIMAL) = T(p, MAMMAL)] D [72{p, ANIMAL} = r2(p, MAMMALJJ]}A

(W' [ANIMAL < w' < PENGUIN = Vp[T(p,w') = m(pw')]] O

vp[[T(p.BIRD) = T(p,PENGUIN)| O [r(p,BIRD) = n(p, PENGUIN}]] A

(V' [ANIMAL < w' < BAT D Vp[T(p.w") = nip,w'}]] D

Yp[[T(p, MAMMAL) = T(p.BAT) O [ralp, MAMMAL) = =y(p, BAT}]|].

The first conjunct 15 equivalent to
l[TI:]:_'LY:hNIMAL:I = T(FLY,BIH[}}: -
[r2{FLY ANIMAL) = ~(FLY , BIRD ] A

[T(SWIM,ANIMAL) = T(SWIM,BIRD)|
(2 (SWIM,ANIMAL} = 7(SWIM.BIRD}]]

which is true because T{FLY ANIMAL) £ T(FLY.BIRD) and rp(SWIM, ANIMAL)

2 { SWIM,EIRD).
The second conjunct is equivalen: to:
[[T(FLY ANIMAL) = T(FLY FISH)] =
r2(FLY ANIMAL) = n(FLY FISID]] A

([F(SWIM,ANIMAL) = 2(SWIM,FISH)] >
[TE(SWFM,ANIMAT,] = TZ{S‘I.*'»."MM“!,P']SEI]]],_

which is true because T2{FLY ANIMAL) = +(FLY FISH)} and 7{SWIM,ANIMAL)

7ol SWIM,FISH).
The third conjunct is eqguivalent to;
[[T{FLY ANIMAL} = T(FLY MAMMAL} >
7 (FLY ,ANTMAL) = m(FLY MAMMAL)]} A
[[T{SWIM,ANIMAL) = T(SWIMMAMMAL)] =
[ry (SWIM,ANIMAL) — 7(SWIM MAMMAL)],

which 15 true because 7(FLY , ANIMAL) = »(FLY MAMMAL)

A

and To(SWIMANIMAL) = np(SWIM MAMMALJ}.

The fourth conjunct is equivalent fo:

{T{FLY .BIRD)} = 7(FLY .BIRD]| A [T{SWIM BIRD} = »(SWIM.BIRD)]] D

[[7{FLY,BIRD) = T(FLY ,PENGUIN}] -
[m(FLY,BIRD) = r(FLY PENGUINY|] A

[[T(SWIM,BIRD} = T{SWIM,PENGULY)] o
72(SWIM,BIRD) = (SWIM,PENGUIN)JI,

which is true because the right-hand side 15 true.



The fifth comjunct 1s equivalent to:
[[T[FLY,I‘-HLMMAL] = TﬂFLYu‘*-'[Pﬂ"»"II‘I-‘TPLL]] A,
[T[S‘u"'r"lM?IﬂAh'ILIAL} = TE[ST."L"I]'VL]".’I!'&}JII'-‘I;’&L'}H ]
HT(FLY MAMMAL)} = T[FLY,BHT_]] »
[;g{b‘L‘r’,M.ﬁ;MMﬁLj = r(FLY,BAT)|| A
[;T{SEVIMJ‘-JAI’JME\L} = T(SWIM.BAT) o
T2 [SWIM.MAMMAL) = TgliS‘ﬁ"IM,EllT}z]],

which is equivalent to:

[ T{FLY MAMMAL) A T{(SWIM,MAMMAL)] 2 -T{FLY MAMMAL),
which 15 true.
Therefore the above statement iz simplified to:
TSWIMANIMAL) D [r = T (B.2)
assuining A(T).
From {B.1) and (B.2),
AT) A =Fr[Alx) A r < T F[T=nlV[T=w]

which means
FI[T) A IH‘F[A(T] AT T} F aT(FLY:FISH] M, ﬂI‘{FLYJiAMMAL}.

Appendix C. Comparison with [Kautz86]

The originel definition of a partial order relation, <, over models is the following.
M, < M, iff
(1) M; and M, have the same domain,

{2) Ewvery constant, function, and predicate svinbol cxeept Hold and Clip receives the
same interpretation in M; and M.

{3) The following staternent is true:
W
< f,t = My[Clip] |

< f,t =€ Mp[Clip|V

af'3]
< f'ot mE My[Chpln
< ot =& M[Clip|n
<t t »>C Mi|<]

]
]

where Hold{ f,t) D [Hold{f,{ + 1) & Clip{ f,t + 1)].



The above statement 15 cquivalent to;

|
we'|
<ttt »e M <] D
Vi
< 1.t >g My[Clip| >
< F.#' =& My[Clip)
|
1D
V£l
< fit >¢ My[Clip] D
< fit =¢ M|Chpl

This definition is different from our formalism in the points below.

(1) £ is totally ordered while w in our formalism is partially ordered.

{2) Since f in Hold(f,t) is always a constant in his paper, the fomula, Fold(f,t) D
[Hold(f,t+1}& Clip{f,t + 1)], can only be used for true facls and cannot be used

for false facts. It means that his formalism expresses ouly e persistence of true
facts.

(3) Once Haold becomes false, we cannot apply the above formula after that. Therefore

we cannot tcll whether its negation will persist or not.

So we modify his formalism to express the persistence of fact (including the persis-
tence of itz negation) n a tree-structured multiple world.

To express persistence of the negation, we modify the definition of Clip to the
following:

Hold(f,t} = Clip(f.t + 1) @ Hold(f,t + 1),

which is equivalent to: Clip{ f.f +1) = Held(f,{) 2 Hold{[,t + 1).

To express the above formula in a tree structured multiple world, we modify the

definition of # to w which is partially ordered, Since ¢ + 1 is no longer a function, we
usc last{w) in stead of # — 1.

Then
Chipif.t) = Hold( f.t = 1) 2 Hold([,1)
becomes:
Clip( fow) = Hold( f last{w)) = Hold{ f ).
And since we cannot define Clip ul 0, w must be more than 0.

Therefore the ahove statement becomes:
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Virf
[< 0,w =€ M[<]A
V' [
< D,w' >E My[<]A < w'iw e My[<]] D
v
[< f,last(w') >€ M;[Hold] = < f,u' »>& M,;[Hold]] O
[« flast(w') >C My[Hold] = < f,w' >€ My[Hold|]

]

=

vl
[< f,last{w) > Ma[Hold] = < f,w >€ Ma[Hold]} 2
[< f.last{w) »>€ M [Hold] = < f.w >€ M [Hold]]

]

which is found in section 6.

Now we can compare his formalism with ours.
Let A(T) be the following axiom set.

-T(FLY ANIMAL},
T{FLY,BIRD),
-T{FLY ,PENGUIN),
T(SWIMFISH),
T(FLY,BAT),
Y, Vs [y = wy = |
[w; = ANIMAL A wy = BIRD} v
[try = BIRD A w, = PENGUIN] v
[uy = ANIMAL A ws = FISH| v
[w; = ANIMAL A wy = MAMMALJ v
lwy = MAMMAL A we = BAT]
I
Yoy Vs fwy < we = [wy = we V Jwglwy < wy A wy < wsll]

znd there are axioms stating that the root is ANIMAL, and node vanables range
_iii the set of classes, {ANIMAL, BIRD, PENGUIN, FISH, MAMMAL, BAT}, and
property varizbles range over the set of properties, {FLY, SWIM},

and there are unique name axioms in classes and properties such as ANIMAL

BIRD or FLY # SWIM.

We will denive the common result in the most persistent models by the formula:



A(T) AVRJA(=) A 7 <T] o T < 7],
where v < T stands for:
Y|
[ANIMAL< w A Vu'[ANIMAL< w' < w O
Wpllrip, last(w")) = 7(p,w")] O [T{p,last{w')} = T{p,w')]
I D
Wpl[T(p. last{w)) = T(p.w)] > Iv(p lastiw)} = 7{p,w)]
J-

Tet 7 be

Aplae|
[p=FLY 2 [w=RBIRD vV w = BAT]|A
Ip=5WIM o
[ty = ANIMAL V w = BIRD ¥V w = FISH Vv
w = MAMMAL V w = PENGUIN V w = BAT]

J.
Alr)is true if A(T") 15 true.
Therefore [A(r}) A7 < T] 2 [T < 7] is simplified to [+ £ T| 2 [T < 7], if A(T}is true.

Now we simplify the statement [+ < T| 3 [T < 7] ussuming A(T).
7 = T 1s equivalent {o:

[ [ANIMAL < w' < BIRD D
Vpilr(p, lasi{w')} = wip,w')] D [Tip.last{w’)) = T(p,w'}]]] >
Vp|[T(p, ANIMAL) = T(p,BIRD})]
[7{p, ANIMAL} = +(p.BIRD}]I A
[Vw'[ANIMAL < w' < FISH o
Vpllr(p, last(w')) = 7(p,w')] 2 [T(p.last{w'))
Vp||T(p, ANIMAL)) = T(p, FISH)] O
[r{p. ANIMAL) = +(p, FISH)]|] A
[Vu'[ANIMAL < w' < MAMMAL D
¥pl[r(p last(w')} = rip,w')] 2 [Tip last{w’)) = T{p,w)]]] 2
¥p([T(p, ANIMAL) = T(p, MAMMAL)] O
[r(p, ANIMAL) = 7(p, MAMMAL)j]] A
V' [ANIMAL < w' < PENGUIN o
Wp[lr(p, last{w")) = vip.w')] 2 [Tip,last{")) = T(p,w")]]] =
¥p[[T(p,BIRD) = T(p, PENGUIN]| >
[7(p.BIRD) = r(p. PENGUIN}J]] A
Wuw'[ANIMAL < w' < BAT O
¥pl[r(p, last(uw")) = r(p.w")] = [Tip,lastw')) = T(p,w"l]] 2
VpllT(p, MAMMAL) = T(p.BAT)] D
[7(p. MAMMAL) = 7(p. BAT)]]].

4
a

T{p,w")]]]

The firat conjunct 1s equivalent to:
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[[T(FLY,ANIMAL) = T(FLY BIRD)| >
[r(FLY ,ANIMAL) = #(FLY ,BIRD]}]| A
[T(SWIMANIMAL) = T(SWIM,BIRD)| O
[7(SWIM,ANIMAL} = 7(SWIM,BIRD}]],
which is true because T{FLY ANIMAL} # T(FLY ,BIRD} and r{SWIM,ANIMAL) =
7{ SWIM,BIRD).
The second conjunct is equivalent to:
[[I(FLY ANIMAL)} = T(FLY ,FISH)] >
[7(FLY ANTMAT,) = +(FLY FISH}]] A
[T(SWIM,ANIMAL) = T(SWIM,FISH)] =
r(SWIM ANIMAL) = ~(SWIM.FISH)]],

whicli is true because T(FLY ANIMAL) = +(FLY FISH} and r{SWIALANIMAL) =
7 SWIM FISH).
The third conjunct 15 equivalent to:
T(FLY,ANIMAL) = T{FLY MAMMAL}| D
[r{FLY ,ANIMAL) = r(FLY MAMMAL}]] A
([T(SWIM,ANIMAL) = T(SWIM,MAMMAL)] >
[T(SWIM,ANIMAL) = ~(SWIM,MAMMAL)]J,
which Is truc because 7(FLY ANIMAL) = +(FLY MAMMAL}
and 7(SWIMANIMAL) = ~(SWIM,MAMMAL).
The fourth conjunet iz equivalent to:
[[[r(FLY,ANIMAL) = +{FLY BIRD)] >
[T(FLY ANIMAL) = T(FLY,BIRD)|] A
I SWIMANIMAL) = #{SWIM,BIRD)| 2
[T{SWIM,ANIMAL) = T(SWIM,BIRD}|]] >
{IT{FLY ,BIRD) = T({FLY ,PENGUIN)] >
[+(FLY,BIRD) = +(FLY PENGUIN}|] A
[TSWIMBIRD) = T{SWIM.PENGUIN)] o

" [F(SWIM,BIRD) = ~(SWIM.PENGUIN}],
which is true hecanse the right-hand side 15 true.
The fifth conjunct is cquivalent to:

{I7(FLY.ANIMAL) = ~(FLY MAMMAL}| O
[T{FLY ANIMAL) = T{FI.-‘:',M&I‘IJIMAI.]]] M,
[r{SWIM,ANIMAL) = T(SWIM MAMAMAL)] O

[T(SWIM,ANIMAL) = T(SWIM.MAMMAL}]] o
TT(FLY MAMMAL) = T{FLY BAT)] O

[(FLY MAMMAL) = ~(FLY BAT)]] A
IT(SWIM MAMMAL) = T(SWIM,BAT)] >
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[F{(SWIMMAMMAL) = r(SWIM.BAT]]]],
which is equivalent to:
[~ T{FLY MAMMAL]) A [I{SWIM ANIMAL) = T(SWIM,MAMMAL)]]
-T(FLY MAMMAL),
which 15 true.
Therefore the above stalciment is simplified to T < 7, assuming A(T}. Thercfore
AT) A =3rA(r) A 7T F €T AT <,
which means
VMpl(T(p, tast(w)) = T(p.w)] = [r(p, fast(w)) = 7(p, )],
which is equivalent to
[([T{FLY.ANIMAL) = T(FLY, BIRD)| =
[r{FLY,ANIMAL) = 7(FLY, BIRD j|»
[[T(FLY,BIRD) = T(FLY, PENGUIN)| =
[+(FLY,BIRD) = ~(FLY, PENGUIN}]jA
[IT(FLY,ANIMAL) = T(FLY, MAMMAL)] =
[T (FLY, ANIMAL) = #(FLY, MAMMATLJ]|A
[[T(FLY, MAMMAL} = T(FLY,BAT)| =
[+(FLY, MAMMAL) = (FLY, BAT}]|A
[T(SWIM, ANIMAL) = TI:S‘I.-?II".-LBIRD}] =
Ir(SWIM, ANIMAL) = »{SWIM, BIRD}]|A
[[T(SWIM, BIRD) = T(SWIM, PENGUIN}j =
[r(SWIM, BIRD]} = +(SWIM,PENGUIN }j[A
[T(SWIM, ANIMAL) = T{SWIM, MAMMAL)] =
[F(SWIM, ANIMAL) = +{SWIM, MAMMAL}]]A
[T(SWIM, MAMMAL) = T{S5WIM, BAT)] =
T{SWIM, MAMMAL) = +(SWIM, BATY.
Then, the first conjunct and the second conjunct 15 true because both sides are false.
The third conjunct is reduced to =T{FLY FISH) because —T(FLY ANIMAL]) 15 true
and right hand side is true.
The fourth conjunct is reduced to ~T{FLY MAMMAL) because -T{FLY ANIMAL) is
true and right hand side is troe.
The fifth conjunct is true because both sides are false.
Tl siechih conjunct is reduced to T{SWIM,ANIMAL) because T(SWIM,FISH) is true
aick tight hand side 1s true.
The sixth conjunct is reduced to T{SWIM,BIRD) because T(SWIM,ANIMAL) is true
from the eighth conjunct and right hand side is true.

The seventh conjunct is reduced to T(SWIMPENGUIN] because T(SWIM,BIRD) is
true and right hand side is true.



The ninth conjunct is reduced to TISWIM MAMMAL) because T(SWIM.ANIMAL) is
true and right hand side 1= true.

The tenth conjunct is reduced to TISWIM,BAT) because T{SWIM,MAMMAL) is true
and right band side s true.

Therefore,
ATy A =3r[A(r) A 7= T+
~T(FLY.FISH) A -T(FLY MAMMAL) A
T{SWIM ANIMAL) A T{SWIM,BIRD) A T{SWIMMAMMAL) A
TSWIM PENGUIN] A T{SWIM,BAT).



