ICOT Technical Report: TR-293

TR-293

A Superimposed Code Scheme for
Deductive Databases

by
M. Wada. H. Yamazaki, S. Yamashita,
N. Mivazaki (Oki). Y. Morita and H. Itoh

August, 1987

1987, 1ICOT

Mira Rokusai Dldg. 21F () 456-3191 -5

|(:D | 4 28 Mita 1-Chome Telex ICOT 132064
Minato-ky Tokve 108 Japan

Institute for New Gener'at'ion Computer Technology

A Superimposed Code Scheme for Deductive
Databases

Mitsunori Wada?, Yukihiro Morita¥, Haruaki Yamazaki®, |
Shouji Yamashita®, Nobuyoshi Miyazaki' and Hidenori Itoh*

T Oki Electric Industry Co., Ltd., Tokyo, Japan
¥ Institute for New Generation Computer Technology, Tokyo, Japan

ABSTRACT

An experimental distributed knowledge base system, KBMS
PHI, is being developed as a part of the knowledge base research in
the Fifth Generation Computer Systems project. A query expressed
in Horn clause form is combined with related rules and compiled to
relational operations to realize efficient processing in PHI

A superimposed code scheme is being developed to speed up the
proeessing. This paper describes the superimposed code scheme for
compiled relational operations and analyzes its performance. An
extension of the scheme for the processing of terms and rules is also
discussed.

INTRODUCTION

The management of large shared knowledge bases is one of the most
important research topics in realizing knowledge informalion processing
systems. An experimental distributed knowledge base system, KBMS P11,
is being developed as part of knowledge base research in the Fifth Genera-
tion Computer Systems (FGCS) project. Two principal knowledge base mod-
els, the combined model and the integrated model, are being investigated in
the FGCS project!l]. PHI is based on a variation of the combined model
which is essentially a deductive database system. Horn clause queries are
combined with related rules in the intensional database (IDB) and compiled
to relational operations for the processing the extensional database {(EDB)
to utilize the database technology effectively. A superimposed code scheme
is being investigated to support relational operations as well as the proc-

essing of rules. The major topic of this paper is the use of superimposed
codes for relational operations in deductive database systems. The extens-

ion of the method for terms and rulesis also briefly discussed.

KBMS PHI

KBMS PHI physically consists of a number of personal sequential
inference machines (PSls) linked by the ICOT LAN. The PSI is a personal
computer system developed by ICOT that executes a logic programming
languagel®l. The ICOT LAN is an ethernet like local area network whose
broadeast communication capacity reduces the communication overhead!3!,
Some PSls act as knowledge base machines which serve the requests from
other PSIs used as host eomputers on which user programs run. This config-
uration represents one of the approximate models of the combination of the
inference machine and the knowledge base machine for the FGCS. P5Is
which have the role of knowledge base machines are called PHi machinesin
this paper.

Logical Configuration of PHI

KBMS PHI logically consists of global knowledge base managers and
local knowledge base managers, as shown in Figure 1. One global
knowledge base manager is dynamically assigned as a coordinator for each
user program that accesses the knowledge bases, Local knowledge base
managers that manage the related knowledge bases cooperate to answer
requests from the user program. This configuration is a distributed and
extended version of the model proposed in [4]. The major features of the
previous model are as follows.
{1} A relational database management system (RDBMS) manages the
EDB. The use of set oriented relational operations for large knowledge
bases is essential to improve the overall performance.
(2) The Horn clause interface is used between the logic programs and the
extended RDBMS. The extension is for recursive queries.
The first feature represented the commonly accepted view of the relation-
ship between the inference and the relational databases when ICOT was
inaugurated!®), The second is the major issue of this proposal.

The model was extended for PHI to include the following additions.

DC™M : Destributed Control Module

KML : Knowlege Management Layer
pBEML - DataBase Management Layer
-

Global Knowledge
. Base Manager
KML (GHBM)

[}

q 3 > KBMS PHI

o] | oo ot

Base Manager
EML | (LKBM) . - . KL

Figure i1 Logical Cernfiguration of KBMS PHI

(3) The extended part is separated from the RDBMS as a knowledge
management layer to broaden the scope of IDB management.
(4) A distributed control module has been added to cope with the
distributed environment.
Thus, the kernel of KBMS PHI is a distributed deductive database system.

Query Processing in KBEMS PHI

Query processing strategy in KBMS PHI was investigated by dividing
the problem into two sub-problems: query processing of the distributed rela-
tional datahase and query processing of the deductive database. An inte-
grated strategy is being developed based on strategies for these sub-prob-
lems. Query processing of the deductive database is summmarized in this
section.

The size of the IDB is assumed to be relatively small compared to the
size of the EDB. The relational database operation is an attractive
alternative in such a case to realize the deductive inference based on the
well known one-to-one correspondence between a fact of the logic program
and a tuple of a relation. A query is first combined with related rules in the

IDB. The resultant rule set can be regarded as a Horn clause query. A Horn
clause query without functions (structures) can be easily compiled to a
relational query if there are no recursive expressions in it, Thus, the central
issue of query processing is how to deal with recursion. There have been
many strategies proposed for recursive query processing. They can be
classified based on their main characteristics, i.e. interpretation versus
ecompilation and top down versus bottom upl®l. The compiled approach
enables techniques developed in the database field to be applied in order to
improve performance. Therefore, a strategy based on the compiled and
bottom up approach was proposed for PHIL7! It uses a procedure called Horn
clause transformation to simplify queries for bottom up processing. Part of
this strategy was implemented to study the behavior! 8,

It is easy to process simple queries efficiently using the bottom up
approach!”!, However, some kind of the binding (condition) propagation
mechanism is necessary to improve the performance of a bottom up strategy
for complex queries. The principle of restricted least fixed points that
reduces the size of virtual relations was proposed for this purpose!®l It
introduce a rule set called restrictor rules, which are similar to the magic
sels summarized in [6). With this improvement, most queries including
“not” predicates, and mutual recursions, can be processed effectively by
relational operations in PHI,

Application of Superimposed Codesin KBMS PHI

The query processing of PHI consists of two phases. The first is the
processing of the IDB related to the query. This phase includes the
extraction of related rules from the IDB and the compilation of the query.
The second phase is the execution of the compiled relational operations on
the EDB to compute the answer. The system is being designed and
implemented on PSIs, and part of it, the database management layer
(RDBMS), is currently operational. The hardware support of the processing
is also being investigated to improve the performance.

The use of superimposed codes possibly provides a unified approach to
realize the efficient processing of deductive databases that consist of the
IDB and the EDB. Therefore, a superimposed code scheme is being investi-
gated as an alternative way of realizing the deductive database processing.
Relational operations that frequently appear in compiled queries are

selections, joins, set operations and set comparisons. The frequent use of set
operations and set comparisons is the major difference between deductive
and relational databases. The use of superimposed codes in these operations
is an effective way of improving the performance of the overall processing.
PHI was designed under the assumption that the size of the EDB would be
much larger than that of the IDB. Therefore, processing of these relational
operations is more critical than IDB processing. An experimental knowl-
edge base engine (KBE) is being designed based on a superimposed code
scheme to process relational operations. The KBE is ha rdware attached to
the PSL. The logical structure of the KBE is shown in Figure 2. The acceler-
ator is simple dedicated hardware to process indices that consist of superim-
posed codes. The method to be used in the KBE is discussed in the following

sections.

S |
P Controller ii

ey Bogelearator

|

wWorkMemory

O

-~ Knowleage Base Englne-
HE— ~pii Machine —

Figure 2 Knowledge Base Engine

RETRIEVAL USING A SUPERIMPOSED CODE

This section explains how to make an index, demonstrates retrieval with
it, and discusses the optimum index parameters.

Index Creation
To retrieve large amounts of text data, a method using the superimposed

110, This method assigns index records with superim-

code was proposed
posed code words (SCWs) to a record file that has multiple key words. This
method provides powerful partial match retrieval.

For quick tuple retrieval, an index with SCWs is introduced. An index
value is derived as follows:

Suppose a relation, R, consists of N tuples; R={T,T9, ... ,T'n}. The
relation, R, has r' key attributes. To compute an index value, a hashing
function is defined to map attribute values to codes called binary code words
(BCWs) according to data type. For a given tuple, T}, the index value is
produced as follows:

(1) The value of each key's attributes of T} is transformed to the BCW.

(2) All BCWs derived are ORed together.
The result of the OR operation is a SCW, an index of 7. The index table of B
is produced by pairing index values and a pointer to the corresponding tuple
forall tuples of K. Figure 3 is an example of the index table.

Relation SCW¥ index

................. per——y

vi | vz |v3 |e [110.01] Vi —Hash—» 100..01
: . v2 —Hash—» 010..00
L . V3 —Hash— 110..00(OR

11001

Figure 3 Index Creation

Hetrieval Using an Index

As explained above , an index table is used for retrieval. In retrieval
query g, r7 key attribute values are specified as a retrieval condition. The
first phase, PHASEI, extracts candidate tuples that satisfy the retrieval
condition comparing index values with a binary value, called a query mask.
PHASEZ examines the contents of each candidate to extract the tuples
satisfying the retrieval condition.

In more detail, query mask @ is computed from the set, Sq, of attribute
values specified in the retrieval condition, analogous to the way in which an

index value is derived, First, the hashing function maps each element in Sq
into a BCW. The query mask is derived from ORing together the r¥ BCWs.

If Q@ and any index value, §;, do not satisfy equation 1, the tuple
corresponding to the index record dose not satisfy the query.

RAS;=Q.. 1)

As a result of PHASEL, a callection, C, of tuples whose index value, Sj,
satisfies equation 1 is extracted. PHASE2 examines C so that the tuples
which satisfy the retrieval condition can be picked up.

Set operations and set comparisons are frequently executed in PHI, as
discussed in previous sections. Each tuple in a relation should be compared
to every tuple in another relation in these operations. This tuple-wise
comparison is very time consuming. The comparison time is OIM % N) for
relations having M and N tuples.

1t is difficult to use index methods such as B* or a hash table to reduce
the processing time of these operations. The SCW index can reduce the time
for these operations. First, relations are divided into tuple groups based on
their index values. Next, each group of a relation is paired with a group of
another relation that has the same index value. Then, comparisons can be
made within these paired groups. The comparison time can be greatly
reduced by pairing groups. The time for grouping and pairing is in the
linear order of the size of relations. The details of these operations are
discussed in [11].

Design of Index Paramelers
An index value is assumed to have uniform distribution. Then p(drops) is
defined by equation 2:

pidropsi=(the number of C elements { the number ofall tuples in 1)

b
= }_ $ib k) pib,k,rn,x] {2
=0
1 'Cih pd
- Ty — r t A
dibkrixr = (=11 b{'iz (—I}IC[.(C J
=1 bk

i 'CA- 7”
pibk, =S (1) O (L) .

— b C

i=0 BT R

pldrops) can be computed using parameters b, k, /. ral10] where rf is the
number of key attributes in the relation, r9 is key attributes specified at

retrieval condition, b is the length of BCW and k is the weight of BCW
(number of ‘'1"in BCW). b and k are parameters that specify the nature of
the index. This section discusses the

p(drops) b :'54 optimal value of k.
107 rt=4 As shown in Figure 4, when b and
1921 r® are fixed, the transition of

pldrops) according to k's value is
examined. The results is that the
more r9 increases, the more p(drops)
decreases. Ilence, the more key
attributes specified in the query, the
fewer tuples satisfv the gquery. The
number of tuples satisfying the
query is maximal when rf=1. Thus,
the optimization of value & is the

most important design criterion. As

can be seen in Figure 4, this optimal
Figure 4 Transition of Selectivity (1)} value of k does not change in other
CUurves,

Next, as shown in Figure 5, the transition of p(drops) in the case of ri=1
according to k's value when b is fixed is examined. The result is that
pldrops) increases in proportion to . Hence, if the number of key
attributes in the relation increases, the number of tuples which do not
satisfy queries is expected to increase.

Next, the value of b i= set in proportion to . Figure 6 illustrates the
transition of p(drops) in the case of b= it 16.24,32 and it =2,8. The value
of & that minimizes p(drops) is in this range. It is clear that if r9 is a
constant, then the transition is very small, within

200 R, 3\ RS

Therefore, k should be set in this range.

ESTIMATED PROCESSING TIME

This section estimates the cost of retrieval processing with SCWs. and
compares it with the costs using the hashing table or B* tree, The retrieval
operation is the operation executed most often. The relational algebraic

p(drops) D =96

-E rq=
1040
a \ rR=6
- h
- 10
10 rR=4
- A
14 rf=3
-6
10 -
18
m Tk
16 2

Figure 5 Transition of Selectivity (2) Figure & Transition of Selectivity (3)

command sequence is optimized by the selection-first strategy in the PHi
machine. Therefore, the execution cost of retrieval command affects the
entire execution cost of the PHi machine.

Here, a retrieval is executed to select all tuples satisfying a retrieval
condition, and in the condition, some attribute values are specified and
ANDed. When a retrieval command is applied to a relation that has a
hashing table or B*tree index of key attributes, it is applied in two phases
as in the SCW method. The first phase, PHASEL, selects tuples that mateh
one key value specified in the retrieval condition, called candidate tuples.
The second phase, PHASE2, tests the candidates and determines tuples
satisfying the retrieval condition completely.

Comparison Time

This section estimates the comparison time to select candidate tuples,
and evaluates the effect on retrieval. All index records must be tested in the
SCW method regardless of the number of tuples in a relation.

When retrieval is performed for an N tuple relation, PHASE] should
test index records N times. The number of comparison steps to select all
candidates is N. When retrieval is performed for a relation that has hash

ing tables, only one access after hashing is required to select all candidates.
(One comparison step is required to select all candidates. For the B*tree, the
number of comparison steps to select all candidates is (Constant X loggN)
B:number of branches.
Therefore, the number of comparison steps of each method is estimated.

1) SCW index method : N

2) Hashing tahle method: 1

3) B*tree index method : ConstantxlogghN
Obviously, the SCW method gives the largest number of steps. The
following values are assumed to estimate the order of comparison time.

Parameters

Number of tuples (N) . 216

Freguency of comparing one index value {f) : 1~10

Comparison time : 10~10% nsec
Here, [is set to be 1 to 10, since the limitations of the register size of the
accelerator mean that index values must sometimes he compared several
times. The order of each method is:

O(SCW index method) = 10-'~10 msee

O(Hash table method) = 10~107 nsec

O(B*tree index method) = 10°'~10 psec
The total comparison time with the hashing table or B*tree is negligible
compared to the disk access time, which is in the order of milliseconds.
Because total comparison time with the SCW index is greater than in other
methods, an accelerator is being designed to realize high-speed index
processing in the KBE.

Estimated Disk Access Time
This section estimates the time to read candidate tuples from disk

hardware in PHASEZ2, The following parameters are used:

5 ;: Average seck time (msec)

r : Rotational latency (msec)

d : Disk transfer time (msec/byle)

P:Page size (bytes)

N:Number of tuples in a relation

n: Number of tuples satisfying a query

— 10

In the SCW method, when pldrops)<1, the same number of pages as
candidate tuples will be read. Candidate reading time T, for disk access
is estimated as follows:
Tpupte = N ¥ pldrops) % (s + r + Pid)
In this expression, N X p(drops) =N is the expected number of candidates
in PHASEL.
Figure 7 shows the disk read time. In this figure, the axis of the abscissa
is the rate of n to Ng. Here, the following values are estimated:
1) Disk
s + r = 25 msec
d = 1HKbytes/msec
P = 4 Kbytes
2) Number of tuplesin a relation: 216
3) Index value length : 16, 24, or 32 bits per attribute
For b/rB=24.32,.., the disk access time to read candidates is
represented by curve L. For b/rf=16 and r9=1, disk access Lime is
constant up to a certain point as shown in L1 and L. For ri=2, disk read
time is represented by curve Ly.

(mz=ec)
104 1/16 1/8 1/4 142111
5‘ - .-.-'- II1'-I- ._,-"-:'_._ 4 L: R R_ q_
o o r*=8 (b/r'=16 and 1 =1)
] ;“Jr”_g“',/jzi““'Ll rf=2 (b/rf=16 and r%=1)

(b/rR=24,32,.. or T >1)

Number of tuples satisfying query
Number of candldate tuples

= e - . -
i -4 1 -3 l_
1/65536 4 10 i0

Figure 7 disk access ilime

When tuples are retrieved with the hashing table or the B*tree index,
candidate tuples are selected by using them for a single attribute. Next, the
candidates are tested to see whether they satisfy the query. Candidate hit
ration PIHIT) is defined as follows:

PIHITY = (Number of tuples satis{ving query INumber of candidate tuples).
With P(HIT), the expected reading time, T,
caleulated as follows:

uple® for candidates can be
Tyype = 1 X Us 4 7+ Pid) | PUTIT),

According to this expression, Figure 7 explains the disk access time for

PHIT) = 1/1,1/2, 1/4, 1/8, 1/186.

In the SCW method, for r9= 2 the disk aceess time follows Lg. In other
methods, PIHIT) is expected to decrease as r9 increases, If the number of the
tuples satisfying a query exceeds a certain threshold, then the SCW method
is better than the other methods in terms of disk access time to read
candidates, As P(HIT) decreases, the threshold value decreases, In ather
words, the performance of retrieval using the SCW method is expected to be
better than other methods as the number of key attributes specified in the
retrieval condition increases.

EXTENDING THE SUPERIMPOSED CODE SCHEME
FORTERMS AND RULES

PHI deals with not only the EDB but also the IDB. Therefore, a fast
retrieve mechanism for rules is necessary if the size of the IDB becomes
large. Another problem is processing structures in the IDB and EDB. These
two problems can be handled by the superimposed code scheme for terms.

The main problem in processing terms is expressing variables and
composite terms by superimposed codes. A scheme called the structural su-
perimposed code word (SSCW) method is being investigated.

First, a term is represented by a tree. If the term is an atom or a
variable, it is represented by a simple tree that consists of only a root node.
If the term is composite, the functor of the term is represented by the root
and its arguments become its children. If some arguments are egain
composite, they are represented by subtrees, The hashing function for the
BCW isdecided under the following conditions.

(1) Each functor, atom, or variable thatis a component of a term is mapped
toa BCW shorter than the intended SSCW.

(2) Variables are mapped to the codes whose components are all ‘1’ for
indices of terms in the IDB or the EDB, They are mapped to all “U" for
query masks.

(3) The range of the BCW for a parent node covers those of its children.

An SSCW for a term is computed by superimposing BCWs of its
components according to its strueture, as shown in Figure 8, If a term, {3, is
unifiable with another term tg, then the index value (S88CW), 8, for #; and
the query mask, &, for tg satisfy eguation 1 in the previous section.

There have been several indexing schemes proposed for terms and rules
[12]te[15] The relationship of these methods are briefly analyzed in [16] and
[17], and it is shown that the selectivity of the SSCW scheme is better than
that of methods discussed in[12] and [13].

IOt SR -
E1DUﬂGD%{ﬂ§

"""""" .
0170¢
5 10100100110111111; @ 0100000000010101:
Index (deseriptor) for flgla,b),X) GQuery mask for f1X hla,c))

Figure B Example of SSCW

CONCLUSIONS

This paper described a superimposed code scheme planned to be used in
KBMS PHI. PHI compiles a deductive query to relational operations to
effectively process the query, The superimposed code scheme is used for
indices of the EDB, i.e. the relations, to improve the performance of the
execution of the compiled query. The advantages and disadvantages of the
scheme were analyzed. The scheme is expected to be more effective than
other methods if the number of key attributes specified in the retrieval
condition is larger than one. This scheme is also very effective for the set
operations and comparisons frequently used in deductive database
processing. An experimental knowledge base engine is being designed
based on this scheme.

13—

The extension of the scheme for the processing of the IDB, ie. rules,
were also briefly discussed. The superimposed code scheme is suitable for a
parallel architecture because it is structurally simple. The investigation of
the parallel architecture is considered to be one of the directions of future

research,

REFERENCES

[1] Itoh, H., Research and Development on Knowledge Base Systems at
ICOT, Proc.of 12th VLDB, pp.437-445, 1986

[2] Uchida. S. and Yokoi, T., Sequential Inference Machine: SIM, Proc. of
FGCS, pp.58-89, Tokyo 1984

[3] Taguchi et al,, INI: Internal Network on the 1ICOT Programming
Laboratory and Its Future, ICCC, Sydney, Australia, Oct. 1984

(4] Mivazaki, N., A Data Sublanguage Approach to Interfacing Predicate
Logic Languages and Relational Databases, LCOT Technical Memoran-
dum, 1982

[5] Fuchi, K., Aiming for Knowledge Information Processing Systems,
Proc. of FGCS, p.2-15 to p.2-28, Tokyo, 1981

[6] Bancilhon, F. and Ramakrishnan R., An Amateur’s Introduction to Re-
cursive Query Processing Strategies, SIGMOD '86 Froc., pp.16-52,
1986

(71 Miyazaki, N., Yokota, H. and Itoh, H., Compiling Horn Clause Queries
in Deductive Databases: A Horn Clause Transformation Approach,
ICOT Technical Report, 1986

i8] Abiru, Y., Haniuda, H., Mivazaki N. and Morita, Y., KBMS PHIL: An
Experimental Deductive Database System PHI/KZ2, Proc. 34th Annual
Convention IPS Japan, pp.1491-1492, 1987 (in Japanese)

[9] Miyazaki, N. and Itoh, H., Restricted Least Fixed Points and Recursive
Query Processing Strategies, ICOT Technical Report,1987

[10]Roberts, C.S., Partial-Match Retrieval via Metﬁmd of Superimposed
Codes, Proc. of [EEE, 67(12), pp.1624-1642, 1979

[11]Wada, M., et al., KBMS PHI: Superimposed Codes for Relational
Algebra Operations, Proc. 34th Annual Convention IPS Japan, 3K-T,
pp.1489-1490, 1987, (in Japanese)

[12]Wise, M. J., and Powers, D. M. W, Indexing PROLOG Clauses via Su-
perimposed Code Words and Field Encoded Words, Proc. IEEE Conf.
Logic Programming, Atlantic City, NJ, January 1984, pp.203-210.

[13]Morita, Y., et al., Retrieval-By-Uniflication Operation on a Relational
Enowledge Base, Proc. of the 12th VLDE, 1986

[14]Ramamohanarao, K., and Shepherd J., Answering Queries in Deduc-
tive Database Systems, Logic Programming: Proc. Fourth Intl Conf.
Vol.2, pp.1014-1033, 1987

[15]Berra, P.B. et al., Computer Architecture for a Surrogate File toa Very
Large Data/Knowledge Bases, [EEE COMPUTER, March 1987

[16]Morita, Y., Wada, M. and Itoh, H,, Structure Retrieval via the Method
of Superimposed Codes., Proc. 33rd Annual Convention IPS Japan, 81-
8, 1986, (inJapanese)

[17)1Morita, Y., et al., A Knowledge Base Machine with an MPPM (3} - An
Indexing Scheme for Terms -, Proc. 35th Annual Convention IPS
Japan,2C-7,1987, (in Japanese], (lo appear}

14 -

