ICOT Technical Report: TR-311

TR-311

An Experimental Knowledge Base
Machine with Unification-Based
Retrieval Capability
by
S. Shibayama, H. Sakai, H. Monoi

Y. Morita & H. Itoh

October, F987

1987, 1COT

At hokusa Bldyg, 21F (F3) 456-3191—~5

“ :D [4-28 Mita 1-Chame Telex 100T 32964
Minato ‘ku Tokye 108 Japan

An Experimental Knowledge Base Machine
with Unification-Based Retrieval Capability

Shigeki Shibayama, Hiroshi Sakai (Toshiba Corporation)
Hideroshi Monoi, Yukihiro Merita, Hidenori Itoh (ICOT)

Ahbstract

This paper descrines how oz of ICOT KBM research projests has progressed to reach experni-
mental knowledge base machine implementation. To enhance the expressivencss of the relational
database modela term relational model was inroduced and a machine architecture for manipula-
tion of that model was proposed. A simulztion study on the architecture was carried out and the
selection of a parallel control strategy was found to be importams for effective use of the muli-
port page-memory and unification engines,which are hardware compeonents of the architecture.
The experimental hardware for this architecture is then described conceming its objectives, hard-
ware configurationznd conmol software. The future plans and points of concern for the evalua-

tion of the architecture concludes the paper.

1. Introduction

As computer isage increase its cate-
gories of knmowledge information process-
ing, it becomes more and more important
to extract, store and manage human
knowledge in computer manipulable form.
Ome such example is the expert system
approach, which stores the knowledge in
the form of production rules.

From another point of view, databases
are considered as sources of knowledge
when data retrieval is done. In JapanUs
Fifth Generation Computer Systems pro-
ject, we have been engaged in the study of
knowledge base machines as an enhance-
ment of databzse machines/systems. The
relational model was selected as a first
step toward a knowledge base model
™ourakami 83]. As the other (and main)
aim of the project 1s to prove that the logic

rogrammming can be a unifying principle
of future compudng svstems, it is
assumed that the lknowledge base

machine have good affinity to the logic pro-
gramming languages and systems.

The term-relational model [YokotaH
86] is proposed as a knowledge base mod-
el. It is characterized by the incorporation

of terms as an object type and definition of
a set of operations, based on unification,
on term objects. Other efforts which have
similar objectives to us are, for example,
given in [Ait-Kaci 85], [Bancilhon 86,
[Tsur 86], [YokotaK 87]. We think this
model is appropriate for our knowledge
base model because (1) it can represent
complex objects in a natural way, (2) it
can perform a breadth-first deduction and
(3) it has an affinity with the logic pro-
gramming environment in that it 1s com-
mon to retrieve terms with unifiability.

Though the last reason is somewhat
proper to our standpoint, it is applicable to
other programming environments by con-
sidering unification as a pattern-matching
criteria.

In section 2, the expressiveness of a
term relational model is described and
some additional operators are introduced.
In secdon 3, simulation results on an
architecture of a knowledze base machine
is described and in secdon 4 an experi-
mental knowledgs base machine based on

the simulated architecture is described.
Section 5 is the conciusion and future
plans.

- 1 —

2, Relational Knowledge Base

2.1 Term Relational Model
Knowledge base and database technolo-
gies have much in common, for examzle,
zccess methods for datafmowladgs tizms,
manzgemant of data with sscondary sior-
agz, parzllel processing sT2iegy, Bo0ess
conmal 2ad so on. We thought that it is 2
good id=z tw start with the relatonal
database systems, where the relational
model [Codd 70] being the basis of a
knowledge base model. However, as our
research progresses, it is recognized that
some enhancements are necessary to the
relational model to be used as a knowl-
edge base model. Because we usually
want to make an object in a knowledge
base self-descriptive, we often come up
with a structured data object. For exam-
ple, a natural way of representing parent
relationship is to use a predicate and wrile
"parent(son-of-a-person, person)”. If we
want to represent unknown (at the time of
query) information, we could use a vari-
able and write "parent(son-of-a-person,
X)" where X is a variable and represents
the parent of "son-of-a-person”. It is
awkward, but not impossible, to store
such objects in a relational database. Syn-
tactically, they are "terms” follows:
(1) atomic symbols and wvariables are
terms
(2) if "f" is an n-place functor symbaol and
x1 to xn are terms, then f(x1,x2,....xn)
is a term
(3) Terms are generated only applying
above rules
Terms could be stored in a relation
whose name corresponds to the predicate
symbol. The zrgumesnts of the predicate
are stered in characier strings in corre-
sponding attributes. Howsver, there are
several disadvantages in this scheme.
First, this scheme cannot stors varables
with its original semantics. A reltion
attribute may contain a character string
starting with an uppercase letter

{denoting varizblzs), but thatr is not recog-
nized as a varizble by the RDBMS. Szc-
ond, there is no wav of storing a dynami-
callv-genzrated damm struciure which 15
not cefined at (e time of the dawibase
design. As it is common and ezsy in
manipulzdng 2 knowledge base to gener-
ate 2 maw tarm 2t execudos ome, this ds 2
significest disadventage. (Tae L3t smus-
mre is the ypical cese; e length of a st
structure changes frequendy.) Third, it is
impossible to rerieve an object using com-
plex pattem-matching.

To overcome these disadvantages, a
new knowledge base model was proposed
[YokotaH 86). This model permits terms
as objects contained in relations. There
are several features obtained by introduc-
ing terms as a data object. Some of those
are:

(1) Complex objects, either statically or
dynamically defined, can be represent-
ed.

(2) Nested relations can be represented.

(3) A kind of inference (breadth-first
input resolution) can be performed

Each of the features are explaned below.

(The syntax of the examples follows that
of Decl10 Prolog.)

(1) As an example of a complex object,

the following term shows the configuration
of a simple computer.

"computer
{([cpuf[system bus, internal _bus]},

cache([system_bus, internal_bus]),
main_memory([system_bus]),
io_channel{[system_bus, iﬂ_bus]},
disk_controller{[ic_bus]),

display controller([io_bus]),

disk drive([io_bus]),
diplay([ic_bush])"

This term repressnts 2 computer con-
sising of a epu which is connected to the
system bus and the internal bus, a cache
memory which is connected to the system
bus and the internal bus, & main memory
which is connnected to the system bus,

and 50 on. We could write "cpu(63020,
12.5MHz, [system_bus, intemnal_bus))’,
"cache(64KB[system_bus,internal_bus])"
and so on for explzining the dewzils of the
componsnts,

As the natere of the information of this
kind, the smecmors of each dam is varned,
end the edditon of 2 computer component
(mouse, for exz=piz) resulis in the ganer-
ation of & new =11 25 snown below.

"computer
([cpu([system_bus, internal_bus]),

cache([system_bus, internal_bus]),
main_memory([system_bus]),
io_channel([system_bus, io_bus]),
disk_controller(fio_bus]),
display centroller([io_bus]),
disk_drive([io_bus]),
diplay([io_bus]),
mouse([io_bus])])"

(2) MNested relations are considersd to be
a special case of complex objects; the
schema of the inner relation is predefined.
An example of an inner relation of a nest-
ed relation is as follows: '

"career([programmer(tokyo,1978,1982),

chief programmer(tokyo,1983,1985),
systems_analyst{osaka,1986,present)]}”

This term means that a person worked
from 1978 to 1982 as a programmer at
Tokyo office, promoted and worked as a
chief programmer from 1983 to 1985 there,
then became a systems_analyst from 1986
to present with a move of office from
Tokyo to Osaka. If the person becomes a
manager in 1988, the above career term
=411 be:

“eareer{[programmer(tokyo, 1978,1982),
chief programmer(tokvo,1983,1985),
systems_anzlyst(osaka,1986,1987),
manager{osaka, 1988 present)]})”

This corresponds to the insertion of a
tuple into the inner relation in the "career”

atribute of the prunary reladon.

To effectively retrieve data items repre-
sented by terms, extended cuery cualifica-
tons are required. In the “computer”
example, if we want to know whether a
floppy disk drive is includzc in the system
configuration, & cu2sy like below is essen-

tial.

Targ memberiflogoy_disk_drive(),
computar).

The meaning of this query 15 to check
whether the first argument of the built-in
predicate arg_member (namely flop-
py_disk_drive()) is a member of the
arguments of the functor at the second
argument {computer).

A Prolog-like program to evaluate the
ahove query might look like:

arg_member(X,Y) :-
get_arg(Y,Arg), member(X,Arg).

where "get_arg” is a special (extralogical)
built-in predicate to get the argument of
the functor unified to Y, and "member” is
the usual membership check predicate.
Both of the functions these predicates pro-
vide are beyond the scope of normal rela-
tional database system. This indicates
that it is needed to incorporate extended
operations into the term relational model
to make use of the power of term repre-
sentation.

The most important operation primitive
15 unification. As we set up an interface
that is highly logic programming oriented
(described in subchapter 4.2), unification
is a natural cheice as a pattem-matching
criterion. Unification-join and unification-
resricrion zre defined by extending the
usuzl qualificadon condition of equality to
raifiability. The retrieval operatons using
unificadon are collecavely called the
Remeval-by-Unification (RBU) opera-
tions. RBU operations are the basic mech-
anisms to perform the input resolution
described below.

— 1 —

ancestorX.) o-pareat (X.Y). .
ancestor(X.Y):-parent {X.2) . ancestor (Z.V).

parent {saith.clark).
parent{elark. turper).

[anceetar(X,Y) 1 &7

[pareat {%.Y) 18]

[ancestor(X.V) { 8]

[oareat (.Y).ancestor (F.Y) | 8]

Lcarent (saith.ciask) | 81

3

fooroat {elaek. turner) 18]

g

Figure 1. Example of Term Relation

Tlhns.| Ees. Ph Head | Body
i rB L
‘ G ‘[Rl. R, 1 ‘[u‘lu]l{u1 i L1
Unifiablef?
T |An§. Res.
IG |[Bl. B.. R,. ., R_]

Figure 2, Unification-join for One Step of Input Resolution

(3) By permitting terms as data objects,
Horn clauses (both facts and rules) can be
stored as shown in Figure 1. By using a
special list structure and unification-join,
(somewhat tricky) input resolutions can
be performed.

The process of a resolution is as fol-
lows. First, the query is unification-
restricted to the first attribute (the head
part of the Horn clauses) of the permanent
term relation, The wvariable substitution is
applied to the second attribute (body part)
of the relafon. In the term relational mod-
el, the scope of the varable is within a
tuple, and the literal representation of vari-
ables is of no importance. A variable
name is used only for specifying the idena-
ty of the variable from the other variables.
(The term parent(X,Y) is identical to par-
ent(F,Q) and so on). These comrespond to
the same rules with Prolog clzuses
{programs).

Second, the body of the result of the first
unification-restriction (2 source (SmMporary
term relation) is unification-joined to the
head of the permanent term relation. (The

same permanent term relation used in the
first unification-restriction.) The resultant
temporary relation consists of the head part
of the source temporary relation and body
part of the permanent relation. (Figure 2).
By using the newly obtained temporary rela-
tiont as the next source relation, this unifica-
tion-join is repeated until no new results
are obtained. One iteration of the unifica-
tion-join cormesponds to one step of resolu-
tion (reduction). As these operations are
based on set operations, the (intermediate)
results are obtained in sets, holding every
resolvent at each resolution siep.

2.2 An Architecture for
Term Relations

An architecture for performing the above
resolution is proposed [Yokow® 86,
[Morita 86) (Figure 3). The MZPPM, which
stznds for the multpor: page-memory, is 2
memory system permitung conflict-ites
page access from multiple ports [Tanaka
24]. (The MPPM will be described in chap-
ter 4.) There are multiple wnification
engines (UEs) connected to ports of the

Manipulating

Unlfleatien Engines

Multi=part Pege Memory

Digsk Eystems

Figure 3. System Configuration of a KBM

i r————— ey

g.m_,E,a. | '

PG UG = 0L

:Processing unlt
sdort unkt

iPalr geseration unlt
iUnifleation walt

SE8¢3

;PostiProcessing unit

Figure 4. Unification Engine Configuration.

MPPM. UEs are pieces of dedicated hard-
ware for performing unification-join and
unification-restriction operations in a
pipelined fashion. Following the relational
Aatabase engine (RDBE) processing
scheme ([Sakai 84), [Shibayama 82]),
The UE is supplied with two input rsla-
tons, wmifies all the unifiahle pairs
between the two input relations and out-
put the resultant relatfon back into the
MPPM. A UE has separate soriers for
both input ports, sorting the terms accord-
ing to the generality of terms.(Figuure 4).

The sorted two input relations are then
merged in the pair-generator unit and possi-
bly unifiable term pairs are supplied to the
unification unit. Full unification is performed
in the unification unit. The idea is that by
providing pieces of dedicated (fast) hard-
ware for unification operation and using
them in parallel with a conflict-free memory
systern, a high performance machine capable
of performing resolution upon the stored
knowledge base is achieved. (Knowledge
base in this context means a collection of
term relations which contain both rules and
facts.) We have conducted a simulation
study for estimating the performance of this
architecture, which is described in Chapter
3.

2.3 More Operation Primitives
2.3.1 Unify-Check

As we have shown, unification is onz of
the necessary operztion primitves to manip-
ulate term relations. Unification applies,
however, the unifier (vamable bindings) to
the terms being unified. So, for example,
when we want to retrieve rules whose head
can be unified to an instantiated term, unifi-
cation-restriction cannot be used. To reme-
dy this, we propose the unify-check opera-

1] '
o

Hon primitive. We assign the ey
bol to define the unify-check operator.
The unifv-check only tests unifizbility of
the arguments and doss not apply the uni-
fier. Thus, in the exzmple below, the rule
contained in "rule” reladon is retrieved
and forwarded to the predicales Dzt fol-
low,
v T2l Y), X <=2 17720, ...

2.3.2 Generality-Compare

When we wzn: to know, for example, if
there is a rule {with varables) 1n a term
relation identica! to a given rule, neither
literally-equal ("=="), unification ('=")
nor unify-check ("<=>") can be used. To
do this, the generality of terms should be
compared. The generality of term is
defined as:

Between terms t and u, t is defined
more general than u if and only if there
is a substitution s such that st =u

According to above rule, f(X,Y) is more
general than f(3,Z). We introduce the
"more-general" operator to represent the
penerality as:

f{X,Y) >= £(3,2)

Less-general operator is obvious. When
a term is more general than another term
and vice versa, the generality of the terms
are equal. This is denoted using
"generality-equal” operator as follows:

(X, Y) <<>> f(P,Q)

According to the definition, if the gener-
ality of a two term is equal, they can be
made literally identical by appropriately
renaming the vanables of one term. Thus
when two rolzs (having wvanables) are
equal in generalinv, the rwo rules are, in
fact, ideatcsl.

Notz that there a== manv casss whan
generality order is not applicable. For
example, we cannot decide the generality
between f(X,3) and {(4,Y).

These additional primitives were found

— &

machine
o chap-

when we worked on the infersnce
interfzee, which will be descrbed 1
tar &

3, A Simulation Study of the Archifec-
ture [Sakai 87]

To evzluziz the charzoranistes of the
i=put resoluton on the proposad gochime-
ture, we periorms
lations.

We began this simulation study to
obtain knowledge about the behavior of
UEs, because we wanted, at the first
place, to examinc how cffective the pro-
posed UE configuration was. So, a UE
simulator was made. In this simulator,
the UE is simulated at a register transfer
level to exactly estimate the processing
time. It showed us several bottlenecks
within the UE configuration. Those draw-
backs were, however, overcome by fine-
tuning the architecture [Morita 87]. And
those improvements are reflected to the
simulator. Thus we think that the configu-
ration of the UE is close to optimalas {as
far as the same hardware algonthm 13
used).

The next step was to caTy out the sys-
tem simulation, that is, we wanted to
know how effective the system architec-
ture incorporating the UEs and the MPPM
was. We decided to use the UE simulator
as a2 component of the system simulation.
If we could use some analytical model to
estimate the processing time of a UE, we
could have done without the extremely
detailed, thus time consuming, model.
However, it is impossible to know, before
actugl execution of unification-join, how
many unifiable pairs are included in the
input relatons and how long the resuli
becomes. DBecause those are MOSE
relevent to the processing time, we had to
choose the most detaited model

We did not include the control overhead
time nor disk access time in the system
simulation study. This 15 because we
wanted to know the essental characteris-

2 a 537 of caiizd simu-

tics of the nature of the operation.

The sample problems we acopted are
ancestor-finding problem and &-quesn
probiem. The former is a typical operaton
of a breadth-first search with recussively
defined rules. The nature of the former
proclem is such that the unificadon per-
formad in the s=arch is not 2 vary compiax
coe and that the unifiability filtzring, done
in the pair-generzic: sectdon, Wworks vary
well. When going vpward along the family
tree, parents of a person are at most Dwo
independent of the total parent-child rela-
tionships. The family tree is computer-
generated under reasonable assumptions
of human life cycle. About 1800 facts of
parent-child relationship are used.

The latter 8-queen problem is another
famous sample problem. In our case, how-
ever, the representation of the problem is
somewhat special. Usually, generate and
test type search is adopted to solve the
problem. We coded the problem specifical-
Iy to solve it using only unification-join
and unification-restriction. The idea i5 to
use comumon variables to propagate the
constraint of next queen placement. This
scheme resulted in a complicated set of
rules, having 25 wvariables in the left hand
side (head), if denoted by a Prolog rule.

The aim of the system simulation was to
obtain knowledge about the systems
behavior when executing repeated unifica-
tion-joins for an input resolution. Soon
after obtaining and examining some pre-
liminary results, it is ohserved that the
most influential to performance is the con-
trol method to assign jobs to UEs in paral-
lel. As the UE has the performance close
to optimal and the MPPM is conflict-free,
there are almost no bottlenecks in hard-
ware resources, once a job is assigned
and exsculed. Taking secondary storage
into account, the behavior would be differ-
ent. It was, however, beyond the scope of
this simulation. By the reasons as men-
tioned, we concentrate on the parallel con-
trol methods to make use of the hardware
resources.

In evaluating the control methods, we
selected the following measures in the
simulation:

(1) Execution ime Elapsed nme of exe-
cuting an input resolution

{2) Page loading factor
page-basad memory sysiem, sourca
relations and temporary relations asz
stored in units of pages. Pezge leading
factor vames according to the congol
method ,

(3) Performance Stability This shows
the stability of execution time owver
variance of the tuple size or other sys-
tem parameters.

Assuming that relations are stored in
page units, the basic parallel control strat-
egy is to divide the join into sets of small-
er joins (over subsets of relation pages)
and collect the results. As unification-
joins are rape:at:r:l using the temporary
relation obtained in the previous unifica-
tion-join, it i5 necessary to dynamically
assign UEs to joins over permanent rela-
tion pages and newly created temporary
relation pages.

One control method is generating join
requests between single pages. Suppose
that the permanent relaton P consists of
pages pl, p2, ..., pn and the tcnpcrrazy
relation T consists of pages tl, t2, ..., tm,
joinrequests Jij (n >=i>= 1, m >=j >=
1) for every combinatin of i and j are gener-
ated. We call this method the SP (Single
Page at a time) method.

The simulation showed that when per-
forming the repeated unification-join oper-
ations, the SP method is not advanta-
geous for high performance. (Figure 3,
Figure 6)

This is because the performance
(processing time) of the UE depends much
upon the size of the input relations, as the
time to rezd them cannot be avoided from
processing dme. The total amount of data
that must be transferred increases as we
divide the joins to smaller pieces. For
example, if the original join is divided into
k**2 pieces (each input relation is divided

Ag we use the

Excution time {mseel

160

130

120

100
]
64
40

20

Figure 5 Relationship hetween UEtoral and Execution Time (Ancestor Problem)

i

SP4K | w---+ | MPOSK | o—=
EP1EK | w---w= MPIK | o0—=
SPBAK | w===a MP2E | #——a

Page loading [actor (%)

100

SP4K]| w---+ | MPOSK | o—=
SF 16K | w==== MP1K | o=—a
EPG4K | w---a MP2E | &—

MP 4K | ™
L

60
L
40
2 __‘x_‘i__._‘-
PR ER RS REREERLALELTE AR ERL RS EELEEEEERES EELEEEE LS |
01 """"" b Salallslinbatnties b Jleieituiii Yoo mm b Attt h J

Figure 6 Relationship between UEtotal and Page Loading Factor {Ancestor Problem)

into k subrelations), the total amount
of data to be wtansfered becomes k
times larger. Even if there were k*%2
UEs that can work in parallel, the per-
formance improvement will be only k
times.

Though the actual processing time
does not depend only upon the amount

of input data, this discussion is essential to
the limitzation of the 5P method.

To improve the SP method, we adopted
the MP (Muliiple pages ar a rime)method.
The MP method partitions relations accord-
ing to their size and the number of UEs.
Though joins are divided to smaller pieces
as in the 51 method, the size of each subre-

lation is not resimictzd to a single page.
Thus the granule of join is larger than that
of the SP method.

There ars ssveral psramelers o wune
the MP method. The interesied reader
may refer to [Szkei 87]. Oneimporant
thing in this MP meiod 15 t0 know the
degree of i perzlielism It is observad
that, when nsw join reguass,
the requests should be about as many &
the number of UEs. To generais too few
join requests results in the increase of idle
UEs. This is intuitively explained as fol-
lows, At first, all UEs are available and all
the UEs are assigned jobs that are
thought to have equal processing load.
However, the actual processing load
varies according to the content of the pro-
cessed data, which results in the variance
in processing time. At the end of the first
UEUs job execution, if all the rest of the
remaining job is assigned to the available
UE (only one), the UE is loaded with too
much of the job and the rest of the Uks,
becoming free one after another, will have
no jobs in the queue.

On the other hand, too many join
requests makes the granules of join small
as in the SP method.

Moreover, an interesting result was
obtained by examining the MPPM port uti-
lization ratio (Figure 7).

S e

I]

Ancestor | 8-queen
Port for TR 43-18% | 16%-23%
Port for Pk Jek-45% | 15-14%
Port for output 0.7%-2% | T%-12%
Avarage 15%-18% | 115-13%
Only one port per a UE | 2B%-45% | 25%-35%

Figure 7. Port Utilization Ratio of the
MPPM

The original UE occupies three MPPM
poris, two for input and onme for oumpul
Tre port utilization ratio indicatas how
much of the potzntial dama transfer capabil-
ity 15 utilized in a reseludon. The simule-
tion showed that only a low frzcden of the
potentizl data wansfer czpadiliny was vsed
(0.7 to 40%). We modifiad the cofigum-
Gon to assign only one pomx to 2 UE. Tris
resulted in the increase of only 30% of pro-
cessing time with one third of MPPM
ports. We are convinced that this configu-
ration is practically superior to the three-
ported UE.

4. An Experimental Knowledge Base
Machine
4.1 Research Objectives
Although the processing times of origi-
nal hardware configuration are obtained by
a series of simulations, there are several
impractical assumptions. Those are:

(1) there is no practical basis as to how
much hardware is required to imple-
ment a UE

(2) a UE is single-purpose

(3) no control overhead is included.

For (1) and (2), we are considering more
practical hardware for unification-based
operations. This will be reported else-
where. For (3), we think that control soft-
ware 15 hound to be run, in a sense, on a
general-purpose machine due to its com-
plexity. (Here, general-purpose does not
mean a von Neumann architecture.) Obvi-
ously, no dataknowledge base machine
will be able to claim its high performance
without an efficient control mechanism
implementation. Thus the main objective
of the research is to evz'uate the hard-
ware and soft archirseture through
the experiments to cesizn, implament and
evaluate control soitware oa & hardware
prototype. The expected results would be
improvements in hardware configuration,
requirements to system software
(operating system, in particular), requirc-

im=a
—

—_ g —

ments to secondary storage funcuonalities
and proposal of an instruction set for effi-
cient dataknowledge base control soft-
ware implementation.

Another research objective is 1o find
effective decentralized parallel control
dlgorithms, under the given hardware
resources, for the processing elements.
We aim at cecengalizing the control
because w2 want to make the architecturs
scalable to a ceriain extent (say, several
hundred).

For example, the MP method disclosed
in the simulation study is found to be a
good control strategy for assigning jobs to
PEs in parallel, for it balaces well the PE
usage and the amount of data transfer.
Our next step is to try to implement it on
the experimental knowledge base machine
hardware in a most efficient way and find
out any architectural hindrances.

Another objective is to investigate a
good internal processing algorithm on
operation primitives. Sorting algorithms
are one of the best sought examples. This
will be meaningful in both software and
hardware implementation of the algorithm.

The last objective is to obtain experi-
ment on the effectiveness of the interface
for inference machines (described in the
next subchapter). For an experiment, we
will connect the experimental knowledge
base machine to a PSI (Personal Sequen-
tial Inference machine) [Taki 84).

4.2 Inference Machine (PSI) Interface

The PSI is adopting ESP as its sole pro-
gramming language. ESP is a2 language
based on logic programming with the addi-
tion of object-oriented features
[Chikayama 84]. Every ESP program is
regarded as an object, providing metheds
as the interface to other objects. An
object is either a class object or an
instance (of 2 class) object. We decided
to provide a kbm class (denoted as #kbm,
where #indicates a class name), as the
interface class to other application class-
es. The other way to establish an inter-

face with the KBM is to add built-in inter-
face predicates into ESP language, which
requires modificzdon of the ESP language
processor and operating system
(SIMPOS). Compared o the expected
endeavor, this zpproach would not bring
zznough additonal funcdonalities.

When 2 process in PSI wants to use
EBM, it sends & message to #kbm object
{z2lls = Zkbm mathod). If the message is
the first one from that process, an insiance
of kbm class is created. Each instance
corresponds to a transaction, thus multiple
transactions are supported. (Of course, it
is the KBM that supports mulfiple trans-
actions. An instance is the agent of a
transacton in PSL)

The #kbm class (instance of it, actually)
provides KXBM interface methods by inher-
iting them from the parent class. The
interface is based on the relational caleu-
lus, The representative interface method
is the metrieve method. (A colon denotes
a method call in ESP.) Some examples of
rretrieve method call are shown below.
(Some arguments of the method call are
abbreviated for clarity. For example, the
first argument, which must specify the
callee object in ESP language, is abbrevi-
ated.)

retrieve{r(X,Y, W), (f(X,Y),2(Y,W)h

Here, f and g are 2-atribute term rela-
tions. The second argument means that
the second attribute of relation f be
(unification-Jjoined to the first attribute of
relation g. The comma between f(X,Y)
and g(Y,W) is the conjunction comnective.
The resultant (temporary) relation is
obtained as a 3-atmibute temporary rela-
ton r, projecting out one of the joun
ar=ibutes. In this example, as in logic pro-
gramming langnages, unificadon IS
assumed by using the same variable name
in the second argument (atmibute) of rels-
tion f and in the first argument of relation
g.

retrieve(r(X,Y,W),
{.f{x rY)rE{U ;'\-V},Y ="_'U}j

This example differs slightly from the
former example. In this case, relational
equi-join between the second argument of
relation f and the first argument of reladon
¢ is implied. The "==" operator dznots a
"literzlly-equal” condition. If the operator
is changed to "=", which indicates unifia-
bility, this query becomes identical to the
former one.

retrieve [I(X,Y},(f{K,Y), X==37)

This query indicates a selection, Those
tuples whose first atwibute is 3 are select-
ed to be a temporary relation r.

retrieve(Temporary _relation, Query)

This is, as indicated by the above exam-
ples, the general syntax where Tempo-
rary_relation specifies the resultant tem-
porary relation and the Query specifies,
following the Prolog syntax, the query con-

dition.

In the second chapter, more operation
primitives are introduced. Below is an
example of unify-check operator.

retrieve(r(X,Y),
(rule(X,Y), X <=>t(P,q)))

Similarly, a generality-compare operaior
can be usad in the retrieve mezod.

retrieve{a(d,Y),
(fX,Y), X <<>> g(p.a)))

There are other KBM interface predi-
cates provided as the methods of the
#kbm class. Those are definition predi-
cates, update predicates, input/output
predicates and so on. A set of those pred-
icates provides the logic programming ori-
ented interface to applications in the infer-
ence machine PSL

F5I
SCF Shared Hes Shared Interrupter
hrbitor Hesory
- l ' 1 1
| Processor Local Mew Sh.M IJF
S
H I u]
= F F F
Dizk 1/F Adaprar 1 2 T
i
— Multipert Page Memory

Figure 8. Configuration of Experimental KBM

— 11 =

4.3 Hardware Configuration
4.3.1 General Cenfiguration

The configurzton of the experimental
knowledge base machine is shown in Fig-
ure 8. It consists of an B-port multipon
page-memory (AMPPM), processing ele-
mants connecied to each pomt of the
MFPM, end 2 control procsssor. The core
of the processing element is the MCHE020
rmicroprocessor, operating a2t a 12.5MH:z
clock. Other PE components are 2 local
memory (2ZMB), an MPPM interface, a
common memory interface, and a hard
disk. The control processor and PEs
share a common memory {(ZMB) for stor-
age of common tables and inter-processor
communication purpose. As the PE is
implemented by a general-purpose micro-
processor, this machine bears some simi-
larity to other multiprocessor database
machines, for example, [DeWitt 86], [Kerr
82].
Each MFPM interface has a MPPM inter-
face memory, physically implemented by
dual-port RAMs., One block of the inter-
face memory is used for PE-MPPM con-
trol information communication, and the
rest of the blocks are for data buffers. The
MPPM memory banks work synchronous-
ly, and once they begin to work, the one-
page transfer to the buffer memory cannot
be halted by a memory access conflict
This iz the reason expensive dual-port
BAMSs are used in MPPM interface memo-
ry. The dual-port RAMs are mapped in
the PE processor memory space and can
be wused just like normal memory area.
The software is responsible for the man-
agement of the MPPM interface memory.

4.3.2 MPPM

The MFPPM is a memory system wis
muitiple data read/write ports that cam
operars indspendently and simulnsous-
Iy. The unit of access is a physical page
(or a track in disk analolgy). The currsnt
implementation adopted a 512-byie tack
size. The most notable feature of MPPM
15 its conflict-free track access capability,

— 12

that is, any port can accsss any track with-
out conflict betwesn any cother ponis. The
cost for that is its latency time; a port can-
not access a fracton of & wack untl the
end of a complete track wansfer,

To support the independent access to
ecks from muldple pors, each port s
provided with a channel-like intellizent
cocoolier (pom conoolzr) o inierpret the
track wamsfer requeast from the correspon-
ding PE. The tack transfer request is
placed in the MPPM interface memory by
a PE, in the form of a control block, The
control block is called a Page Transfer Con-
trol Block{(PTCB). An MFPFM port con-
troller polls for a PTCB ready flag, which
indicates that the corresponding PE has a
transfer request and formed it in a PTCB.
If the ready flag is set, the port controller
reads in the current PTCB and sets up
necessary hardware registers according to
the contents of the PTCB for the port acti-
vation. The port controller is micropro-
grammed so that (1) it can read, interpret
the PTCE and set up the port activation
speedily to minimize the control overhead
per port activation and (2) it can serve the
complex requirements for a channel, for
example, PTCB validity check and inter-
rupt issuance at appropriate points. More
important is its adaptability to the possi-
bly alterable specification of a PTCEB. A
microprocessor could not fulfill the speed
requirement and a hard-wired logic could
not bear the complexity of its require-
ments.

Besides the port contreller, MPFM con-
sists of memory banks and a network to
interchange the memory banks to ports.
The requirements of this network are not
as general as usual interconnection net-
works. It only has to work synchronous-
lv. If portiis, for example, conneci2g to
memory bank k 2t a time period, port 1 will
oe connecied to memory bank k+1 med n,
where n is the number of ports, at the next
time peried. This cyclic network inter-
change is repeated n times; the total time
is the track rcad-out time (track latency).

In the current Lmplementztion, as n is
small (n is §), the network is implementad
by 3-state gates, essentially n pieces of n-
to-1 selectors.

4.4 Control Software Overview
The control software consists of three
M2jOT COMPONEnis. Tney &rs:
(1) conmol facilites
Tais is a collection of operaing sys-
tem like functions. For example,
MPPM management, disk manage-
ment, MPPM access method, inter-pro-
cessor comumnunication support and so
on.
(2) operation modules
An operation module performs the
assigned operation over one or several
pages. The operations are, for exam-
ple, selection and join. These modules
use the above control facilities if neces-
sary.
(3) compiler
The compiler compiles relational cal-
culus based query into a sequence of
internal commands. The internal com-
mands are executed by the operation
maodules.

A query is received by the control pro-
cessor and stored in the common memory.
The control processor does not perform
compilation nor execute control facilities.
As is described in the research objective
chapter, we do not centralize such control.
(We notice that to call it the control pro-
cessor, named for historical reasons, is
thus misleading.) A free PE finds a new
guery in the common memory and com-
piles it into a sequence of intermal com-
mands in a transaction command queue.
The queue is generated per transaction
and placed in common memory. An idle
processor polls for the transacion com-
mand gqueues. If there is a command in a
ransaction command queue, it executes
the command. Commands are categorized
into two types. One is the processor-
specified type and the other is processor-

non-specified. A processor-specified
command must be executed by the speci-
fied processor. This type 1s necessary
because the datz is dismibuted across the
disks in the PEs. If there is a need for a
specific page fewch from disk, the command
must go to the PE processor that has the
pege in i disk. A processor-non-speci-
fizd npe comumand can be executed by any
processor, There is a perameier in proces-
sor-non-specified command that conools
the maximum parallelism. If a processor-
non-specified command is specified with n
as the parameter value, the command can-
not be executed by more than n proces-
sors. In other words, the command is
shared by a maximum of n processors and
executed in paraliel. The typical case is
when the command is a selection from
multiple pages. Each of the free proces-
sors that can participate in the execution
of the command looks at the page queue in
the common memory and takes the page
number specified at the top of the page
quewe. The processor then removes the
taken page from the page queue. This
page-taking is a critical section of control,
so a lock using the common memory is
necessary to ensurc the atomicity. After
taking out one page from the page queue,
the processor reads in the page from
MPPM and performs selection operation
on the page. If the operation is complete
and there still remains unprocessed
pages, the processor continues the pro-
cess until all the page numbers in the page
queue is consumed.

5. Conclusion and Future Works

In this paper we described the knowl-
edge base model and kmowledge base
archizecture for the model first. We then
deseribed thar the MP method, which con-
trols the granurality of partial joins dynam-
ically when the original join is executed by
multiple processing elements. The MP
method was simulated and shown to be

- l_3_

superior to the SP method 25 a paratlel
contol sTategy.

We then described several aspects of
the experimental knowledge — base
machine, which is a prototype of ths origi-
nal architecture. An interface with the
inference machine based on relational cal-
culus was given., The hardwarz and sofi-
~zre architeciure of the experimental
machine was describel.

We are now implementing the conwmol
and knowledge base processing softwears
on the experimental machine. First ver-
sion of the integrated software will be
completed next March. By examining the
performance, usability and system behay-
iors using the integrated system, we will
evaluate the following:

(1) effectiveness and Iimitation of the
prototype architecture
(2) parallel control algorithms and imple-
mentations
(3) interface with the inference machine
The observations which have already be
obtained, or will be obtained in the future
are for the most part applicable not only to
knowledge base machines but also to
database machines.

[references]

[Ait-Kaci B3] Ait-Kaci, H., Nasr, R,
"LOGIN: A Logic Programming Lan-
guage with Built-In Inheritance”, J. of
Logic Programming, Vol. 3, 1986.

[Bancilhon 86] Bancilhon, F., Khoshafian,
S, "A Calculus for Complex Objects”,
Proc. PODS, Cambridge, MA., 1986.

[Codd 70] Codd, E. F.,, "A Relational
Model of Data for Large Shared Data
Banks", Comm. ACM, 13, 6, 1970,

[Chikayama 84] Chikayama, T., "Unigue
Fezmeres of E5F", in Proc. Conferencs
en Fifth Generation Computer Systems
T84, Tokvo, 15934,

[DeWitt 86] DeWiw, D. 1, et al
"GAMMA - A High Performance
Dataflow Database Machine”, Proc.
12th VLDB, Kyoto, 1986.

[Kerr 82] Kerr, D. 5., et al. "The Imple-
mentation of a Multi-Backend
Database System (MBDS): Part [-
Software Engineering Stratagies and
Efforts Towards a Prototype MDBS",
Technical Report, OSU-CISRC-TR-82-
1, The Ohio State University, 1982,

[(Morita 86] Morte, Y., et el "Remioval.
by-Unification Operzton on a Reladon-
al Knowlecge Base”, Proc. 12th VLDE,
Kyoto, 1586,

[Morita &7] Morita, Y., et al,
"Performance Ewvaluation of a Unifica-
tion Engine for a Knowledge Base
Machine", ICOT Technical Report TR-
240, 1987.

[Murakami 83) Murakami, K., et al "A
Relational Data Base Machine: First
Step to Knowledge Base Machine",
Proc. 10th International Symposium on
Computer Architecture, Stockholm,
1983.

[Sakai 84] Sakai, H., et al., "Design and
Implementation of the Relational
Database Engine", Proc. Conference on
Fifth Generation Computer Systems
U84, Tokyo, 1984

[Sakai 87] Sakai, H., et al.,, "A Simulation
Study of a Knowledge Base Machine
Architecture”, Proc. 5th International
Workshop on Database Machines,
Karuizawa, 1957,

[Shibayama 84] Shibayama, §., et al. "A
Felational Database Machine with
Large Semiconductor Disk and Hard-
ware Relational Algebra Processor”,
New Generation Computing, Vol. 2,
1984,

[Taki 84} Taki, K., et al. "Hardware
Design and Implementation of the Per-
sonal Sequential Inference Machine
(PSD)", Proc. Conference on Fifth Gen-
eration Computer Systems U84, Tokyo,
1984.

[Tanaka 84] Tanaka, Y. "Multport Fage-
Memory Architecture and a Multport
Disk-Cache System”, New Generation
Computing, Vol. 2, 1984,

[Tsur 86] Tsur, S., Zaniolo, C.,, "LDL: A

Logic-Based Data-Language”, Proc.
12th VLDE, Kyoto, 1986.

[YokotaH 86] Yokota, H.,, Itch, H., "A
Model and Architecture for a Relational
Knowledge Base”, Proc. 13th Intema-
tional Symposium on Computer Archi-
tecture, Tokyo, 1986.

[YokotaK 87] Yokotz, K., "Deductine
Approach for Nested Relations.”, ICOT
Technical Report , to appear.

— 15 —

