TR-285

Programming in ESP
— Experiences with SIMPOS

by
T. Chikayama

June, 1987

987, 1COT

Mita Kokusai Bldg. 11F (31 45R=3101~3

|(:D I 428 Mila |-Chome Telex 1CUL 132964

himato-ku Tokvo & Japan

Institute for New Generatioﬁ'COmputéi’ Technology

Programming in ESP
— FExperiences with SIMPOS —

Takashi Clhikayama

1COT

Abstract

SIMPOS 1s the programming and operating system for the sequential inference ma-
chine PSI developed by 1COT. The deseription language for SIMPOS 15 ESP. a logie
programming language augmented with object-onented features. This paper describies
how features of ESP were used and which were effective in what aspects in the devel-
opment of SIMPOS. Brief descriptions of the development history of PSI and essential
features of ESP are also given,

1 Introduction

The development of sequential inference machines was mtiated slhinost unmedintely
after the organization of ICOT Research Center in 1982 as one of the very first tasks
of the FGCS project. There was an urgent requirement of a comfortable programming
ervironment for research and development in various FGCS software projects. Althougl
the long-term research plan of the project aims at a highly parallel inference mechanism,
practical computers based on such a mechanism may only be available after the ten
vears of the FGCS project are completed. On the other hand, the logic programming
environments already available were far from heing adequate for programs with serious
complexities. The sequential inference machine projects were meant to fill this gap.

P51, the personal sequential inference machine was designed to e the fivst of suel
sequential inference machines(9]. Tt was designed as a personal Al workstation, with
reasonable execution efficiency for logic programs and a flexible man-machine wter
face with features such as a multiple windows system. The execution efficiency was
achieved mainly by the dedicated hardware and the microcaded high-level machine lan-
guage INLO. The operating system of PSI, called SIMPOS {scquential inference machine
programming and operating svstem)}, was responsible for the human interface part[4].

It was evident that such a sophisticated operating svstem cannot but be verr large
seale software. With accelerated exceution speed and hmproved wmeory svailability
provided by the dedicated hardware, application programs on the machine were also
expected to become much larger and more complicated coanpared with the programs on
the conventional Prolog implementations with el limited perflormance. The simple
flat straerure provided by the naive Prolog language was not adequate for construction
of such large-scale programs. There already had been several proposals to introduce
certaln program structures to Prolog, but none of them had botl sufficient functionality
and appropriate efficiency considerations to deseribe a practical operating svstem.

A new language called EST was designed as the system description language for
SIMPOS[1]. ESP 1s a language in a level still higher than Prolog, in 2 sense. with much
umproved program modidarity provided by its object-oriented fentures, All the widelr
recognized advantages of the object-oriented programming methodology also apply to
ESP. Tn addition to those features common to grocedural object-oricuted progranmuing
languages. the logie programming nature of ESP allows the inheritanee lierarehy 1o rep-
vesentl the 1S-A relationship of semantic networks naturally, From the efficiency arand-
poiut. firmware-supperted table lookup mechaniem made vuavoidable searell overlendd
sutficiently low,

The entive SIMPOS svstem. from the lowest layers of the process anel memory oawd
dleviee mpnawement modnles, fo the lughest lavers of prosranring bools proaciding so-
phisticated man-machine interfioce, was written o single very high-level langnaee,
ESP. i tato. This was a great help in managing the developiment.

This paper is organized in the following way: A Tvief history of the development of
PSL. ESP and SIMPOS s siven in Section 20 a0 sumuary of ehinrneicrisiie features of
the ESP longunge s given o Seetion 30 Section 4 deseribes how the fearnges of ESP
were nsed in SIMTOS and wlach wore most effective 1n what all.a].we‘lh:: el 1erits sl

“demerits of using a single programming lanpuage thronghout the system constrict on
are discussed 1 Section .

2 Brief Development llistory

The whole project was initinted in the sunmer of 1952 The first step of the project was
to design the functions of the high-level machine lunguage of PST ealled kernel Innguage
version-0 (IKL0), whicl included all the essential features of Prolog (such as unification
and hacktracking) with extensions to describe everything required for a stand-alone
computer systemn. The functional design of KLO also meant the design in outline of the
architecture of PSL Developiewns efforts of the hardware, the firmware and the software
were initiated in parallel based on the agreed design.

Through preliminary investigations of the operating system design. the nhject-orient-
ed style was adopted as the principle of system construction, and the ESP language was
designed in the summer of 1983, The prototype version of the PSI hardware was ready
by the end of the samne yvear; the first version of the firmware in spring 1984, and the
fivst version of its operating system SIMPOS became available for a demonstration at
the FGOS'84 conference in November. This demonstration version was not [unctional
enongh to be used practically for program developments as it did not even mclude a self
compiler. The first stand-alone version called 0.7 was released at the end of the year;
1.0 in spring 1085; 2.0 in spring 1980; aud the newest version 2.5 was releasced in July
1956,

Currently, PSI, KLO, ESP and SIMPOS are widely used i software research and
development efforts in the FGCS project. The newest version of SIMP 08 Ly about
930,000 lines of source code with 1,400 classes and 18,000 predicates.

3 The ESP Language and Its Implementation

ESP is u logic programming languuge augmented with object-oriented features. Tlas
section bricfly describes the characteristic features of the language.

3.1 Logic Programming Features

All the features provided Ly KLO are immediarely available in ESP programs. As
Prolog like fentures of L0 such as 1he unification-based parameter passing mechausm
and the backtracking-based exeention control mwechanism have thus heen inherited o
FSP. i1 is hasically an extended version of Prolog. Prolog progriuns can be iranslated
iuto ESP without apy erieial revision,

Tty acldition wo standard Drolos features, KLO has varions extended logie progran-
ming features. Amoug them. the following extended execution control mechanisins are
st mporiant:

Exception: Tmplicit invocation of o certain predicate | called the coeeptron hendler) on

finding an error i the execution of o built-in predicate. A trpical case is wlien

2

un arithmetical overflow is found. The execution of that buili-in predicate is
virtually substituted by the exeention of the exception handler predicate. Thus,
it is possible to continue the exceution by simply returning from the exception
handler, possibly after unifying output arguments with appropriate values,

Bind-hook: Instantiation driven invocation mechanism which is essentially the samnc
with the freeze leature of Prolog-11{2].

Multiple-level cut: An extended cut feature where the program can specify up to
which invoecation level alternatives should he neglected. A combination of this
feature and enforced failure enables a Catch Throw like non-local exit program
construct.

Persistent alternatives: Alternative branches which can never he removed by cut
instructions.

(Other extensions to Prolog include:

e Low-level resource manipulation features.
o Lisp-like impure features for updating persistent databases.

o Powerful string manipulation features.

3.2 Object-Oriented Features
3.2.1 Basic Notions

From the logic programming viewpoiul, objects in ESP correspond io axiom sets. In
ohject-oriented languages, the same message way invoke different procedures depending
on the objects that recelve the message. In logic programming languages. the swune goal
may invoke different predicates depending on which axiom set is nsed to vefuted the
goal, This is the hasic concept of the object-oriented features of ESP. This basic notion
is cotuon Lo the weorld mechanism provided by Prolog-II[6]. The key difference 15 that
an axiom set, i.e., a collection of procedures, is treated as a date object, which is the
very idea of object-onented programinng.

ESP has two kinds of predicates. One is ealled a local predicete, with almost the
same semantics as predicates i Prolog: The predicate to he invoked is deternined
statically at compilation ame by the predicate name and the wunber of arguments
given to the invocation. The only difference is that the scope of predicate definitions is
drmited (1o one elies deflinition. see belew) o improve wodularity. The other is called
a method which realizes object-oriented nvocations: The predicate to be mvolied 1
determiined dynumically both by static information such as the predicaie e ond
the number of argunents, and by dynamic information, Le., the axiom set associated
with the ebject given as the first argument of the goal, This allows a highly flexible
crnamically parameterized prograinnig stvle,

Objects can have a fixed number of value holders called slots. Slots are wdentified
by their names. The association of slots and their values is considered to be a part
of the axicms associated with the objects. Slot valucs can be updated as side-effects.
Such modification is a quite restricted version of assert and retract operations. By such
a restiriction, semantical ambiguities and implementational diffienlties in modifying the
program currently in execution can be avoided. Another great advantage 15, of course.
execution efficiency.

An object belongs to a class. Objects belonging to the same class have the swne
axiom set except that values associated with slots may be different (1he sef of slot names
they have is the same). Objects belonging to a class ave said to be insfances or mstance
objects of the class. For each class, there is one object called a class object. The class
ohiects can be identified by the name of the class. but lustance abjects are anonymous,
The class object has an axiom set different from the instance objects of the class.

An ESP program consists of onc or more class definitions. A class definition describes
various attributes of the class, including the axion set associated with objects of the
class.

3.2.2 Inheritance

A class can have one or more superclasses, Such superelasses can have their own super-
classes again. All of them are also superclasses of the original class. The superclasses
of 2 class thus forms a trec of classes, called an inheritance tree. The superclasses of a
class specified explicitly in its definition are called direct superclasses,

The sel of axioms associated with an object is the wnion of all the axiom sets
defined in all the superclasses. Thus, o method has all the alternatives provided by all
the superclasses. By this inheritance wechanism, the inheritance tree corresponds to
an [S-A inheritance semantic network, Though the order of the inherited axioms 1s not
essential as long as pure logic is concerned, it is actually strictly defined in ESP to allew
the programmers’ efficiency considerations and to give cut a reasonable semantics (see
below).

The inheritance mechanism explained above is monotonic in the sense that all the
goals that can be executed successfully for objects of one class can also be executed
successfully for objects belonging to any of its subclasses. With monotonic inheritance
meheanisms only, an almost complete design of the systein must be at hand before
starting programniing the root class of the inheritance hierarchy, because inheriting the
elass and also modifving some of its functions nen-monotomically will he nmnpossible,

The only non-wwenotome feature in Prelog is the cuf operation. which also i= made
available in ESP to eut inherited alternatives. This vealizes the so-called method over-
riding feature in a quite generalized wanner.

Anotlier form of nou-menotonicity is introdicced by the demeon combimation featurc.
similar to that provided by Flavors[S]. Method predicates that arc defined as demeons
are added to normal method predicates as congunction rather than disjunction. DPro-
cramming sophisticated control structures will he muoch easier using this feature,

3.3 Implementation

All the features of FESP can be inplemented by compiling 1t inte KLO. In the carly
stages of the development of SIMPOS, ESP was actually wplemented without any
special firmware support. In this sence, ESP is a language one level higher than KLO.

3.3.1 Hardware

The hardware architecture of PSI docs not differ much from conventional computers
except for its data tag handling mechanism and unique memory management scheme{3],

Bused on the cxperiences with the current version of PSI, a new hardware called P’SI-
IT is heing designed in ICOT. The processor is primarily intended for element processors
of the parallel inference machine pilot model, Multi-PSI, but the same processor will
also be available for personal machines.

3.3.2 Logic Programming Features

The KLO interpreter is written in microcode based on the classieal structure-sharing
method. Its execution speed is around 40 KLIPs for deterministic list concatenation and
around 30 KLIPS on average. The small difference of these two figures suggests possible
efficiency improvements in simpler inferences. The nnplementation en P'SI-1T based on
Warren's abstract instruction set[7] is predicted to have average performance of arounc
100 KLIPs, and mere than 200 kL1ps for list concatenation.

3.23.3 Object-Oriented Features

Methods are accessed by their nsmune and anity at runtime. requiring & certain Tuntime
table lookup procedure. Slots could have been accessed nsing their displaceinent rather
than their names if the object code were duplicated for cach class. However, as the
memory overhead by such duplication would Lhave been a serious problen, slots also are
accessed by their names in the current implementation of ESP.

Due to the rather complicated multiple inleritance feature, a naive table lookup
implementation analyzing the inheritance hierarchy at runtime might nvolve a very
large overhead. The current implementation avoids this overhead by aualyzing the
inheritance hierarchy at hinkage time, making the tahle lnokup a shmple hash table
search.

Several built-in predicates are provided by the finnware for aceelerating the execu-
tions of ESP programms. They are for method mnvocations and slot accesses, Accesses 1o
ant object slot by 1ts name {inclnding argamnent preparation awd ontput unification) lave
about 307 overhead compared with accesses to an element of an arvay by 1ts iudex: top-
weal ivocations of & method (necluding avgument preparation aud head wifieation} also
have about 309 of execntion overhead compared with invocations of a local predicate.

These figures on the ratio of overliead are quite small compared with noplementations
of non-logic-based object-oriented languages. This 1z mainly beeause the grannlavicy of

operations is much larger for Prolog; and partly because the eurrent implementation of
Prolog-like features of KL0 is not the best possible: botl: make the denominator larger,
The PSI-1I implementation of the object-oriented features of ESP eurrently being
designed, uses hasically the same principles, bul details are much better optimized.
Preliminary invenstigations indicate the same 30% overhead for 100 KLIPS execution,

4 ESP Features in SIMPOS

Various features of EST were extensively used in the deseription of SIMPOS. How such
features were used and which were most effective in what parts of SIMPOS are reported
in this section.

4.1 Unified Design Principle

The primary reason for introduction of the object-oriented features to ESP was that the
preliminary overall design of SIMPOS was based on object-oriented notions. The fiexi-
bility of the method call and inheritance mechanism allowed consistent decomposition
of required functions into submodules.

As the implementation language ESP was also based on the same principle, notions
i the overall design corresponded almost directly to ESP classes and still further decom
position required for actual hnplementation eould also be based on the same principle.
This unified design principle had various advantages.

Straight implementation: As there was almost no gap from the higher-level design
of the system to the actual implementation, it was quite straightforward to write
down the programs,

Program readability: As conceptual notions correspond to object classes almost one
to one, it was much easier to understand programs even when they were not
well-documented,

Finding design problems: Wheu huplementation of some module becones swkward.
it is sometimes due to certain inadequacies in the eonceptual design. Iu the case of
SIMPOS, as the implementation usually reflects the conceptual design faithfully,
it was easy to find such problems in the higher level design.

4.2 Extended Execution Control

Somne of the extended exeention comtrol features of FST were found to be indispensable.
at least to lmpleneut an operating svstem.

Handling errors in user programs is one of the most important sk of an operating
systenl. An opcrating system cannot expect user programs to he ervor free. The sae
problem occurs in different lavers of the operating syvstem itself. Lower layvers of the
system should eheck out errors of upper Iayers. The same argumens applies also to
different lavers of application programs.

SIMPOS provides a general mechanism for handling cxceptional cases (ealled events)
depending on the sfate of the computation {called the stfnation). What bo do for varons
events is determined by looking up a table associated with the compuiational process
called the sifwation stack. It is possible to specify, conversationally if so desired. either 1o
resume computation normally possibly after certain error recovery, to fuil the eperation
which caused the event, to go back to one of the appropriate resumption points recorded
in the situation stack such as the top-level user interaction loop, or to kill the whole
process. The extended execution control features are extensively used to implement this
mechanism.

Exception: The exception mechanism is used to activate the sitnation mechanism Ly
raising an event when some error is found in built-in predicates. Because of this
feature, user programs possibly with errors can be executed safely 1o the machine
code rather than interpreted.

Multiple-level cut: The catel aud throw mechanism implemented using the multiple-
level cnt feature is used to return program control to an appropriate resumption
point.

Persistent alternatives: Persistent alternatives are used to maintain various data-
hases in order, even when unexpected failure accurred. An important example of
such a database is the situation stack.

The bind hook feature was not actually used in SIMPOS. It is most effcctive in
application programs. For cxample, an ESP implementation of a language bascd on
situational semantics called CIL[3] uses this feature extensively, resulting in muech betrer
performance compared with its implementation in Prolog,

4.3 Dynamic Method Search Mechanism

The method eall mechanism of ESP delays the decision of which predicate to eall depend-
mg on the arguments given at runtime. This mechamsm has the following advantages:

Module independence: Modules can be designed highly independently. A program
fragment inveking a certain method should oniy be aware of what that method will
do in an abstract sense. Heow that mvocation will be executed does not matier.
Thus. the design details of involed wodules con be changed without madifyney
the tnuoking modules at all. Altheugh rhis kind of encapsalution technigue s also
applicable to simpler procedure-hased modulanzation schemes, the independence

of modules hecomes more explicit in the object orented scheme,

Extensibility: A new fmwoked module can be very easily added 10 the svstem. Ax the
table of methods to be looked up 15 somehow attached to the mrobed objeet rather
than the wmveking code. no modification in the meeking modules 1= required.

For example, the unparser, which translates the internal representation of data into
a character sequence, could be designed witliout knowing how the penerated characters
should be used. This could be effected simply by calling the character output method
{(:putc in SIMPOS) of the object passed as the argument. The destination can be
recirected easily by giving some destination object, a file or a bitmap display window
object for example, to the unparser.

Simply defining a new class with the method :putc and passing its instance will
suffice to add a new way of treating the resultant character sequence. For example, if
only the length of the generated character sequence is of interest, the method defined in
such an object should only increase the contents of some counter slot. This somewhat
resembles the unified treatment of I/0 in UNIX where all the 1/0 are to and from so-
called files, winch actually could he a terminal device or an interprocess communication
stream called a pipe. However, the object-oriented approach is more general in that not
only 1/0 but everything can be parwmcterized in the same manner.

The advantages of the dynamic parameterization feature were most effective in the
following aspects:

Flexible interface: Allowing user-defined behavior in an operating svstem module
was possible by simply allowing user-defined objects to be passed as arguments
of a system-defined module which invokes some method of the argument object.
This provided more flexible application program interface. The SIMPOS I/0
subsystems benefited most by this function. The same advantage can be found
in the interface of different layers in the system hierarchy. For example, closing
open files and releasing locked semaphores on unexpected proeess termination are
effected by the same invocation of the same method, in the pracess management
module, of different objects.

Incremental extension: In many cases. addition of quite new features to SIMPOS
only required addition of some new classes to the svstem, even when such features
had not been taken into aceount when designing the part of the systen which may
mvoke some method of the newly added classes. The carlier versions of SIMPOS,
with less functionality and even with less hasic notions, were improved by simply
adding new classes realizing new notions without any modification of the existing
and functioning part of the system. For example, closing a network connection
on unexpected termination of a process s also effected by the same invocation of
the same method as closing of an open file in the process management module,
although such network connections were ot taken into account when the process
management scheme was designed.

4.4 Inheritance Mechanism

Tlie inheritance mechanism allows so-calied differential programming styles. where el
the differences with some other module need o be newly written and all the common
teatures of existing wodules wre reused. This echanizm has the following advantages:

]

Code size minimization: This has direct effect on the sizge of the program code. As
sharing of common features 15 easy, duplication of code can be minimized both n
source code and in object code. Usually, this advantage 1s maore effective when =
program becomes larger and more complicated.

Modularization: As EST allows mmluple superciasses of a class, it is quite easy to
define a new class by combining simple functions provided by predefined sim-
pler and possibly incomplete classes, This encourages fine-gramed modularization
providing smaller modules with simpler functions.

Program readability: As only the differences with some other class need to be de-
scribed, class definitions tend to be more compact. It also becomes possible to
mecrementally understand the svstem beginning with classes with simpler funec-
tionality and proceeding step by step to more complicated classes, concentrating
on differences with already understood funections.

The advantages of the inheritance mechanism was most effective in the fellowing
aspects:

Incremental enhancement: Addition of new lanctions to existing features was guite
easy by simply adding classes realizing only the newly introduced functions. A
class with desired functionality can be made by using both newly introduced
classes and already cxisting classes. This was advantageous because the develop-
ment effort and. more importantly. the debngeing effort could concentrate on the
newly imtroduced features.

Orthogonality in provided features: Bv the multiple inheritance feature of ESP,
a class i an application program can inhent several classes of SIMPOS mixing
various functions they provide for the required set of functions. Without this
feature, the operating svstem had had to prepare all the possibilities of suel
combinations, resnlting in a combinatarial explosion. This was most effective in
the windows svstem.

Flexible interface: The application programs can customize the features of S1IMPOS
by using predefined classes and redelining sone of the methods. This males
possible almost unlimited customization withent thorough rewriting. The sauwe
advantage. again, is utilized by the iterfuce hetween different lovers of SINMDPOS.
For exumple, many of the bitmap display windows for various tools provided by
Sl:lll'lljUS r{'quif'ﬁ'{l I.' ny (.'115[01113251[5”11 f{il'l' i 1}{"[[["'1'].llll]lq"]'l'l i'llrli""l"'r?'lf'-[“.

Ease in management: When soine closs required modification, the changes were an-
tomatically propagated to all the elasses inhenting them. This considerably facil-
itated development management

5 Single Language Principle

Advantages and disadvantages of using a single high-level programming language EST
throughout the description of the operating system and application programs are dis-
cnzsed in this section.

5.1 Conformity between Different Layers

In most implementations of high level languages (especially, non-procedural high-level
languages) on conventional operating systeius, some of the basic principles of the lan-
guage (memory management principles, for example) are guite different from that of
the eperating system. Thus, making the operating system functions directly available
to the user programs in the high-level language may be problematic in the language sys-
tem. To maintain consistency, language systems usually provide some lmited interface
with the operating syvstems. In such implementations, the application programs cannot
utilize the full functionality of the operating system.

To solve this problem, some language systems allow linkage with routines written in
other lower-level languages such as C or assembly languages. However, interfacing with
such lower-level languages requires knowledge of implementation details.

The same situation would obtain in interfacing different lavers of a single system if
thev were written in different languages.

There are of eourse no such problems in a single language system such as SIMPOS.

5.2 Open System

One of the most important advantages of using ESP for the deseription of SIMPOS was
that the svstemn could be quite open to the nsers. In conventional operating systews,
features of the operating system are only available as subroufmes. In SIMPOS, applica-
tion programs can utilize the features in a very flexible manner through the mbierdance
mechanism of ESP. This mechaniem was also used extensively for interfacing different
layers of ESP.

Adoption of this svstem organization cxtensively using the mheritance mechamsm
was only possible by using the same langnage in different layers, If, for example, lower
lavers were written in some lower-level languages such as C, the interface of that layer
and upper-level lavers would have been much more awlkward.

5.3 Efficiency

The language for a single language system must provide features high-level enough to
he able to deseribe highly complicated application progrims. However, usually the erie-
tenee of high-level features somewhat deecreases the execution efficiency of all programs
including those whichh do not acrually use such features. For cxample. in the case of
Prolog, whether variable bindings should be trailed or non must be chiecked our even

when the program runs determiuistically,

10

This efficiency penalty pays in programs where high-level features are actually cf-
fective. However, in a single language system, lower level layers wlhere such high-level
feaiures are not required at all also suffer from this overhead. This s where the moest
important drawback in using a single language throughout the system lies.

Some people were quite doubtful about SIMPOS implementation, because the lan-
guage adopted, ESP, was based on Prolog, which was reputed to be quite inefficient,
angmented with also reputedly-inefficient object-oriented features. 40 KLIPS for append
means that a simple loop requires 25 s, which is slower by one order of magnitude
than general purpose processors of the same scale. As il to corroborate these doulits,
displaying one character to a bitmap display window took a few scconds in one of the
earliest pilot versions of SIMI'OS, in the summer of 1984.

However, this effcicncy disadvantage was not actually so serious. Within only a few
months, various improverents in the data and algorithm design levels led to increasing
the program speed by more than two orders of magnitude (newly introduced frmware
support increascd speed about three times), and the system attained speeds snitable
for practical nsage. Considering the size and complexity of the windows system, the
timne required for this improvement was remarkably short. This was due in large part to
high modularity, cleanliness and fexibility of module interface, and case in development
management provided by the ESP language.

Tt is well understood that what governs the efficiency of a program is the adequacy
of high-level design in algorithms and data stroctures, rather than extent of low-level
hacking. As changes in the specificution of a program are unavoidable and usually the
way a program is used cannot be predicted precisely before it is run, it is practically
impossible to design the optimal algorithm heforehand, Whether or not the program
can he easily modified to meet ever changing needs is one of the greatest factors that
determine the efficiency of the final software product. Thus, a programming language
providing features which allow easier modifications finally provides higher execution
efficicucy, even if it is slow and requires a lot of memory for shmuple benchmark programs.

6 Conclusion

Various features of ESP were extensively used in implementing SIMPOS aud wany of
them were quite effective in many aspects. Considering the finctionality of the systew,
the time period required for the developuent was rather short compared with conven-
tional operating svstems. The strategy of using a very high-level single prograsmming
Tangnage throughout the system description and in application programs was one of the
most important reasons of this success.

The efficiency drawback of nsing a siugle high-level language seems to be somewhas
overestimated. The Hexibility provided by the higher-level fearures ix quite beneficial in
that large-scale revisions for efficiency improvement becomes much easier,

11

Acknowledgements

Katsuto Nakajuna helped the author in providing performauce figures of the current
and PSI-II imp]ﬁ‘.m{-‘.ntﬂﬁﬁnﬁ of ESP. Figures abont the size of the current version of
SIMPOS are by Hiroyeshi Ishibashi and aoru Yoshida

References

[1]

2]

(3]

(€]
[9]

T. Chikayama. Unique features of ESP. In Proceedings of FGCOS84, 1COT, 1984,

A. Colmerauer, H. INanoui, and M. Van Caneghem. Last steps towards an ultimate

Prolog. In R. Schank, editor, Proceedings of IJCAI-81, IJCAI 1981,

K. Mukai. Horn Clause Logic wnth Paromeierized Types for Situetion Scmantfics
Pragrammang. 1C0OT Technical Report TR-101, ICOT, 1985,

S. Takagi et al. Overall design of SIMPQOS. In Proceedings of the Second Interna-
tional Conference on Logic Programmang, Uppsala, 1884,

K. Taki et al. Hardware design and implementation of the personal sequential

inference machine (PSI}. In Proceedings of FGCS'84, ICOT, 1984
M. Van Caneghem. PROLOG II Manuel D 'Utilisation, Groupe Intelligence Artifi-

ciclle, Faculté des Sciences de Luminy. Marseille. 1982,

D. H. D. Warren. An Abstraci Prolog Instruction Set. Techuical Notwe 309, SRI

International, 1983,
D, Weinreb and D. Moon. Lisp Mochine Manwel, 4th edifion. Svmbolics, [nc., 1981,

M. Yokota, A, Yamamoto, I Taki, H. Nishikaws, and 5. Uchida, The Design and
Implementation of a Personal Sequentral Inference Machine: PSI ICOT Technical
Report TR-045, ICOT. 1834, Also in New Generation Computing. Vol.l Ne 2, 10934,

