ICOT Technical Report: TR-279

TR-279

Analyzing Success Patterns of Logic Programs
by Abstract Hybrid luterpretation

by
T. Kanamori and T. Kawamura {Mitsubishi)

June, 1987

1987, ICOT

Mita hokusair Hldg, 21F N3 456=3191~5

“ :C) I 4-2% Mita 1-Chome Telex ICOT J37964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Analyzing Success Patterns of Logic Programs
by Abstract Hybrid Interpretation

Tadashi KANAMORI Tadashi KAWAMURA

Mitsubizhi Electric Corporation
Central Research Laboratory
Tsukaguchi-Honmachi 8-1-1

Amagasaki, Hyogo, JAPAN G0l

Abstract

This paper presents a unified framework for analyzing success patterns of Prolog pro-
grams by abstract interpretation. The framework is based on OLDT resolution by Tamaki
and Sato, a hybrid of the top-down and the bottom-up interpretations of Prolog programs.
By directly abstracting the hybrid interpretation according to various abstracted domains, we
can obtain various supersets of the goal patterns at calling time and exiting time without ei-
ther diving into infinite looping or wasting time for irrelevant goal patterns. Depth-abstracted
pattern enumeration, type inference and mode analysis are exemplified as analysis of success
patterns when different abstracted domains are employed. A general framewark for analysis
of success patterns is shown as well with the necessary conditions of the approximation.

Keywords : Program Analysis, Abstract Interpretation, Prolog.

Contents

1. Introduction
2. Standard Hybrid Luterpretation of Logic Frograms
2.1 Basic Hybrid Interpretation of Logic Programs
2.2 Modified Hybrid Interpretation of Logic Programs
3. Analysis of Success Patterns
4. Depth-abstracted Pattern Enumeration by Abstract Hybrid Interpretation
4.1 Depth-abstracted Pattern Enumeration
4.2 Abstract Hybrid Iuterpretation for Depth-abstracted Pattern Enumeration
4.2 Correctness of the Depth-abstracted Pattern Enumeration
5. Type Inference by Abatract Hybrid Iuterpretation
5.1 Type Inference
5.2 Ahstarct Hybrid Interpretation for Type Inference
5.3 Correctness of the Type Iuference
G. Mode Analysis by Abstract Hybrid Interpretation
6.1 Mode Aualysis
6.2 Abstract Hybrid Interpretation for Mode Analysis
G.3 Correctness of the Mode Analysis
7. A General Framework for Analysis of Success Patterns
7.1 Finite Approximation of Atom Sets
7.2 Abstract Hybrid Interpretation for Analysiz of Success Patterns
7.3 Correctness of the Analysis of Success Patterns
8. Discussion
9. Conclusions
Ackvowledgements
References

1. Introduction

Automatic analysis of program properties is useful not ouly for buman programmers to
find program bugs but also for meta-processing systems to manipulate programs effectively.
For example, the information of the form of goals appearing in the successfull execution
can eliminate unnecessary backtracking from Prolog execution [12]. The information of
data types sometimes plays an important role in verification of Prolog programs [6]. The
information of modes provides the Prolog compiler with a chance to generate optimized codes
[10]. Besides these properties, the functionality {or determinacy) and the termination are of
special importance [7].[3],(8].

It has been known that many seemingly different methods for analyzing the properties
of conventional programs can be accommodated into a single framework called abstract
interpretation [1][2]. The abstract interpretation is an interpretation of programs in an
abstracted domain (rather than the actual staudard domain) such that the results of the
interpretation in the abstract domain give :ome useful information about the interpretation
iu the actual standard domain due to the correspondence between the standard and abstract
domains. Recently, Mellish [11] proposed a framework for abstract interpretation of Prolog
programs iu order to give a theoretical foundation to his practical technieques for analyzing
determinacy. modes and shared structures [6]. His approach derives simultaneous recurrence
equations for the sets of Foals at calling time and exiting time during the top-down execution
of a given top-level goal, and obtains a superset of the least solution of the simultaneous
recurrence equations using a bottom-up approximation, The reason of the separation of
simulating the top-down execution aud solving by the bottom-np approximation is two-fold.
Oue is that, by simulating the top-down execution, we can focus on just the goals relevant
to the top-level goal. Other is that, by solving by the bottom-up approximation, we ean
obtain solutions without diving inte infinite looping. Ou the other hand, Tamaki and Sato
[13] proposed a new method for interpreting Prolog programs, a hybrid of the top-dowu aud
the hottom-up interpretations. Their hybrid interpretation method ean compute solutions
of a given top-level goal withont either diving into infinite looping {unlike the usual top-
down interprétation) or wasting time for goals irrelevant to the top-level goal (unlike the
usual bottom-up interpretation), so that it is suitable for a standard interpretation model
underlying abstract interpretation more directly withomt the separation of simulating the
top-level execution and solving by the hottom-up approximation.

Thiz paper presents a unified framework for analyzing success patterns of Prulog pro-
grams hy abstract interpretation. The framework is based on OLDT resolution by Tamaki
aud Sato [13]. By directly abstracting the Lybrid interpretation according to varions ab-
stracted domaims. we can obtain variens supersets of the goal patterns at calling time and
exiting fune without either diving into infinite looping or wasting time for irrelevant zoal
patterns, Depth-abstracted pattery eunmeration, type iference and mode apalysis are ex-
emplified as aualysis of success patterns when different alistracted domains are empioved.
A general framework for analysis of success patterns is shown as well with the necessary
conditions of the approximation,

First. we will show the basic hybrid interpretation metbod and its implementation in
Section 2. Next, we will give a formulation of “avalysis of success patterns™ in Sertion 3.
Then. after examining “depth-abstracted pattern enumeration” as an introductory exanple
in Section 4, we will show how the approack is generalized for “type inference” and “mode

1

analysis™ in Section 5 and Section 6. Last, we will present a general framework for the
analysis of snccess patterns by abstract hybrid interpretation in Section 7.

I the following, we assume familiarity with the basic terminologies of first order logic
such as term, atom, definite clause, negative clause, substitution, most general unifier (m.gu.)
and so0 on. We follow the syntax of DEC-10 Prolog. Negative clauszes and sequences of atoms
arc often used interchangeably. As syntactical vanables, we use X, Y, Z for variables, a, ¢
for terms and A, B for atoms, possibly with primes and subscripts. In addition, we use t[Z]
for a term containing some occurence of variable Z, and 4, o, 7, n for substitutions.

2. Standard Hybrid Interpretation of Logic Programs

In this scction, we will first present a baeie hybrid interpretation method of Prolog
programs [13], then a modified hybrid interpretation method suitable for the basis of the
abstract interpretation presented later.

2.1 Basie Hybrid Interpretation of Logic Programs
(1) Search Tree

A search tree is a tree with its nodes labelled with negative or null clauses, and with its
edges labelled with substitutions. A search tree of negative clause G is a scarch tree whose
raot node is labelled with G. The relation between a node and its child nodes in a search tree
is specified in varions ways depending on varicus strategies of “resolution”. In this paper,
the class of “ordered linear™ strategies is assumed. (See the explanatious of OLDT resolution
in the following subsection (4], aud of OLD resolution in Section 3.)

A refutation of nezative clause G is a path in a search tree of @ from the root to a node
labelled with the null clause 0. Let #1,85....,8; be the labels of the edges on the path.
Then. the answer substitution of the refutation is the composzed substitution r = 8,8, --- 8,
and the selution of the refutation is Gr.

Consider a path in a search tree from one node to another node. Intwtively, when
the leftmost atom of the starting node’s label is refuted just at the ending node. the path is
called a unit subrefutation of the atom. More formally, let G, Gy, ... Gg be a sequence of

iabels of the nodes and fy. a2, ..., f¢ be the labels of the edges on the path. The path is
ealled 2 unit subrefutation of atom A when Gy, G, G2, ..., Ge—1, Gp are of the form
“A.G7,
i-.,-T.F]_. f:ﬁ]_- .

"Ha G0 847,

“Hy . G0, cee "

Gy, .. 8T,
respectively, where @, Hy, Ha, ... Hiy_ | are sequences of atoms. Then, the answer substitu-
tion of the unit subrefutation is the composed substitution 7 = ;03 --- f, and the solution
of the unit subrefutaion 1= Ar.

(2) Solution Table

A solution table iz a sot of entrics Each entry is a patr of the key and the selution lisf.
The key is au atom such that there is uo other identical key (modulo renaming of variables)

2

in the solution table. The solution list is a list of atoms, called solutions. such that each
zolution in it is an instance of the corresponding key.

(3) Association

Let Tr be a zearch tree whose nodes labelled with nop-null clavses are classified into
either solution nodes or lookup nodes, and let Th be a solution table. {The solution nodes
and lookup nodes are explained later.) An association of Tr and T is a set of pointers
pointing from each lookup node in Tr into some solution list in Th such that the leftmost
atom of the lockup node’s label and the key of the solution list are variants of each other,

Example 2.1.1 An association of a search tree of “reach(a,¥p)” and a solution table is
depicted in the figure below. The underline denotes the lookup node, and the dotted line
denotes the association from the lockup nede.

reach(a, Yy}
<Yo=¥ 3/ Ve Ype=ax>
- rewh{a,zl},cdgg{zhj’}l O
Jll "'-':Z]_ 4=I:I-:-5]
Ir' edeze{a,Y;)
' <Y =bi>/f A\ =e>
[D O

reach(a.Y) : [I‘faf]::l[ﬁ.ﬁ.]?reach{a.h}.rtach[mc]l]
edge(a,Y) : [edge(a,b)edge(ac)]

Figure 2.1.1 Search Tree, Solution Table and Association

{4) OLDT Structure

The hybrid Prolog interpreter is modeled by OLDT resolution. An OLDT structure of
negative clause (7 is a triple (Tr. Th. As) satisfying the following conditions:

(a) T'ris asearch tree of G. The relation hetween a node aud its child nodes in a search tree
15 specified by the following OLDT resolution. Each node of the search tree lahelled
with non-mull clanse is claszified iuto either a solution node or a fvokup node,

(b)Y This a solution rable,

(¢) Asis an association of Tr and Th. The tail of the solution list pointed from a loakup
noede iz called the associated solution list of the lookup node.

Let 7 be a negative clauze of the form “A4; A5, A" [= 1). A node of OLDT
structure (T'r. Th, As) labelled with negative clanse @ is said to be OLDT resolvable when it
eatisfies either of the fallowing couditions:

{a) The node is a terminal solution node of Tr, aud there is some definite clause “By -

By, B;.....B," (m > 0} in program P such that 4, and [T, are unifiable, say by

an megau. §. (Withont loss of generality, we assume that the m.g.u. § substitutes a

term consisting of fresh variables for every variahle in A; aud the definite clanze.) The

negative clause (or possibly null clanse} *B, 4, Bof, ... B8, Asf, . . Anf” is called
the OLDT resolvent.

(b} The node is a lockup node of Tr. and there is some solution Or in the associated
salution list of the lookup node such that Dr is an instance of A, say by an instantiation

#. (Again, we assume that the instautintion § substitutes a term consisting of fresh

variables for every variable in A;, that is, a fresh variant of Br is an instance of A by

3

#.) The negative clanse (or possibly null clanse) “Aaf, ... A, 8 is called the OLDT
resolvent.

The restriction of the substitution & to the variables of A; i= called the substitution of the
OLDT rescolution.

The initial OLDT structure of negative clanse (7 is the triple {Trg. Thy. Asg). where

Try iz a search tree consisting of just the root solution node labelled with & Thy iz the
solution table consisting of just one entry whosze key iz the leftmost atom of & and solution
list is the empty list, and Asg is the empty =et of pointers.

An immediate extension of OLDT structure (Tr,Th Ae) in program P iz the result of

the following operations, when a node v of OLDT structure (Tr, T, As) i2 OLDT resolvahle.

(a)

(b)

When v is a terminal solution node, let &, Ca,...,C¢ (k = 0} be all the clauses with
wlich the node v 12 OLDT resolvable, and &y, (72, ..., Gx be the respective OLDT
resolvents. Then add k child nodes of v labelled with &'y, Ga,...,Gg. to v. The edzge
from v to the node labelled with &7 12 labelled with 8, where &; 1= the substitution of the
OLDT resolution with ;. When v iz a lockup node, let By, Bare, ... Ben (k= 0) be
all the solutions with which the node v is OLDT resolvable, and 73, G, F be the
respective OLDT resolventz. Then add & child nodes of v labelled with &1, Ga, ..., Gy,
ta v. The edge from v to the node labelled with G, iz labelled with #;, where #; is the
substitution of the OLDT resclution with Byr,. A new nede labelled with a nop-null
clanze iz a lookup node when the leftmost atom of the new negative clauvse iz a variant
of some key in Th, and 1= a solution node atherwize.

Replace the pointer from the OLDT resolved lookup node with the oue poluting to the
last of the associated solution list. Add a pointer from the new lookup node to the
head of the solution list of the corresponding key.

When a new pode is a solution node, add a vew entry whose key Is the leftmost atom
of the label of the new node and whose solution list iz the empty list, When a new
node is & lockup node. add no new entry. Far each unit subrefutation of atom A [if
any) smrﬁng from a solution node and t-'nr]iug with some of the new nodes, add its
solution Ar to the last of the solution list of A in T, if Ar is not in the solution list,
An OLDT structure (Tr'. TH. 44"} iz an extensiom of OLDT structure (Tr. T Az)

i (Tr'.TH, As") 1= obtained from [(Tr, Th, Aa) thromgh successive application of immediate
extensions,

Example 2.1.2 Congsider the following “graph reachability” program by Tamaki and Sato [13].

reach(X.Y) :- reach(X.Z). edee(Z.Y).
vench| 3.

edge(a.b).

edee(a.c).

edoelb.al.

edzelb.d}).

Then. the ybrid interpretation generates the following OLDT structures of “reach(a, ¥y)".

First. the imitial OLDT structure helow is generated. The root node of the search tree

i# a zolution node, The solution table contains only one entry with its key reach(a,Y) and
its solution list |

reach{a,Yao)
reach{a.Y): | !

Figure 2.1.2 Basic Hybrid Interpretation at Step 1

4

Secondly, the root node “reach(a, ¥5)" is OLDT resolved using the program to generate

two child nodes. The generated left child node 15 a lockup node, because its leftmost atom

is a variant of the key in the solution table. The association associates the lockup node to
The generated right child node is the end of

the head of the solution list of reach{a, Y]
a unit subrefutation of reach{a,¥y). Its solution reach{n, e) is added to the solution list of

reach(a,Y).
reach(a,Yq)
<Yoe=Y, >/ \(Yof—-‘d}

rearh(a. 2).edge(Z;.Y,)]

e

reach(a,Y) : rt't'a.ch[a,a}}
Figure 2.1.3 Basic Hybrid Interpretation at Step 2

Thirdly, the lookup node is OLDT resclved using the zolution table to renerate one
child solution node. The association associates the lookup node to the last of the sclution

list.

reach(a,¥y)
/ A\
--reach(a.Z;).edge(Z,,Y,) O
r'II ":31 =0> |.
edge(a,Yy)

i
:
¥
reach{a.Y) : [reach(a.a)]
edge(a,Y) : []

Figure 2.1.4 Basic Hybrid Interpretation at Step 3

Fourthly, the generated sclution node is OLDT resolved further using the program to
generate two new nodes labelled with the null clauses. These two nodes add two solutions
reach(a,b) and reach(a, e} to the last of the zolution list of reach(a,¥), and two solutious

edge(a,b) and edge(a,e) to the last of the solution list of edge(a,Y).

reach(a,Yp)
! Ay
- reach(a, 2),edge(21,Y;) |
‘ |
{ edge{a,Y,)
<Y, =h>/ Vel =
] (]

[

reach{a.Y) : [reach(a.a) reach{a.b} reachiac)]
edge{a,Y) : [edge(a.b),edge(ac)]
Figure 2.1.5 Basic Hybrid Interpretation at Step 4
Fiftlhly, the lookup node is OLDT resolved using the sclution table, since new solutions
were added to the solution list of reach(a,¥).
5

reach(a,Yy)

/ \
__-=--reach(a,Z;).edze(Z;.Y;) |
ol / I<Z,+=b> \<Zy<e>
rr’ edge{a,Y,) edze(b,Yy) edge(c,Y)
oo \
1\.\19 !3

i T LT L T ———

reach(a,Y) : [reach(a,a).reach{ab) reach{a.c)]
edge(a,Y) : [edge(a,b),edge(a.c)]

edge(b,Y) : []

edgele,Y) 1 []

Figure 2.1.6 Basic Hybrid Interpretation at Step 5

Sixthly, the left new solution node “edge(b, ¥1)” is OLDT resolved, and one new solution
reach(a,d) iz added to the salution list of reach(a,Y).

reach(a,Yyg)
/ A
.. --reach{a,Z)).edge(2,.Y,) O
R [<Zi \<Z,=c>
;‘.— edge(a,Y,) edee(b,Y,) edze(c.Y;)
I:" ! "'L'C'.'I"|<=[I:?.|Ir \{Y],’CZEI}
O o o O

i
-
T e e o — o ——

reach{a,Y) : [reacha.a).reach(ah) ,rfath{a.cT.rearh{a,d]]
edge(n.Y) : [edge(a,b).edge(ac)]

edge(h,Y) : ledae(b.a)edge(b.d)!

edge(c, Y} : |]

Figure 2.1.7 Basic Hybrid Interpretation at Step 6

Lastly. the lockup node is OLDT resolved once more using the solution table, and the
extension process stops, becanse the solution nodes labelled with edge(c, Y;) and edgel(d, ¥y)

are not OLDT resalvable.

reachia,Yy)

! A\

_e=-reach{a.Zy) edge(Z,.Y;)]
- f T A \<Zy«=d>

o edge(aY1) edee(bY)) edge(e,Y;) edge(d,Y;)
(o \ / \

reach({a,Y) : [reach(a.a).reach(a.b).reach(a.c).reach{a,d)]
edge(a.Y) : [edze(ab)edge(ac))

edge(L.Y) : [edge(b.a).edge(b.d)]

edge(eY) :]]

edge(d.Y) : []

Figure 2.1.8 Basic Hybrid Interpretation at Step 7

G

Though all solutions were found under the depth-first from-leflt-to-right extension strategy in
this example, the strategy is not complete in general. The reason of the incompleteness is two-
fold. One is that there might be generated infinitely many different solution nodes. Another
is that some lookup vode might geuerate infinitely many child nodes so that extensions at
other nodes right to the lookup node might be mhibited forever.

(5) Soundness and Completenessz of OLDT Resolution

Let (7 be a negative clause. An OLDT refutation of ¢ in program P iz a refutation
inn the search tree of some extension of OLDT structure of G. The answer substitufion of
the OLDT refutation and the solution of the OLDT refutation are defined in the same way
as before. It is a basis of the abstract interpretation in this paper that OLDT resolution
is sound and complete. (Do not confuse the completeness of the general OLDT resalution
with the incompleteness of the one under a specific extension strategy, e.g., the depth-frst
from-left-to-right strayegy.)

Theorem 2.1 (Soundness and Completeness of OLDT Resolution)

Il Gr is a solution of an OLDT refutation of G in P, its universal closure VX; X5 -+ X,
Gr iz a logical consequence of P.

If a universal closure ¥¥, ¥z -+ ¥V, Go 12 a logical cousequence of P, there is Gr which
1= a =olution of an OLDT refutation of & in P and (7o it an instance of o,

Proof. Though our hybrid interpretation is different from the original OLDT resolution by
Tamaki and Sato [13] in two respects (see Section 8), these differences do not affect the proof
of the soundness and the completeness. See Tamaki and Sate [13] pp.93-94.

2.2 Modified Hybrid Interpretation of Logic Programs

In arder to make the conceptual presentation of the hybrid interpretation simpler, we
have not considered the details of how it is implemented. In particular, it is not obvious in
the *immediate extension of OLDT structure”

{a) how we can know whether a new node is the end of a unit subrefutation starting from

some solution node, and

(b) how we can obtain the solution of the unit subrefutation cficiently if any.
It is an easy solufion to insert a special call-exit marker [A;, 6] between Dy, Baf, ..., B, 8
and A=f. ..., A0 when a solution node is OLDT resolved using an m.g.u. #, and cbtain the
unit subrefutation of A; and its solution A;r when the leftmost of 2 new OLDT resolvent
1= the special call-exit marker [A;. 7], DBut, we will uze the following modified framework.
(Though such redefinition might be confnsing, it 1= a httle difficult to grasp the intuitive
meaning of the modified framework without the explanation iu Section 2.1.)

A search tree of OLDT structure in the modified framework is a tree with its nodes
labelled with a prir of a (generalized] negative clause and a substitution. {We have said
“generalized”, because it might contain von-atoms, Le., call-exit markers. The edges are not
labelled with substitutions any more.) A search tree of (7, o) 15 a serach tree whose root
wode is labelled with (G). The clause part of each label s a sequence “ay, aa, ..., a,”
consigting of either atoms i the body of the clavses in P U {G} or call-cxit markers of the
form [A, 7'}, A refutation of (,) i= & path in a scarch tree of (7, 2) from the root to a
node labelled with {O.r). The answer substitution of the refutation is the substitution r,
and the solution of the refutation 1= 7r. A solution tahle and an association are defined in
the zame way az before,

An OLDT structure iz a triple of a search tree, a solution table and an association, The
relation between a node and its child nodes in search trees of OLDT structures is specified
by the following maodified OLDT resolution.

A pode of OLDT structure {Tr, Th, As) labelled with (“a;.aq,....2,".) is =aid to be
OLDT resolvable when it satisfies either of the following conditions:

(a) The node is a terminal solution node of Tr, and there is some definite clause “By -
By.B3....,Bn" (m 2 0) in program P such that a;e and By are unifiable, say Ly an
m.gau. f.

(b} The node is a lookup node of T'r, and there is some solution Br in the associated
solution list of the lookup node such that (a fresh variant of) Br is an instance of a; o,
say by an imstantiation #.

The OLDT resolvent is obtained through the following two phases, called calling plrase
and exiting phase siuce they correspond to a “Call” (or “Redo™) line and an “Exit” line in
the messages of the conventional DEC10 Prolog tracer. A call-exit marker is inserted in the
calling phase when a node is OLDT resolved using the program, while no call-exit marker
is generated when a node is OLDT resolved using the =olution table, When there is a call-
exit marker at the leftmost of the clause part in the exiting phase, it means that some unit
subrefutation is obtained.

(a} {Calling Phase) When a node labelled with (“xy,e2,...,0,", o} is OLDT resolved,
the intermediate label is generated as follows:

a-1. When the node is OLDT resolved using a definite clanse “By - By, Da,. .. BT
in program P and an m.g.u. #, the intermediate clause part is “By,Bq,... By,
ler.e]. az.....a,", and the intermediate substitution part 1y is 0.

When the node is OLDT resolved using a solution Br in the salution table and an

instantiation @, the intermediate clanse part is “a,, ..., a,”, and the intermediate

subatitution part r iz of.

(b} (Exiting Phase) When there are k call-cxit markers [A1,o1). [A2, 000, ..., [Ax,oL] at
the leftmost of the intermediate clanse part, the Jabel of the new node is generated as
follows:

b-1. The clanse part is obtained by elimivating all these call-exit markers. The sub-
stitution part i= og - 020, 1.

h-2. Add A,o,7, Azoaey 7y, ..., Apeg -+ 0170 to the last of the solution lists of Ay,
Azera, ..., Apog, respectively, if they are not in the solution lists.

L3~

The precise algorithm is shown in Figure 2.2.1. The processing at the calling phase is
performed m the first case statement, while that of the exiting phase is performed in the
second while statement successively,

Note that, when a node is labelled with (G, o), the substitution part ¢ always shows
the iustantintion of atoms to the left of the leftmost eall-exit marker in . When there is
a call-exit marker [A; o] ar the leftinest of clanse part in the exiting phase, we need to
update the substitution part by composing o jn order that the property above =till holds
after climinating the call-exit marker. The sequence 1y, 75, ..., 7 denotes the sequence of
updated substitutions. In addition, when we pass a call-exit marker {A;.o;] in the while
loop above with substitution r;, the atom A, r; denotes the solution of the unit subrefutation
of A;0;. The solution 4;7; is added to the solution list of Ajims.

B

A node labelled with ("ay. mq..... 8.7, #) i¢ a lookup node when a variant of atom
a7 already exists as a key in the solution table, and is a solution node otherwise (n > 1)

OLDT-resolve((“a;, oz, ..., 2,7, o) label] : label :
1= 0
case
when a solution node 12 OLDT resolved with “By - By, Bs, ..., B, " P
let § be the m.gu. of ;o and By .
let g be a negative clanse “Iy By, ... By, lo 0], az, ... 0,7
let rp be the substitution # ; — (A}
when a lookup vode is OLDT resolved with “Br™ in Th
let # be the instantiation of aye to (a fresh variant of) Br:

let Gy be a negative caluse “oa, . a7
let ry be the composed substitution of ; — (I}
endcase

while the leftmost of 7 is a call-exit marker [4,41.0,4.] do
let ;2 be G; other thau the leftmost call-exit marker ;
let Tit1 be [-FER R [G}
add A;ppripr to the last of A, 4100507 solution list if it is not in it ;
1i=141;
endwhile
(CrewOnew) i= I:G'.-,r.-] '
return (Gnew. Trew)

Figure 2.2.1 Modified Hybrid Interpretation

The initial OLDT structure of (G) is a triple (Trg. Ty, Asg). where T'rg is a search
tree of & consisting of just the root solution node lahelled with (&,), Thy i= a solution tahle
consisting of just ene entry whose key is the leftmost atom of ¢ and solution list is [. and
Aszg 12 the empty 2ot of pointers. The fmmediate extension of OLDT structure, extension of
OLDT structure. answer subatitution of OLDT refutation and solution of OLDT refutation
arc defined e the same way as before.

Example 2.2 Consider the example in Section 2.1 again, The modified hybrid interpretation
cenerates the following OLDT stractures of reach(a. Yy).

Fivst, the initial OLDT structure below is generated. Now, the root node is labelled
with [“reach{a. Y] .<>).

reachia,Yn)
<>

reach(aY) : []
Figure 2.2.2 Modified Hybrid Interpretation at Step 1

Secoudly. the root node (“reach{a,¥y)” <>) is OLDT resolved using the program to
renerate two child nodes. The intermediate label of the left child node is

{(*reach(Xy, Z1), edge(Z1. Vi) freachia, Yo), <> |7, <« Yo=V, X1 =a>).
It i2 the new label immediately, sinee its leftmost s not a call-exit marker. The intermediate
lalel of the right child node is

(“freach{a.Yy), <> |, <Yp=a Xy =a>).
By eliminating the leftmost call-exit marker and composing the substitution, the new label
is (0.< Yp = a. X; <=a>). (When the clause part of the label is O, we will omit the
assignaents irrelevant to the top-level goal in the following figures, e.g., < X; += a >.)
During the elimination of the call-exit marker, reachia, a) iz added to the solution talile.

reach(a,¥a)
<>
/ \
.-reach({Xy,Zy).edge(Z,.Yy). [reackia,Yo).<> | w}
. <Yp<=V, Xi=a> <Yye=a>

N
reach({a,Y) : [reach(aa)]
Figure 2.2.3 Modified Hybrid Interpretation at Step 2

Thirdly, the left lookup node is OLDT resolved using the solution table to generate
one child solution node.

reach(a,Yq)
<>
/ A
o~ reachi(Xy.Z,) edge(Zy,Yy), [reach(a.Yo),<> | 0
| <Ype=Y, X, «a> ' <Vy=a>

A
s |
S edgelZ Y) | reachia Yo} <> }
S -e::Ync:Y,.}I,#ﬂ‘E]#G}

]
-
——

reachi{a.Y) : [n‘ﬂ":]-l{ﬂﬁ;}
edge(aY) : []

Figure 2.2.4 Modified Hybrid Interpretation at Step 3

Fourthly. the generated solution node is OLDT resolved nsing a unit clause “edge(a,b)”
in program I' to generate the intermediate labe]

(“ledgelZ,. V1) <Yo=Y. Xi+=a. Z1+a>] [reach{a, Vo), <>], <Y1).
By climinating the leftmost call-exit markers and composing substitutions, the new lahel ia
(O <Yye=b.Xye=a, £y« aY,<«). During the elimination of the call-exit markors,
edge{a. b) and reaeh(a, §) are added to the solution table.

Similarly, the node is OLDT rezolved using a unit clause “edge(a,c)” in program P to
generate the intermediate label

{“fedge(Z,. 7)) < Yo=Y, Xy=0a, Z)&=a>], [reach(a, V), <> |7, <V «c>)
By eliminating the leftmost eall-exit markers and composing substitutions similarly, the new
lahel i= (O, < Yo =e Xy 4=na. Z;+=a. V) <=c>). This time, edge(a, b) and reach(a,b) are
added to the sclution table during the climination of the call-exit markers.
The process of extension proceeds similarly to obtain all the soluticus as in Example 2.1.2.

Remark, Note that we no longer need to keep the edges and the non-terminal solution nodes
of search trees, In addition, we can throw away assienments in # for the variables in Br at
step (B). and those in 7 for variahles not in A;p iy at step (C) in Figure 2.2.1,

10

reachiia Yg)

<>
/ \
~reach(Xy.2y),edge(2;.Y1), [reach(a,Yo) <> 1]
: ;‘;Yu":?;_,}:1‘=ﬂ}) <Yp=a>
\ |
N Edgt(zl-Yl} [Narii{a,Yﬂ],{}]
\\\ {Yu"-EY:.‘xleﬂ.,z]"::ﬂ:’
\ / \
T o O
o <Yaeth> <Yp=c>

reach(a,Y) : [rfarh{a.;irea,th{a.b}meach[a.:]I]
edge(a,Y) : [edge(a,b)edgelac)]

Figure 2.2.5 Modified Hybrid Interpretation at Step 4
3. Analysis of Success Patterns

Let G be a set of negative clanses to be given as top-level goals, and G be a negative
clause in G. Suppose that A is the leftmost atom of a negative clause appearing in some
top-down execution of G. Then, of what form is A7 And, of what form isn't AT Similarly,
of what form is its solution Ar? Can we say that, if A is not an atom in some clazs of atoms,
it never occurs at the leftmost in any successfull exceution of G7

Let us formalize the top-down execution first. The top-down Prolog interpreter is mod-
eled by OLD resolntion. The OLD resolution is defined using just search trees, called OLD
trevs. (Becanse there is neither a solutiou table nor an association, we have no distinction
of solution nodes aud lockup nodes. All nodes are solution nodes.) The relation between a
node and its child nodes in OLD trees is specified in the same way as the OLDT resolution
in Section 2.1. except that we have no resolution using lookup nodes and solution tables,
hence no manipulation of solution talie and association.

An atom A appearing at the leftmost of the label of & nede in some OLD tree of (7 is
called calling pattern at local success of G. Note that any calling pattern at local success of
(1 iz an iustanee of some atom in the body of a clause in P U {G}. Each calling pattern at
local success corresponds to some key in the solution table of OLDT structure.

An atom A appearing at the leftmost of the label of a node in some OLD refutation
of @ iz called ealling pattern at global success of . Note that any calling pattern at global
success of & ig a calling pattern at local success, but not vice versa, because the patterns
appearing at calling time, which are cancelled by backtracking without leading to global
success, are not considered ealling patterns at global success.

A solution Ar of a subrefutation in an OLD tree of 7 is called an exiting pattern at
local success of G. Note that any exiting pattern at local success of & is also an instance
of some atom in the body of a clause in P U {G}. Each exiting pattern at local snccess
corresponds to some element in the golution lists of OLDT structure.

A zolution Ar of a subrefutation in an OLD refutation of 7 is called an exiting pattern
at global success of G. Note that any exiting pattern st global success of & 15 an exiting
pattern at local sucress, but not viee versa, hecause of the same reason as calliog patterns,

11

Let Crocat{G . Cototai{G), &rocailG), Eprobar (G} be the sets defined for the extensions
of the initial OLD tree of G in G as follows:
Ciocat| G 1 the set of all calling patterns at local snccess of & in G,
Cotabat(G) : the set of all ealling patterns at global success of @ in G,
Eiocat(G) ¢ the set of all exiting patterns at local suceess of & in G,
Eptobat(G) ¢ the set of all exiting patterns at global success of G in G.
The analysis of success patterns w.rt. G is the problem to compute
{a) some superset of Crocat{G).
(b) some superset of Cpraat{ Gl
(c) some superset of &oca(G), and
(d) some superset of Eyopar(G).

In general, there might exist infinite number of calling patterns and exiting patterns
go that we can't enumerate Cia..ilG), Coabat(G), fioeat(G) or E‘,;bhg{ﬂ] exactly 1o finite
stepe. In order to obtain appropriate supersets in finite steps, we need some approximation.
Moreover, since what we would like to compute is supersets of the sets of calling patterns
and exiting patterns, we uweed to overestimate them somehow, In Section 4, we prezent a
methad far depth-abstracted pattern enumeration as an introductory example of the analysis
of success patterns.

4. Depth-abstracted Pattern Enumeration by Abstract Hybrid Interpretation

Suppose that a top-level goal 1= executed with its some arguments instantiated to terms
of specific form. Then, how can we know of what form the arguments of the goals are, when
they are invoked (or they succeed) duriug the top-down execution of the top-level goal? In
particular, can we say that some predicate is always invoked (or succeeds) with its argument
instautiated to some mstance of a specific term?

In this section, we will reformulate the work by Sato and Tamaki [12] from the point
of view in Section 2.2,

4.1 Depth-abstracted Pattern Enumeration

The depth of term t is defined a= follows:
{a}) When ¢ iz a variable, the depth of ¢ 15 0.
(b} When £ iz a constant ¢, the depth of £ 15 0.
(¢} When ¢ is a termn of the form f(f;.22,...,t,), the depth of ¢ is the maximum of the
depthis of ty. &3, ..., ta, phas 1,
A depth d abstracted term is a term whose depth is at most d, and denotes the set of all
its instances. Note that the set of all depth d abstracted terms is finite for any given d,
because program P s a finite list of definite clauses, hence there are only finite function
symbols. A depth-abstracted term @ iz =aid to be smaller than a depth-abstracted term ¢
w.r.t. the mstantiation ordering if and only if ¢ is an justance of &, and denoted by 2 < ¢ A
depth-abstracted term & is said to be smaller than a depth-abatracted term ¢ w.r.t. the sct
inclusion ordering if and only if the sct of terms a denotes is a subset of that ¢ does, and
denoted by & € ¢. (Though the instantiation ordering is just the reverse of the set inclusion
ordering liere, the coincidence s not always the case. See mode anlysis in Section 6.)

A depth d abstracted substitution i# an expression of the form
‘:Xl ‘==E_l_1 xﬂ 4=\t_2! vaw !XJ":B}'

12

where ty.ta...., 4 are depth 4 abstracted terms. The depth d abstracted term assigued to
varialile X by depth d abstracted substitution g is denoted by p{ X).

Let A be an atom in the body of some clause in PU{G} and p be a depth d abstracted
substitution of the form

< X, ﬂ=ﬂ.Xg¢=l_g,...,Xgﬂ£_;}.
Then Ap is called a depth-abstracted atom, and denotes the set of all atoms obtained by
replacing each X in A with a term in ¢, A list of depth-abstracted atoms [A;p;, Aspg, .,
A"pn] denotes the zet union U?:lAI'F'l" Similarly, p {nr the pair {{,’,p]} 15 called a depth-
abstracted negative clause, and denotes the set of negative clanses obtained by replaciug each
Xi in G with a term in t;. When & is of the form “4;, A2, ..., A7, the depth-abstracted
atom Appis called the leftmost depth-abstracted atom of Gp.

The depth-abstracted pattern enumeration w.rt. Gp is the problem to compute
{a) some list of depth-abstracted atoms which is a superzet of Cipeai Gpe).
{b) some list of depth-abstracted atoms which iz a superset of Cpgpar(&),
(c} some list of depth-abstracted atoms which is a superset of &, (G u), and
{d) some list of depth-abstracted atoms which is a superset of £00(Gp).

4.2 Abstract Hybrid Interpretation for Depth-abstracted Pattern Enumeration
4.2.1 OLDT Structure for Depth-abstracted Pattern Enumeration

A search tree for depth-abstracted pattern eoumeration is a tree with its nodes la-
belled with a pair of a (reneralized) negative clanse and a depth-abstracted substitution.
(For brevity, we will sometimes omit the term “for depth-abetracted pattern enumeration”
hereafter in Section 4.) A search tree of (7, p) i= a search tree whose root node is labelled
with (67, u). The clause part of each pair is a sequence “ay, a3, ..., a,” consisting of either
atoms in the body of PU{G} or call-exit markers of the form |4, u'}. A refutation of (G, i)
is a path in a search tree of (G,) from the root to a node labelled with {3, r). The answer
stbstitution of the refutation i= the depth-abstracted substitution », and the solution of the
refutation is G,

A solution table for depth-ahstracted pattern enumeration is a zet of entrice. Each
entry is a pair of the key and the solution list, The key i2 a depth-abstracted atem. The
solution list iz a list of depth-abstracted atoms, called solutions, whose all solutions are
greater than the key wor.t. the instantiation ordering, i.e., instances of the key.

Let Tr be a search tree whose nodes labelled with non-mull clauses are classified into
cither solution nodes or lookup nodes, and let Th be a solution table. An association of
Tr and Th for depth-abstracted pattern enumeration i= a set of pointers pointing from each
leokup node iu Tr inte some solution list in Tb such that the leftmost depth-abstracted atom
of the lookup node’s label and the key of the solution list are variants of each other.

An OLDT structure for depth-abstracted pattern enumeration is a triple of a gearch
tree, a solution table and an association. The relation between a node and its child nodes is
specified by OLDT reselution for depth-abstrasted pattern enumeration in Section 4.2.3.

4.2.2 Overestimation of Depth-absiracted Patterns

13

Because the purpose of the depth-abstracted pattern enumeration is to compute su-
persets of the sets of calling patterns and exiting patterns using lists of depth-abstracted
atoms. we need to overestimate them somehow by manipulating depth-abstracted atoms.
A term ¢ 1= a level 0 subterm of ¢ itself. ¢, t2, .. ¢, are level d 4+ 1 subterms of £, when
flti.ta.. .. ta) is a level d subterm of t. A term obtained from term t by replacing every
level d non-variable nou-coustant subterm of £ with a newly created distinet vanable is called
the depth d ahstraction of t, and denoted by [t]a. Let # be a substitution of the form

< Xya=ty), Haemta, ..., Xy=h >,

Tlhien the substitution

<X, «=[tla. Xa=ta)a. . . Xi=[tl]a>
is called the depth d abstraction of #, and denoted by |f]g. Now on, we assume a fixed natural
number d, and will omit the suffix d

Example 4.2 Let ¢ be a term f{g(X. a),Y,b) and U,V be fresh variables ([13] p.642). Then

U, when d = (;
[t = {f{'ﬁ ¥,b), whend=1;
t, when d > 2.

Note that ¥ and b are not replaced with new variables when d = 1, and neither are X and
a when d = 2.

4.2.3 OLDT Iesolution for Depth-abstracted Pattern Enumeration

Uszing the depth-abstraction operation, the relation between a node and its child nodes
of a search tree is specificd Ly the following OLDT resolution for depth-abstracted pattern
enunreration.

A node of OLDT structure for depth-abstracted pattern enumeration (Tr, Th, Aa) la-
Lelled with (“ay.aq.,...0,", u) is said to be OLDT resolvable when it satisfies either of the
following conditions:

(a) The node is a terminal solution node of Tr, and there is some definite clause “By :-
Iy Dl D™ (m = 0) in program P such that ayu and By are unifiable, say by an
m.ga .

(h) The node is a lookup node of Tr, and there is some solution By in the associated
solution list of the lookup node such that (a fresh variant of) By is an instance of o u,
say by an mstantiation .

The precize algorithm of OLDT resolutuion for depth-abstracted pattern enumeration
i# shown in Figure 4.2.3. Note that the operations at steps (A), (B) and (C) in Figure 2.2.1
are modified.

A node labelled with ("ap.oo.. ... 0.7, 1) ig a leokup node when a variant of agp
already exists az a key in the selution table, and iz a solution node otherwize (n > 1),

The fnitial QOLDT structurs, immediate extension of OLDT structure, extension of
OLDT structure, auswer substitution of OLDT refutation and solution of OLDT refutation
are defined in the same way as in Section 2.2,

14

U[;D‘I‘-rfmlw{ Smy ..., ciy . i) o label) o label ;
1=
case
when a solution node is OLDT resolved with “Bg - By, B2, .. ,B." in P
let i ke the mogou. of aype and By
let G be a pegative clause “By, Ba, ... B, oy, 4, az, ..., 0. ;
let vo be [nla ; — (A)
when a lookup node is OLDT resolved with Dwin Tb

let p be the instantiation of ayp to (a fre::h variaut of) Be ;
let Gy be a pegative caluse “oq, ..., a,"
let vy be [pn)a — (B)

endcase

while the leftmost of G; 12 a call-exit marker [A;5,, p;44] do
let GH_; be 7; other than the leftmost call-exit marker]
let vigy be [pipara —{C)
add A;4yviyy to the last of A4 piy s solution list if it is not in it ;
ti=4i+1:

endw hile

ﬁGnrws F’ntw} = {Gl'1 i"'i'} H

return (Grew, fnew)-

Figure 4.2.3 OLDT Resolution for Depth-abstracted Pattern Enumeration

Remark, We shiould avoid unnecessary depth-abstraction, because checking all the terms at
depth d coste much. For example, we need to depth-abstract only the assipnments in g for the
variables in By at step (A} in Figure 4.2.3. Moreover, we may throw away the assignments
in i for the variables in By at step (B), and the assignements in »; for the variables not in
Aigijtigy at step (C).

4.3 Correciness of the Depth-abstracted Pattern Enumeration

Note that the nnmber of nodes generated from the initial OLDT structure of (67, u)
is finite, because the number of depth-abstracted atoms is finite. Due to the finiteness, the
process of extension under the depth-first from-left-to-right strategy (or any other strategy)
always terminates. Morcover, due to the overestimation at step {A), (B) and (C) in OLDT
resolution, the infornation obtalped by extendive the ioitial QOLDT structures iz correct,
that iz, some supersete of the sets of calling patterns and exiting patterns are sbtained. In
this section, we will prove the correctness.

The set inchizion ordering between usual terms and depth-abstracted terms is defined
by regarding each wsual term as the set of all its instances, Then, the set inclusiom ordering
between substitutions and depth-abstracted aubstitutions is defined as well as follows: Lot o
be a substitution, g a depth d abstracted substitution, and V a set of variables. Then o C p
in Vif aud only if (X) € u{X) for any variable X in V

Let “aj,u3....a," be the clause part of & label. (The labels here are possibly interme-
diate labels, hence a; might be a call-cxit marker.) Then, note that the sequence is divided
into the following consecutive semmoeuts.

(So) A (possibly empty) sequence of atoms at the leftmost “A;, Az, ..., A, —1" (my > 1)
and

(S1) a sequence of the form “am,. Am,+1. ...y Am,—17, where o, is a call-exit marker
and J"-m;+11 vewy Apy—i are atoms (ms > m;), and

{S2) a sequence of the form “om,, Am,41. -+ Amg—1”, Where ag,, is a call-exit marker
and Apmytis oo Amy—1 arc atoms (ma > mz), and

Now, the sct inclusion ordering iz defined between labels of OLDT structures and
those for depth-abstracted pattern enumeration as follows: Let (“aj,e2,...,2,", o) be a
label of an OLDT structure and (A1, 82,..., 8.7, p) be a label of an OLDT structure for
depth-abstracted pattern enumeration such that

(n) a;is a call-cxit marker [A;, 0.} if and only if 5 is a call-exit marker [A;, p;], and
(b) @; and f; are identical atoms (modulo renaming of variables) when they are not call-
exit markers.
Then, (“a;.as...., an”. o) © (A1, f2...., 0.7, u) if and only if

{Se) e Cpin V(dy, Aa..... Am,-1), and

{51) omy? € ppyp in ViAm, Am,+1000Amy—1) for the corresponding segments
EAm|'ﬂm1]~ Am.+1, Aﬁ,...l and [[Am.,p,m.], Amﬂ.;, - Am,_j {m-z > mJ],
and

(S2) Omym, 0 C oy, b0 V(Am,, Amyt1. ..o Aumg—-1) for the corresponding segments
ﬂAm,.ﬂm,]. Amgt1y oo Amy-y and ["“-msi F'm;]: Amr}-h =y Am;—l (ma > -m.g}, and

where V{Am,, Am,+1,.-+, Am,;,—1) denotes the set of all variables in the sequence of atoms
h.A“.,‘ Al‘l‘lr'i'l“ . Ami’-H_]!‘

The depth-abstraction satisfies the following conditions, which play an important role
in the correctness of the depth-ahstracted pattern enumeration.

Lemma 4.3.1 (Overestimation of Resolvent)
Let (*ay.az....,a,", @) be a label of node u in OLDT structure, and {*#;, 82, ..., 5",
) be a label of node v in OLDT structure for depth-abstracted pattern enumeration such
that (“ag.a2,....0,", 0) € (“B1.F2,.... 8", #t). Then
(1) When u and v are OLDT resolvable using a definite clause C, let (G',#') and (H', u")
be the respective OLDT resolvents. Then (G, 2"} C (H', p').
(2) When u and v are OLDT resolvable using solutions Br and B such that Br € By,
let (G',a') and (H', p') be the respective OLDT resclvents. Then (G',¢') C (H', u').

Proof. We will prove the following three sublemmas.
(A) Let "By - By, Bz,...,By" be a definite clause. When a;o is unifiable with By by an
m.gau. § and a;p is unifiable with By by an m.gu. 5, then
(“By.Bav..., Bm.[a1.0).0z.....an" 0) S (*By. Ba...., B, [B1, 1}, Bas.... B [1]).
(B) Let Ir be an atom and Be a depth-abstracted atom such that Br € Br. When (a
fresh variant of) Bris an instance of ajo by an instantistion # and (a fresh variant of)
B iz an mstance of o u by an instantintion g, then
(“oz....,007,08) © (“Fz,.... 0.7 [um]).
(C) When a; is a call-exit marker fA;, ;] and f; is a call-exit marker [A;, #1]. then
:‘&21 R El!"“,l."-r;ﬂ'} - [unﬂ2- LERE .ﬁn’1[#’l#”'
Then, since OLDT resolvents are obtained through successive application of operations at
steps (A), (B) and (C), the lemma is obvious.

16

Case (A) : ayof = Bpf and a,un = Don hold from the condition. Because a;o i= an
instance of e g, the result of unification oy7f = Bgf is more instantiated than aypg = Dpn.
i.e.. i X) is more instantiated than n{X) lor every variable X in By, and of(Y') is more jnstau-
tiated than pn(Y) for every variable Y in . Hence, # € nin V(By, Bz, ..., By, and a8 C
pn i Ve, aa.. .., am, —1), since the variables in the head segment "oy, 02, ... 0, 1" but
uot in e, are affected by neither # nor . Then, (A) is obvious from n C [n].

Case (B) : @ o8 = Br and e pn = By hold from the condition. Because Br is more
instantiated than Be, o8(X) is more instantiated than pg{X) for any variable in o, ie,,
i © un in V(x;). Decause variables not appearing in @) but in the new head segment
“as.....0m,-1" are affected by neither # nor n, and # € g in those variables holds from the
condition, o8 € un in thoze variables. Henee o8 © pn tu the set of variables in the new head
serment. Then, (B) is obvious from pn € [un].

Case (C) : {C} 12 immediate from the condition.

Lemma 4.3.2 (Overestimation of Solution)

Let u be & node in an OLDT structure § labelled with (“a;.02,...,2,.G", 7}, and
let v be a node in an OLDT structure T for depth-abstracted pattern enumeration labelled
with (“fp, B, ... As. H, u) such that

(a) (“my.en.. .. 0" o) © (%81, Bz, .. 8.7, k), and
{b) the leftmost atoms of 7 and H are not call-exit markers,
Suppose that there exists an OLDT subrefutation r of (“ay,a2,..., 2,7, 7) starting from u
with its answer substitution r. Then there exists an extenzion of T such that
(a) the extcusion coutaims an OLDT subrefutation s of (“f1,f8z,..., 8.7, u) for depth-
abstracted pattern enumeration starting from v with its answer substitution v, and

(b) (“ar @z .. e’ 1) € (B farn o a7 v)

Preof, The proef is by induction on the quadruple (r, T, u,), ordered by the following
well-fonnded ordering @ (v, T, u.v) precedes (¢, T' o' o'} if and only if

{a) |r]<|¢'|, or

() [r| = |¢'| and u is nat a solution node but ' is, or

{¢) |r] = |¢'|. the nodes u and u' are of a same kind and v is not a solution node but »' s,
where [r| means the length of the corresponding OLD subrefutation. {Note that it does not
mean the length of the OLDT subrefutation. By replacing every OLDT resolution at a lookup
node with itz corresponding OLD unit subrefutation, we can always have a corresponding
OLD subrefuration.)
Base Case : When {r] = 1. the lemma ig trivial since r 1s a subrefutation of the null clause.
Induction Step : When |r| > 1, we consider four cases depending on whether v and v are
lookup nodes or not. Let o) = #;, = A and az, a3,...,a; and 2, fs,....5; be the longest
conseentive eall-exit markers following A,
Case 1: When u iz a solution node and v is a solution node, let o' be the first node labelled
with (0", @7, a') and ¢’ be the remaining path of the subrefutation r. Suppose C is the
definite clau.w m P nzed o the frat step of the subrefutation r. Then ¢ is a subreflutation of
(=", #') with some answer substitution r'. By the assumption ¢ C g in V(A4), the node v
is also OLDT resalvable with €, and the resolvent (“H', H”, ¢') is such that {*C", G, ¢") €
(“H' . H™, p'] due to Lemma 4.3.1. Extending T (if necessary) by the OLDT resolution for
deptli-abstracted pattern enumeration ou the node v, we can get an OLDT structure T in
which v has a child node o' labelled with (*H', H™, g'). Then by the induction hypothesis,
we have an extension T of T' which contains a subrefutation &' of ["H'™, k') starting from
v’ with its answer substitution ¢ such that (*G', 7'} (“H", +']. The path in T" starting
from v and followed by &' constitutes the required subrefutation of (e, 00, ..., 4", g},

17

u: (“Aoaa,... 0 G, 0) vi{“A Pz ... B H, 1)
| [

u (GG, ') v (“H' H", u')
|r! |4
{:G-., TJ' {u}f’!l p‘}

Figure 4.3.1 Overestimation of Solution [Case 1}

Casze 2 : When w is 3 solution node and v 15 a lookup node, there is a corresponding
solution node o' in T labelled with {“A, H'", p') such that Ap = Ap'. Let r be divided as
concatcuation of two subrefutations vy and ro so that ry 15 the minimum path containing a
3|.|};1'|,~f|1ls|,!-|u;u, uf{'_ﬂ.", .';r} with 1ts salution A:r]_ Smee irll i: |r| and ;Ii{'." g A_;..l. = }i__u'l b}' l.hr.-_-
induction hypothesis, we have an extension T' of T such that T' contains a subrefutation of
(A7, p') which starts from «' with its solation Awy such that Ary € Ay, By the operation
immediately alter step (C) in QLDT resolution in Figure 4.2.3, the solution list of Ap'{= Ap)
imchedes the solution Ay,

Now consider the label (“4, 85, ..., 8,7, p) and the solution Awy. Since (%A, as,
iy . o) and Ar have an OLDT resolvent {“a;41, ..., an”, @"), they also have an
OLDT resolvent (“8;41. ..., A", p") such that (“o;yq, .., ", c.r"} C {5ty oo Bu7
#"). This means that T' can be extended (if necessary) to T" by the operation at step (B)
in OLDT resolution in Figure 4.2.3, 20 that the node v has a child node v" labelled with
(“Brgreeo B ")

Since ry is a subrefutation of (*a4y....,2,", 0") aud |rz] < |r|, again by the induction
Liypothrsis, we have an extension T of T" which contains an OLDT subrefutation as of
(*Fixr....Ba". w'") starting from ¢" and subsuming ra. The path in T starting from v and
followed by the subrefutation ss constitutes that required subrefuation of (“8y, f2.... 8",
)

v (FALH'T, pt)

e (“Aaz,. .., 00,67, 0) v [“Afay e e H)
Iry lay
W (Ceipy, e 0, G 0" v ("Bigrieeo Ba HT, pt)
|I'g |$2
(7, r) : (“H™, v)

Figure 4.3.2 Overestimation of Solution (Case 2)

Case 3 : When v s a lookup node and o is a solution node, there exists a corresponding
solution node u' in § labelled with (A, "7, ¢'). Let u' be the first node of the subrefutation
r labelled with (“a,4y. a3,...,8,.G7, "), r; be the one-step subrefutation of {“47, o)
starting from u ending in 4", and r2 be the remaiming path of the subrefutation r. Because
Ar' = Ar C Ap and there is a refutation of (*47, #') in &, by the induction bypothesis,
we Lave an extension T' of T which contains a subrefutation a; of (“A”, p) starting from
v ending in & node v" labelled with (“F:cy. ..., Bn, H”, p") such that (“a,4y,....0.", ")
S {“Fisr.....007, 1"). Dy the induction hypothesis, we have an extension T" of T' which
contains a subrefutation a4 of [“F,0y. ..., 8.7, o), starting from o and subsuming ro. The
path in T starting from v and followed by #; constitutes the required subrefutation of

(“Ar B2, a7,).

15

' (FA.G, e

w:(“Aaz,... 2,607, a) ve (4 fa ..., B, H™, 1)
Iry 1
U" . {“'?u'+:--~-rﬂn1Gh1 ET"] “n . {mﬁi+!1--=eﬁn1H”1 #H'}
lra E
(“G™, 7] (“H™, v)

Figure 4.3.3 Overestimation of Solution {Case 3)

Case 4 : When u is a lookup node and v is a lovkup node, there exist a corresponding
zolution uode u' in § labelled with {“A4,G", ¢'), and a corresponding solution node o' in T
labelled with (-4, H'™, u'). Because A¢' = Ag C Ap = Ay’ and there is a subrefutation
of (*A7, &') starting from u', by the induction hypothesis, we have an extension of T of T
which contains a subrefutation of (“A”, p'). By the operation immediately after step (C) in
OLDT resolution in Figure 4.2.3, the zolution list of Ay’ = Ap in T' includes the solution
Ay

Let u' be the first node of the subrefutation r labelled with (“ai4y,az,...,2,,G7,
e"), starting from u ending in «", and ry be the remaining path of the subrefutation r.
Now consider (*4A.a@2,...,a,”, p) aud the solution Avry. Sioce {“A,a2....,0,7, o) C
(A fa,....f0."), Ary € Av; and (A, @z2,...,an",) and Ar; bhas an OLDT resolvent
("Oigper-ns a,", a"), they also have an QOLDT resolvent for depth-abstracted pattern enu-
meration {“fig1,..., B.7, 1) such that (“oisy,... 057, ") € (“Fisr,.... Ba", p"). This
means that T can be extended (if necessary] to T by the operation at step (B) in OLDT res-
olution in Figure 4.2.3, 2o that the node v has a child node v" labelled with {(“Fiet, ..., 8.7,
””}r

Since rq is a subrefutation of {“ai4y,...,@.", ") and |ra| < |r|, again by the induction
hypothesis, we have an extension T" of T which contains an OLDT subrefutation #5 of
(“Bidie...fn”, p") starting from " and subsuming rz. The path in T™ starting from v and
followed by the subrefutation s; constitutes that required subrefuation of (“f1, f2,... 8.7,
n).

u': [“A,G7, 8" v (CAHT, o)
u [“A,ﬂz,...,ﬂ!",g-. ﬂ} LU {udsﬂ21-”!ﬁﬂhﬂmlﬂ]
Iry R
T {"ﬂ|'+l ----- ﬂﬂ,GH'ﬂ"} v {.“ﬂl'+1|"'rﬁn1HH1 F-"]
Ira | 82
(67, r) (“H™, v)

Figure 4.3.4 Overestimation of Solution (Case 4)

Theorem 4 {Correctness of the Depth-abstracted Pattern Enumeration)

Let Croeat{Ca), Cotorat{Cr). Erocat{Gu}, € torat (Gie) be the sets defined for the OLDT
structure of (&7, u) for depth-abstracted pattern enumeration (with the depth-first from-left-
to-right strategy or any other strategy) as follows:

Ciocat(GGae) : the set of all calling patterns at local success of Gu.

Cotobat| G} : the set of all calling patterns at global success of G,

Elocatl Gt} 1 the set of all exiting patterns at local suecess of G,

19

Egtatar{Gp) o the set of all exiting patterns at global success of Gp.
Then

[a] Eiaml’{ﬁ#] = C!-ﬂ:n‘{GH}r

[h} Eg!n&al{gﬂ-] =2 cglaan{G’-‘L

(€} Erocatl Gt} 2 Eiocat(Cp).

(d) £ototat{G) 2 Epiobat (Gpe).

Proof. We only need to show that, when a negative clause Ge, such that Ge € (7, has an
OLD refutation with its solution G'r, any extension of the initial OLDT structure of (G, p)
for depth-abstracted pattern ennmeration can be further extended to contain ag OLDT
refutation of (G, u) with its solution Gv such that Gr € @v. But it is obvious from the
completencss of OLDT resolution (Theorem 2.1), and Lemma 4.3.2 by letting u, v be the
root nodes and &, H be the empty sequences,

5. Type Inference by Abstract Hybrid Interpretation

Suppose that a top-level goal “multiply(X, ¥, Z)" is executed with their arguments
instantiated to any terms, where multiply and add are defined by

mwultiply{0,Y,0).

multiply(suc{X),Y,Z) :- multiply(X,Y,W), add(Y,W,2).

add(0,Y,Y).

add(suc{X),Y sue(2)) :- add(X,Y,Z).
Then the third argainent of multiply is always a pumber when the execution succeeds. How
can we show it mechanically?

In this section, we will reformulate our work [4] from the point of view in Section 2.2.
We are mainly concerned with exiting patterns at global success, not calling patterns. Unlike
the depth-abstracted pattern enumeration in Section 4, we need to keep the m.gu. at OLDT
resolution in each call-exit marker.

5.1 Type Inference

We introduce type construct into Prolog to separate definite clanses defining data
structures from other clauses defining procedures, e.g.,

type.

Tist([]}.

list ([X|L]) - list{L).
end.

type defines a unary relation by definite clauses. The head of definite clause takes a
term defining & data structure as its argument, either a constant b called a bottom element
or a term of the form ety ta, ..., tn} where ¢ is called a constructor. The body shows type
conditiens on proper subterms of the arsument.

Here notice the sets of terms prescribed by type predicates. The set of all terms ¢ such
tliat the execution of p(t) succeeds without instantiating the variables in it is called the type
of p. and denoted by p.

Example 5.1 Let the definition of & type num be
type.

20

mm {0},
o (ene (X)) = num{X).
end.
Then rem is a set {0, aue(0), sue{suc(0))....}. Note that terms in each type is not necessanily
ground, since the execution of p(t) sometimes succeeds without instantiation of vanables in
t. For example, we include [X] in list, siuce the execution of lst([X]) succeeds without
inetantiation of the variable X.

Suppose that there are k type predicates py, pa, ..., Pe defined using the type construct
such that bottom clements and constructors for each p; are disjoint, hence py, p2, ..., pi are
disjoint. A type is one of the following k + 2 sets of terms. o

any ¢ the set of all terms,

p1 @ the set of all terms satisfying the definition of type predicate py,

pa : the set of all terme satisfying the definition of type predicate ps,

pi : the set of all terms satisfying the definition of type predicate pg,

@ : the empty set.
Types are ordered by the instantiation ordering % depicted below.

any
Again, the instantiation ordering is just the reverse of the set inclusion ordering here,

A type substitution pis an exprezsion of the form
Xy =t Xos=ta,... K=l >,
where :1.:;....._11 are types. The type assigned to variable X by type substitution g is
denoted by p{X). We stipulate that a type substitution assigns any, the minimum element
w.r.t, the instantiation ordering, to variable X when X is not in the domain of the type

substitution explicitly. Hence the empty type substitution <> assigns any to every variable.

Let A he an atom in the body of some clause in P U {G} and g be a type substitution
of the form

< X "-.:f_]..X:'G:E__':_I,“..xi ==
Then Ap is called a type-abstracted atom, and denotes the set of all atoms obtained by
replacing each variable X; in A4 with a term in ;. Two type-abstracted atoms Ay and Bv
are said to be unifinble when Apn Dy # 0. A list of type-absivacted atoms [A1py, Aapa, ..o
Anjin] denotes the set union Uf_, A;p;. Similarly, G (or the pair (G, pu)) i called a type-
abstracted negative clause, and denotes the set of negative clauses obtained by replacing each
X;in @ with a term in t;, When @ is of the ferm “A;, Aa. ..., A,7, the type-abstracted
atom Aqu is called the leftmost depth-abstracted atom of Gp.

The type inference w.r.t. GGu is the problem to compute
(a) sowme list of type-abstracted atoms which is a superset of Craear{Gp),
(b} some list of type-abstracted atoms which is a superset of Cyropat(Gp),
(¢} some list of type-abstracted atoms which is a superset of aear{G), and
(d) some list of type-abstracted atoms which is a superset of Lgiobat(Ga).

21

5.2 Abstract Hybrid Interpretation for Type Inference
5.2.1 OLDT Structure for Type Inference

A search tree, a solution table and an association for type inference arc defined in the
same way as depth-abstracted pattern enumeration, except that call-exit markers are of the
form JA, g, n]. (For brevity, we will sometimes omit the term “for type inference” hereafter
in Section 5.) An OLDT structure for type inference is a triple of a scarch tree, a solution
table and an association. The relation between a node and its child nodes is specified by
OLDT resolution for type inference in Section 5.2.3.

5.2.2 Overestimation of Data Types

We need to overestimate the sets of calling patterns and exiting patterns somehow by
manipulating type-abstracted atoms, as we did for the depth-abstracted pattern enumeration
in Section 4. Again, we would like to do it by specifying the corresponding operations for type
inference at steps (A}, (B) and (C) in Figure 2.2.1. As for the type inference problem, we
need to consider the following situation. Let A be an atom, X, X2,..., X, all the variables
in A, patype substitution of the form

<Xi=t, st Keth >,

I an atom, V3, Vs, ... ¥} all the variables in B, and v a type substitution of the form

<Yi<=a, Yoo, . Yiesays

Then

(a} How can we know whether there is an atom As = Brin Apn Bo?

(L) I there is such an atom, what terms are expected to be assigned to each Y; by r?
(These problems were easily solved by unification and depth-abstraction for the depth-
abstracted patteru enwmeration. They are not very easy for the type inference.)

Example 5.2.2.1 The {ollwoing two type-abstracted atoms

plLyeue(Ny)) < Ly =list, Ny, =num >,

pf[}Ig]Lg],N-,-} f.'x:; <= any, Lg <= any, Ng#ﬂi;!'}
are unifiable. The common atom is of the form p([X|L], sue(N)), and terms in any, list and
number must be assigned to variables Xo, Lo and Ns.

{1) Overestimation of Unifiability

Wlhen two type-abstracted atoms Ap and Br are unifiable, two atoms 4 and 1 must
be unifiable in the usual sense. Let i be an m.g.n of 4 and B of the form

{x[‘4=f1+..x?ﬁ-‘=f:,. . .,Xk -‘.:.tt.Yj cﬂ].Y; 4:3-2_..-....]"] =4y
If we can overestimate the type assimed to each occurrence of 2 in t; from the type sub-
stitution . and that of Z in s; from the type substitution v, we can overcstimate the type
assigued tu the variable Z by taking the join of these types w.r.t. the instantiation ordering
for all ocenrrences of &, If it is the emptyset @ for sumne variable, we can’t expect that there
exist ap atom Ar = Brin Ap N Br,

When a term ¢ containing ocenrrences of variable 2 is instantiated to a term in ¢, we
denote a type containing all iustances of some occurrence of Z by Z/ <t<=t>, and compute

22

as follows:

t, when t 12 &)

any. wheun t is any;

ﬁ“:ti#g;}, when ¢ is of the form e(ty,22,....ta), Z isin t;,
Zf < tet >={ - t includes a type p,

¢ is a constructor of the data type p and
t; is a type set assigned to the i-th argument t;
L @, otherwise,

Example 5.2.2.2 Let ¢ be [X|L] and ¢t be list. Then

X[< [X|L)=list >= any, L] < [X|L]<=liat >= list.
Let t be [X|L] and t be num. Then

X/ < |X|L}«=num >= 0, L] < [X|L]<num >=0.

1f we would like to check the unifiability of type-abstracted atoms Ap and By exactly,
i.e.. would like a procedure returning true if and only if they are unifiable, we can check
it using the estimation Z/ <t[Z] <=t >. The exact unifiability check, however, takes more
computational time than that of depth-abstracted atoms, because it can’t be reduced to the
unifiability of terms. But, if we just would like overestimate the unifiability, i.e., would like
a procedure returning true if they are unifiable, we may use the unifiability check of A and
B inztead of the more time-copsuming one,

Example 5.2.2.3 We can check the unifiability of p{X) < X «<list > and plsuc(Y)) <Y =
list > by computing Z/ < Z < list >= list and Z/ < suc(Z) <= list >= 0. If we use the
unifiability check of p(X) and p(suc(Y)) instead of the exact one, we would consider these
type-abstracted atoms unifiable.

(2) One Way Propagation of Type Substitutions

Recall the situation we are considering. First, we will restrict our attention to the case
when v =<>. Suppose that there is an atom Br in Ag N B <>. Then, what terms are
expected to be assigned to variables in B by r7

As has been just shown, we can overestimate the type assigned to the variable Z
due to the type substitution g. By collecting these type assignments for all variables, we
can overestimate the type substitution A for the variables iuw #y,82,. .., f,. Then, if we can
overestimate the type assigued to s, from the type substitution A obtained above, we can
obtain the type substitution o'

<Yis=s) . Vool . Y=g
by collecting the types for all variables ¥, Y2.... Vi in B,

When eacl variable £ in term s is mnstantiated to a term in A{Z], we denote a type
remtaining all mstances of # by #/A, and compute it as follows:

a. MZ) =0 for some Z in #;

AlZ), when # i a variable Z;

. when # 12 a bottom clement b of a data type p or
sfd = ¢ - when # is of the form elay, 22,..., 8],

£ iz a constructor of a data type p and
ap/Ah aafA. ., 8,/ A satisly the type conditions;
| any, ot herwize,

Example 5.2.2.4 Let s be [X|L] and A be < X<=any, L<list>. Then

g/A = lisf.
Let & be [X]L] and A be < X <any, L<any>. Then
s/A = any.

Let A, 8 be atoms, pu a type substitution for the variables in A, and g an m.gu. of
A and B. The type substitution for the variables in B, that is obtaind from g and n using
Z} <t[Z]<=t> and s/) above, is denoted by propagate(u,n). (Note that propagate(p,n)
depends on just p and n.)

(3) Overesiimation of Type Subsiitutions

As for the operation at step (A) for type inference, we can adopt the ome way type
propagzation
propagate(p, 1),

since the destiuation side type substitution is <>. As for the operations at steps (B) and
(C} for type inference where the destination side type substitution is not necessarily <>, we
can adopt the join w.r.t. the instantiation ordering

BV propagate(v, n)

l.e., variable-wise join of the type assigned by the previous type substitution g and the one
by the one-way propagation propagate(r, n).

5.2.3 OLDT Resolution for Type Inference

The relation between a node and its child nodes of a search tree is specified by OLDT
resalution for type inference as follows:

A node of OLDT structure (T'r,T'b, As) labelled with (“ay,0q,....0,".) is said to be
OLDT resolvable (n 2 1) when p{X) # @ for any variasble X and o, satiefies either of the
following conditions.

(a) The node is a termiual solution node of Tr, and there iz some definite clanse “By -
By.Ba....,Bp" (m 2 0} in program I such that o) aud By are unifiable, say by an
Mmogan 5.

{b) The node is a lockup node of Tr, and there is some type-abstracted atom By in the
aszociated solution list of the lookup node such that a; and B are variants of each
other, Let i be the renamivg of B to a;.

The precize algorithm of OLDT rezolutuion for type inference is shown in Figure 5.2.3.1,
Nate that the operations at steps (A}, (B) aud (C) are modified,

A pode labelled with (*a;. 02, te,,, jt) i# a lsokup node when the type-abstracted
atom e is a key in the solution table. and is a solution nede otherwize.

The initial OLDT structure, jnnwediate extension of OLDT structure, extension of
OLDT structure, answer substitution «f OLDT refirtation aud solution of QLDT refutation

are defined in the same way as in Section 2.2,

24

OLDT-resolve((“oy,az,...,a.", g) : label} : label ;
1= 0
case
when a solution node is OLDT resolved with “By - By, Bg,...,B,.,"in P
let i be the m.gu, of o) and By ;
let 7y be a negative clanse "By, Oa, ..., B, ey, p,n), az,..., ey
let 1o be propagate(p,n) ; — (A}
when a lookup node is QLDT rezolved with *7e” in T

let n be the renaming of B to a; ;
let Gy be a negative caluse “as,,...,a,.7
let 1 be uV propagate(v,n) ; — (B)

endeage

while the leftmost of G; is a call-exit marker [A;51, 41, mi41] do
let 7,47 be G; other than the leftmost call-exit marker ;
let wipy be gy V propagate(sy, nigr) — (C)
add A; i viq) to the last of Ay pip s solution list if it is not in it ;
t1i=14+1;

endwhile

{Cﬂtﬂ'! F‘anIJII = [G'I'I t.r.-} '

return (Crew . Bnew)-

Figure 5.2.3.1 OLDT Resolution for Type Inference

Example 5.2.3 Let multiply and add be predicates as before defined by
multiply(0,Y,0).
multiply(suc(X),Y,2} - multiply(X,Y, W), add{Y W ,Z).
add(0,Y,Y).
addisue(X), Y sue(Z)) :- add{X,Y.Z}.
Then the type inference of multiply{ Xo, Yo, Zy) proceeds as follows:
First, the initial OLDT structure below is generated. The root node is a solution node.

multiply{Xo,Yo.Zg)
<>

munltiply(X, Y. 2)<> : [|
Figure 5.2.3.2 Type Inference by Iybrid Interpretation at Step 1

Secondly, the root nede (*multiply(Xy, Yo, Z0)7,<>) iz OLDT resolved using the pro-
gram, The left child nede gives a solution multiply(Xo,Ys, Z0) < Xo. &y = num >, The

rizht child pode 13 & lookup pode,
multiply (Xe,Yp.2p)
<

! \
o multiply(Xo. Y2, Wo) add(Y, Wa,22) J1- -
< Xp. Dy = num > o <= L

Figure 5.2.3.3 Type Inference by Hybrid Interpretation at Step 2

23

Thirdly, the lookup node is OLDT resolved using the solution table, The generated
child node 15 a sclution node.

Fourthly, the solution node is OLDT resolved further using the program. The left child
node gives two solutions add(Yz, Wz, Z2) < Y2, W2, Z3 <= num > and multiply(X,, Yy, Zo)
< Xy, Yy, Zog=num >, The right child node is a lookup node.

Fifthly, the lookup node is OLDT resolved using the solution table. The child node
gives a new solution multiply(Xo, Yo, Z) < Xy, Yo, Zo < num >,

multiply (Xo,Ye,Zo)

<>
/ \
| multiply(Xz, Y, Wy),add(Y 4, W;,22),[] -~
< Xp, Zp=num > < IJ
/ ’
add(Ya,Wa,Z2).1] e
<Ws<e=num> .
! i
O add(Y,,W4.24) 0] H - /
< Xn, Yo, Zn=num > <Wy=num> ‘\\ e
AT
A
O N
< Xo. Yo, &y =num> e "'-11“_
e - “'.\

multiply (XY, Z2)<> : [multiply(X,Y,2)< X, Z =num >, mu]tlply[}{ YZ)< X, Y,Z =num }]

TS e e i o

add(Y.W.2)< W e=num?> : [add{Y W, Z)<Y, W, £ =num>|
Figure 5.2.3.4 Type Inference by Hybrid Interpretation at Step 5

minltiply (X, Yo.Ze)

<
/ \
o multiply (X2, Y2, W2) add{Y,,W3.2 H] ———
< Xo. Zps=num > ; <> \ '“‘--1
add(Y3,W2.22),[] add(Y3,W3,2;).0] N
< Wa<=num> <Yy, Wy <=num> .
PN [A
O add(Ye,WeZ4) [E[]-. O add(Ye We.Zo) JLI}~. '
<Xo. Yy, Zy=pum> <Wie=num> N <Ko Yo, Zgenum> <V, Woenum> " :
! N é \)
<X, Yo, Zy =num> N <Xy, Ya, Zo =num> Hf

-

Aadd(Y.W.Z)<Y, W <num> : Eadd[Y,W,E}f: Y, w,z*.—.&m:}]’
Figure 5.2.3.5 Type Inference by Hybrid Interpretation at Step 8

20

Sixthly, the first lookup node 1s OLDT resolved using the new solution. The generated
child node is a solution node.

Seventhly, the geucrated solution node is OLDT resolved using the program. The left
child node gives a new solution add(Yy, Wy, Z,) <V, Wy, Z4 <=num > and an already existing
zolution multiply(Xo, Yo, Za) < Xp. Yo, Zp =num>. The right child node is a lockup node.

Lastly, the lookup node is OLDT resolved using the solution table. Beeause the gen-
erated child node gives no new solution, the extension process stops.

This problem iz not so trivial as one might think at first glance. For example, Suppaose
that the predicate multiply 15 defined by

multiply(0,Y,0].

multiply(sue(X),Y,Z) - multiply{X,Y, W), add(W,Y).
by exchanging the first and the second argumeunts of add. Then, one of the exit pattern of
multiply (X, ¥, Z) <> iz multiply(X.Y,2Z) <X <=num?>, hence, we can’t conclude that the
third argument iz a pumber. For example, multiply(suc(0),Y,Y) succeeds for any V.

5.3 Correctness of the Type Inference

The information obtained by extending the initial OLDT structures for type inference
1z correct, that i3, some supersets of the sets of calling patterns and exiting patterns are
obtained. We can prove the correctuess in the same way as the depth-abstracted pattern
enumeration except a few modifications.

The set inclusion ordering between labels of OLDT structures and those for type infer-

ence is defined in a slightly different way as follows: (*a;,a2,..., 2,7,) C (*F1,82,.... 5.7,

#) if and only if

(So) o € pin V(A;, Az..... Ap,_y), and

(81) om,o € pm, V propagate{p,n) in V(An An 41,..., An,—1) for the corresponding
segments [Am, . 0m, |, Am,t10 oo Amy—1 20d [Am, pm 0] Amgry o Ams—1
(msz > my), and

(52) Omstm,0 € pims ¥ propoagole(pm, Vprepagete(p.n),m)io V(Am, Amgtisec oy Ama—i)
for the corresponding segments [Am,, Tms} Amst1, oo Ams—1 30d [Amy, Bmy, Tm, |
A'ﬂ-:'l"" . Alﬂ;—l {m; P m.-;}, ﬂ.ﬂd

where V(Ay, Am,e1.. .-, Ap,,—1) denotes the set of all variables in the sequence of atoms
“Am Aty oo }lm..“_i“,

Then the type inference satisfies the same condition as in Section 4.3,

Lemma 5.3.1 (Overestimation of Resolvent)

Let (“ay. @2, ... an”. o) be a label of OLDT structure and (8, f2, A" u) he a
label of OLDT structure for type inference such that (Yo, me, ..., 2", 7)) © (“F1, A2, ..
Aa7. p). Then

(1) When u and v are OLDT resolvable using a definite clause C, let (',¢') and (H', p')

be the respective OLDT resolvents. Then (G'o') C (H', p').

{2) When w and ¢ are OLDT resolvalile using selutions Br and Be such that Br € By,

let (G".g') and (H', u') be the respective OLDT resclvents. Then (G',¢') C (H'. p').

Proof. Agam, we will prove the following three sublemmas.
(A) Let "By - By. Bs,...,B,," be a defiuite clause, When a;e is unifiable with By by an
m.ga. § and a1 nnifiable with By by an m.ogw, n, then

r

(“By,Ba.....Bn.fay,e].02,....0,")
C("BiBa....Bm. [fs.0.n). P2.... . B propagate(p, n)).
(B} Let Br be an atom and By a type-abstracted atom such that I+ € Bu. When (a fresh
variant of) Br is an instance of a,¢ by an instantiation 6, and ay is a variagt of I hy
a renaming 5, then
(“ez.....0,7.00) C (“Fs.... B, pV propagate(r, n)).
(C} When oy iz a call-exit marker [A1, 71} and 8; is a call-exit marker IAI-FIJTLI- then
(“az.....00",010) C (“Far.... fBu” iy V propagate(p, my)).
Case (A) :Since ¢ € pin V(a,) from the condition, § C propagate{yu, n) in V(By), henee in
V(“By, Bz,..., By}, holds from the meaning of prepagate. By appying the same dizcussion
for Dpf and Bypropagate(u,n), of C BV propagate{propagate(p,n),n) in V(a,). Since the
variables in the head segment “a;,aa, ..., @m,-1" but not appeariug in a; are affected by
neither aff nor . it holds io V(e 00.... 0., ")
Case (B) : By appying the same discussion for Br and By, el C propagate(v,n) in V(ay)
from the condition r C v in V(B). In addition, #f C pin v[“nl,a,,,,,,nmlq"] holds
from the condition. Hence, a8 C p V propagate(v,n) in V(a;). Since the variables in the
new Lead segment “az,...,am,-1" but not appearing in ay are affected by neither of nor
n, it bolds in V(®aa,...,amn,-17).
Case (C) : (C) is immediate from the condition.

Lemma 5.3.2 (Overestimation of Solution)
Let « be a node in an OLDT structure § labelled with (“ay, aa,...,a,, 67, o}, and let
v be a node in an OLDT structure T for type inference labelled with (“B1.82,....8. H”,
i) such that
(a) {(*as.e9,... 00", 0) € (A, f2.. ... 6.7, p), and
(b} the leftmost atoms of G and H are not call-exit markers.
Suppose that there exists an OLDT subrefutation r of (“o1,a@z2,...,0,", 7) starting from u
with its anewer substitution r. Then there exists au cxtension of T such that
{a) the extension contains an OLDT subrefutation & of (“By.B2,...,8.7, i) for type infer-
cuce starting from v with its answer substitution v, and
(b) (fayea.an™ 1) © (B fae... A7 0)

Proof. It iz proved similarly to Lemma 4.3.2.

Theorem 5 (Correctness of the Type inference)

Let Crovat(Gia). Cototat{ Cpe). € poemt (G). £ otabat (G) be the sets defined for the OLDT
structure of (G, p) for type derence (with the depth-first fram-left-to-right strategy or any
other strategy) as follows:

Clocat(F) : the set of all calling patterns at local success of Gy,

Z,;,;;;{G,u] ¢ the set of all calling patterus at glabal surcess of Gu,

Etocat{Cpe) 1 the set of all exiting patterns at local success of Gu.

& ytobat (G) : the zet of all cxiting patterns at global suceess of Gp.

Then
(8) Clocat(G) 2 Crocar{Gu)
(k) EglahI[GFJ =2 Cg!abal[“.’-‘}
(€) Crocat(Gpr) 2 Erocat(G i)
{d) EgtabatlGp) 2 Eqrabar (G)

Proof. It is proved shmilarly to Theorem 4.

6. Mode Analysis by Abstract Hybrid Interpretation

Suppose that a top-level goal “reverse(L, M)" is exccuted with its first argumcnt L
instantiated to a ground term, where reverae and append are defined by

reverse(] 1.]).

reverse(|X|L].M) - reverse(L,N), append(N,[X] M}.

append (] | M.M).

append([X|L] M, [X|N]} :- append(LM,N).
Then, the first argnment of reverse invoked from the top-level goal is always a ground term
at calling time, and the sccond argument is always a ground term at exiting time. Similarly,
go are the first and the second arguments of append at calling time and the third argument
at exiting time. How can we show it mechanically?

In this section, we will reformulate the work by Mellish [10],[11] and Debray [3] from
the point of view in Section 2.2. Unlike the type inference in Section 5, we need to keep an
additional restriction about sharing of structures.

6.1 Mode Analysis

A mode is one of the following 4 sets of terms.
any : the set of all terms,
E;-;und : the zet of all ground termns,
variable : the set of all variables,
@ : the emptyset.
Modes are ordered by the instantiation ordering < depicted below.

@

I
ground
|
any
i

varinhie

Note that this i= not the reversze of the set nelusion ordering € depicted below,

arny
I\
ground vartable
4 !
i

A mede substitution iz an expression of the form
<Xje=m Xoe=ma. Xps=my >,
where my, ma, . __.my are modes. The mode asstgned to variable X by mode substitution p
is denoted by p{X). We stipulate that a mode substitution assigns variable, the minimum
element wort. the instantiation ordering. to variable X when X is not in the domain of the
mode substitution explicitly. Hence the ciupty mode substitution <> assiguz variable to
every variable.

29

So far, we Liave introduced the notions for mode analysis in the same way as depth-
abstracted pattern ennmeration and type inference. Now we have to manage a complication
inberent to the mode analysis problem. If we had just mode substitutions, we could not
propagate the mode information correctly. We need to take the sharings of structures into
consideration in addition to mode substitutions.

Example 6.1.1 The following is an example given by Debray [3]. Let the given program P be
p(X.Y) - q(X.Y), r(X), s(Y).
a(Z.,2).
r(a).
s(2).
If we had not the additional information about sharing, the mode analysis of p{Xo, ¥o) <>
by abstract interpretation would proceed as follows:

p(Xo.Yo)
-r:I:-

q{xllY]]: r{xllu S{YIL []

<:I:r

r{xl}, 5[?1_:'- "
o>

|
5':?1:':"

< X +=ground>
|

i
< Xp, Yo = ground >

PIX.Y) <> : [p(X,Y)< X <= ground >]
q(X.Y) <> : [q(X.Y) <>]

r(X) <> : [f(X) < X <=ground>]
siY) <= 0 [5(X) <=]

Figure 6.1.1 Wrong Mode Analysis

Though ¥, must be a ground term when the goal #(Y)) is called, it is not correctly estimated
above, becanse the sharing of structures between the variables X, and Y, caused by the
unification of (X1, ¥;} and g(Z, Z) are not considered.

In order to prepare sharings for correct propagation of mode information, we need
to consider graph representations of terms, atoms and negative clauses rather than tree
representations of them. Terms. atoms and negative clauses are represented by directed
acyclic graphs (DAG) possibly with sharing of stmctures, ie,, sharing of subgraphs.

Example 6.1.2 When negative clanses “g(X, V). r(X],s(Y)" and “glZ,Z),r(a), 2(W) are
unified, the rvesult is “g(a,a),r(a). 2{a)”. When negative clauses “g{X,Y), r{X)},s(¥)" and
“ql2.W).r(a), #(a) are unified, the result is also “g(a,a),r(a),2(a)”. In order to distinguish .
these unifications, we represent them in directed acyelic graphs as below.

30

Figure 6.1.2 Graph Representation

A sharing M om variables X3, X5, ... X} is an equivalence relation on the set {X;, Xy,
... X}, We denote that X and ¥ are in M by X way ¥. A sharing M says that, if variable
X and variable ¥ have the possibility to be bound to terms with shared structures, X eay ¥
holds. By 1, we denote the identity relation, that is, X e ¥ iff X and Y arc identical, which
means there is no possibility of sharing structures. M is said to be smaller than N w.r.t.
the instantiation ordering when X =y Y helds for any X and Y such that X =2y ¥V, and
denoted by M =< N. M is said to be smaller than N w.r.t. the set inclusion ordering when
X vay ¥ holds for any X and ¥V satisfying X ety ¥V, and denoted by M C© N. (These two
relations are the reverse of each other.)

Let A be an atom in the body of some clause in P U {G}, i be a mode substitution of
the form

<Xjem, Xoemy, .. Xem>.
and M be a sharing on variables X, Xa,..., X;. Then ApM is called a mode-abstracted
atom, and denotes the set of all atoms obtained by replacing each X; in A with a term
in m; without contradicting M. Two mode-abstracted atoms AuM and Br X are said to
be unifiable when ApM N BrN # 0. A list of mode-abstracted atoms [Ajpu My, Aspz Mo,

o Aniin M,] denotes the set union UL A;u; M;. Similarly, GpM (or the pair (G, pM)) is

called a mode-ahstracted negative elauses, and denotes the set of negative clauses obtained
by replacing each X; iu @ with a term in m; without contradicting M. When 7 iz of the form
“A), As. ... A7, the mode-abstracted atom AppM is called the leftmost mode-abstracted
atom of GuM.

The mode analysis w.r.t, GuM iz the problem to compute
{a) some list of mode-abstracted atoms which 13 a superset of Cpoear{GM),
(b) some list of mode-abstracted atoms which is a superset of C (G prM],
{¢) some list of mode-abstracted atoms which is a superset of £, o(GpM), and
{d) some list of mode-abstracted atoms which is a superset of £ par{GpeM).

6.2 Abstract Hybrid Interpretation for Mode Analysis
6.2.1 OLDT Structure for Mode Analysis

A search tree, a solution table and an association for mode analysis are defined o the
same way as type inference, except that labels are of the form (G, g M) and call-exit markers
of the form [A, pM,n}. (For Lrevity. we will sometimes omit the term “for mode analysis™
hereafter in Section G.) An OLDT structure for mode analysis 15 a triple of search tree,
solution table and association. The relation between a node and its child nodes is specified
by OLDT resolution for mode analysis in Section G.2.3.

6.2.2 Overestimation of of Modes

a1

Similarly to the type inference in Section 5, we need to consider the following situation
in order to specify the operations for mode analysis at steps (A}, (B) and (C) in Figure 2.2.1.
Let 4 be an atom, Xy, Xa,..., Xp ail the variables in A, p a mode substitution of the form
-:.'x,-:m,x:-:g,...,xk#ﬁ},
M a sharing on X, Xz,... , Xg. B an atom, ¥1,V2,..., %] all the variables in B, and v a
mode substitution of the form
<Yy @cﬂ,}’-ﬂ:ﬂr,. ..1}‘]*#&},
Then
{a) How can we know whether there is an atom Ae = Br in ApM N BueN?
(b) If there is such an atom, what terms are expected to be assigned to each ¥; by r?

(e} If there is such an atom, what sharing of structnres is expected to occur between
Vle:r-- . r}Fl hf r?

Example 6.2.2.1 When a term in p(X,Y) < X <« ground,Y < variable > and a term in
plAU).g(V)) < U <= pariable, V <= variable > are unified, X, U must be a term in ground,
Y must be a term in any, and V must be a term in variable,

(1) Overestimation of Unifiability

Along the same line of the discussion as the type inference in Scction 5, what we need
to compute is a mode containing all instances of some occurrence of Z when an jnstance of
term t{Z] 15 in mode m. We denote it by Z/ < t[Z] <=m>. Due to the choice of modes (see
[3]). it is computed simply as follows:

Z] < tjZ]4+=m >=m.

Example 6.2.2.2 Let ¢ be [X]L] and m be ground. Then

X/ < [X|L]<=ground >= ground, L < |X|L|<ground >= ground.
Let t be {X{L] and m be variable. Then

X/ < [X|L)<=variuble >= variable, L] < [X|L] < variable >= variuble.

Note that Z/ < t[Z] +=m > is not O when m is pot 8. Because the join V of non-
empty modes w.r.t. the justantiation ordering is always non-empty, the mode assigned to
each variable i= non-empty when g and v do not assign 0 to any variable. Thiz means that
the unifiability of ApM aud BN can be reduced to the unifiability of 4 and B, unlike the
type inferenee in Seection 5.

(2) One Way Propagation of Mode Substitutions and Sharings

Recall the situation we are considering. Similarly to the type inference, we will first
restrict our attentions to the case when ¥ =<> and ¥ =1. Suppose that there is an atom
Br (represented by a directed acyelic graph) in ApM N B <> 1. Then, what terms are
expected to be assigned to variables in ! by r7 And what sharing of structures is expreted
to oecur among variables in BY

Let A be a mode substitution. Again, along the same live of the discussion, what we -
need to compute is a mode contaiuing all instances of 4 when each variable X is assigned a

32

term in mode A(X). We denote it by /A, and compute it as follows:

g, MX) =0 for some X iu s;

AlX), when s 15 a variable X;

ground, when AMX) = ground {or every variable X in s;
E;_ otherwise,

2/d =

Exampie 6.2.2.3 Let s be [X|L] and A be < X <=ground, L <= ground>. Then
s/d = ground.

Let « be [X|L] and A be < X <=any, L<= ground>. Then
sfA = any.

Simultaneously, we can overestimate the sharing ¥’ on ¥y, Yz,. .., ¥ as follows: Yy sy
¥, if and only if
(a) n(Y,) and n(Y,) contains a common variable, or
(b) there exist different variables X; and X; such that X; vey X, the substituted terms
n(X;) and n({¥;) contain some commeon variable, and the substituted terms 5{ X;) and
n(Y,} contain some common variable.

Example 6.2.2.4 When u iz a mode substitution
<X =variable >,
M is the identity sharing
{X e X,
aud 7 iz a substitution
<V =X Y= X>,
then the sharing on ¥, Y5 is=
(Vi =¥V, = Yo Yo ¥V Vo e Vi

Let A, B be atoms, p a mode substitution for the variables in A, M a sbaring on
variables 1n A, and 7 an m.gu. of A and B. The pair of the mode suhstitution for the
variables in B and the sharing on the variables in B, that is obtaind from g and f using
2] <t|Z}<=t> and o/ above, is denoted by propagate(pM,). (Note that propagate{pM.n)
depends on just pM and n.)

(3) Overestimation of Mode Substitutions and Sharings

As for the operation at step (A) for mode analysis, we can adopt the one way substitution-
gharing propagation
propagate(pM, n)

since the destination side snbstitution-sharing 1= <>1. A= for the operations at steps (B)
and {C) for mode analy=is where the destination side substitution-sharing i= not necessarily
coual to <>1, we can adopt the join w.r.t, the instantiation ordering

pM v prapagate(v N, n)

where V15 defined as follows:
pMV ' M = vy Ny

33

where

2, for some variable X;, X, eay, X; and p(X;) v p'(X;) 5 @,
any, p(X:) v u'{X;) is variable, and for some variable X,

o X ey, Xj and p{X;) v p'(X;) is either any or ground,
(X)) v p'(X;), otherwise. -

I""fl-[“b:l'j =

No=Mv M

Example 6.2.2.5 Let g, p' be mode substitutions and M, M’ sharings as follows:
poo o< Xy e=variable, Yy <= variable >,
M:{ X=X Y221},
g <X =ground Y| < variable >,
Mo:{Xyee X)), Xypal,, Vi X,V a1y},
and voNg be M v p'M'. Then
vy =< X, <ground ¥, sany >,
Mo ={X) e X}, Xy =¥, ¥ e X, ¥ 2 ¥}]

6.2.3 OLDT Resolution for Mode Analysis

The relation hetween a node and its child nodes of a search tree is specified by OLDT

resofution for mode anlysis as follows:

A node of OLDT structure (T'r, Th, As) labelled with (*a;,mz,... 0,7, pM} is said to
be OLDT resolvable (n > 1) when o satisfies either of the {ollowing conditions.

(a) The node iz a terminal soluticn node of T'r, and there ie some definite clausze “By -
By, ByBy," (m 2 0] in program P such that a;p and By is unifiable, say by an
m.g.1. 1.

(b) The node is a looknp node of T'r, and there is some made-abstracted atom Dol in
the associated sulution list of the lookup pode such that o, aud B are variauts of cach
other. Let i be the renaming of B to a;y.

The precise algorithm of OLDT resolutuion for mode analysis 13 shown in Figure 6.2.3.1.
Note that the operarions at steps (A}, (B) and (C) are modified.

A node labelled with (“ey,02,. .., a,", gM) is a lookup node when the mode-abstracted
atom aypM is a key in the solution table, and is a solution node otherwize (n = 1}.

The mitial OLDT structure, immediate extension of OLDT structure, extension of
OQLDT structure, answer substitution of QLD T refutation and sofution of OLDT refutation

are defined in the same way as in Section 2.2,

34

OLDT-resalve((“ay, @z, ..., 20", pM] 1 label) o label ;
1=
case
when a zolution node ig OLDT resolved with “Bg - By, B2 O™ in P
let i be the m.gu. of oy and g ;
let Gy be a negative clavse By, Bz, ..., B, Tay, o Mgl aa. oo 0,
let voNo be propagate{pM.n) — {A)
when a lookup node is OLDT resolved with “BeN™ in Th
let m be the repamiug of B to oy
let Gy bu a nezative calnse “az.,..., 2
let vy Ny be pM W propagatele N) — (D]
endcase
while the lefrmost of 7y ig a eall-exit marker [Aj+1, pis1, Mitr. 1042] do
let 7,4 be & other than the leftmost eall-exit marker |

let e Moy b J'..:,_-+|.H.,-+] W p!‘ﬂ;lflgﬂtﬁl’;-"ﬂr{-ﬂi+l] . —)
add A;pivieg Nisg to the last of Ay Megys salntion list if it 12 not o it
t:=1+1;

endwhile

LGnﬂw~. Hrew - Mne’u.-.:l = {Gl'.- vy -'I'It,' .
return (G w. Bnew: Moew b

Figure 6.2.3.1 OLDT Resclution for Mode Analysis

Example 6.2.3 Let reverse and append be predicates as before. Then, extensivn of OLDT
stencture proceeds similarly to reach in Example 2.2,

First. the mitial OLDT structure below is zenerated. The root node of tLe search tree
i« a solution node. The solution table contains ouly vue entry with its key reverse(Lo, My} <
Lo <= ground>1 and its solution list is [].

reverse{ Ly Ma)
< Ly = grovnd =
1
reverse(L M) <« L=ground> 1:]]

Figure 6.2.3.2 Fxtension of OLDT Structure for Moaode Analysis at Step 1

reverse(Lgy.My)
< Ly== gruuﬂrf}
1
FEEAY
M reverse(La Nalappend (Na [Xa] Mo L[] -
5 LthMU"-_-sl"'_'M} < Xn Lo=ground > {,"
1 1 =7

.J'rf
e .

reverse(LM) < L4 ground > 1t [;vwrsv{L.M] < L M = ground > 1]
Figure 6.2.3.3 Extension of OLDT Structure for Mode Analysis at Step 2

Secondly, the root uwode is OLDT resolved using the program as before. The gener-
ated left node 1= the end of a unit subrefutation. Tts salution reveras(Lo, My) < Lo, My =

35

ground >1 1= added to the solution lst, The generated right node it a inokup node, beranse
the mode abstraction of its leftwnst atom is a varant of the Iabwl of the root node, The
association associates the lookup node to the bead of the salution fist of reverse{ Ly, My) <
Ly=ground>1.

Thardly, the lookup node is OLDT resclved using the solution table to pencrate oue
clild node. The aszociation associates the lookup nede to the last of the solution lizt,

Fourthly. the new solution uode labelled with append| No [Xa] Ma) < No . X5 =ground >
1is OLDT resolved usiug the program. The geuerated left child node Jabelled with the mll
clause gives two solutions append(Na. [Xa], Ma) < Na. Xo, M = ground > I0{X; = M-} and
reverac{Lo. My} < Lo. My <= ground > YU{Ly 52 My} to the solution table, The renerated
right child node i u solution nade.

reverse{ Ly Mg)
< Lp<=ground >
—
FAEAY

S reverse(La.Na) append(No [Xo]| Mz) [} -
< Lo, My <=ground > < Xo, Lo+ ground >

1 Al
/ !
append (N2 [X2]. Mz).[] \

< Na Xo =ground>
1 -
fA L
O append(Ng Ko Mg)]
<Ly My =ground> <N K <=ground >
1L {Ln Dmg} | A
P

['_'Iappen:il{N..;__._K;,.h‘![_{,].ﬂ]:._[]_.ﬂ - '
< Ly, Ay = ground> < Ng, K <= ground > e ;
LU {Ln 5% M) v N
f 1|II '\._‘ ,..
o O v
{Ln,:llfutmﬂlf} {Ln.f!fn¢=gr$uﬂef} .
Lu{loes My} LU {Lysa My}

reversel LM) < Le=ground > 1 : e emE—— - — = — ==

—— - !

reverse{ LM} < LM < ground > 10{L ve M}]
append (N X]M) <« N. X «=ground> 1 :
[append(N.[X].M) < N X, M < ground > 10U{X o< M},
append(N[X]M) < N. X M <= ground > LUIN 0= X, X 0= M, M 5 N1l
append (N KM} < N K <= ground> 1: s
mppend{N.K. M) < N.K, ﬂfcgrnumﬁl‘-—- TU{R s M} o
append(N.K.M) < N K M =ground > JU{N < K, K 2 M, M o N)]

Figure 6.2.3.4 Extension of OLDT Structure for Mode Analysis at Step 7
Fifthly. the new solution pode lnbelled with append{ Ng Fo M} < No, X =ground >1
2 OLDT resolved using the prozram. The generated left child node labelled with the null -
cinuse adds new solutions append(Ny Kq My) < Ny Xo My <= ground > 1U{I; == M}

30

and append(N2, [Xa] Ma) < Na, Xa, Mo <= ground > 1U{ N2 02 X2, X5 =2 M5 Mo e N2} 1o
the solution table. The generated right ehild node iz a lookup node.

Sixtlly, the lockup node labelled with append{Ng, Ko, Mg} < Ng, Xg = ground > 1 is
OLDT resolved further using the solution table. The new node adds a solution append(Ny, oy, M,)
< Ny, Xy My s=ground > TU{Ng = Ky, Kgmo My, M= Ngb

Seventhly. the lookup node is OLD T-resclved using a new solution of append(N, K, M)
<N, K <ground> 1.

Using a new solution of reveras(L M) < L = grnund‘ =1, the rnight child of the root
node is farther OLDT resolved. At step 9, all nodes are OLDT-resolved up.

reverse| Ly Mg)
<Los=ground>

1
A\
O reverse(La Najappend(No [Xa| M) i) ~---n o
< Ly, My = ground > < Xo, Loe=ground > P
1 1 T
/ ! -
: append(Na [Xa].Ma) f] -~ T
< Na, Xz = ground > .
4"1'\ "
o D :
‘o, % Lo, Mys=ground> < Lo Mpesground>
o AU {Lgw M) LU {Lye MY
=, P
reverse(LLM) < Le=ground> 1: x"nﬁ __-___FJ___,__.-‘-—;;”'#
[reverse(L.M) < L M <= ground> 1, e T TR e
reverse{ L.M] < L. M <= ground > 1U{L 0= M}] __H"'--H .-"’#
append (N [X] M) <« N, X <= ground > 1: Tt
fappend (N[X].M) < N, X, M < ground> 1U{X = M}, S

append (N[XM} <N X, M < ground > TU{N oa X, X sa M, M J"r}l
append(NK.M) < N K =ground> 1 :

lappend (NK.M) < N K M &= ground > 10{K s M}, S

append{N. K M) <N K| J'rf-ﬁ-g'rl}u.nrf}" IU{N =3 FO W ed MM N}]

Figure 6.2.3.5 Extension of OLDT Structure for Mode Analysis at Step §
6.3 Correctness of the Moade Analysis

We can prove the correctness of the mode analysiz in the same way as the type inference
i Section 5.3 The set wmeluston vederins between labels of OLDT structures and those for
mode analysiz 1z defined 1 the =ame way as in Section 4.3,

Lemma 6.3.1 (Overestimation of Resalvent)
Let (fap. o2, ..., e,) be a label of OLDT strveture and (%4, fa, ..., A.7, pM)
be a label of OLDT strueture for mode analysis such that (e, oq, ..., a,”, &) © (%8, 2,
. fa™. pM). Then
['1] When u and v are OLDT resolvable usiug a definite clause O, let (@', ¢") and (H', g'M") .
be the respective OLDT resolvents. Then (G',e') € (H', y'M').

ar

(2) When u and v are OLDT resolvabile nang solution: Br and B such that Br C Dy, lot
(G e and (H', p' M) be the pespeetive OLDT resolvents. Then (Gle') CH ' M),

Proof. It ie proved similarly to Lenss 5.3.1.

Lemma 6.8.2 (Owverestimation of Selution)
Let u be a node in an OLDT structure § Jabelied with (“a;.aq,. ... an, G7, o), and et
v be a node in au OLDT structure T for mode avalysis labelled with (8, fa,.... 8., H".
pe M) enely that
(a) ("o, @) (. e A7 p M) and
(b) the leftmost atome of @ aud H are pot call-cxit markers
Suppose that there exists au QLT subrefatation r of [ST = T JJ starting from u
with its answer substitution v, Thew thers exizsts an extension of T such that
{a) the extension coutaing an GLDT subrefuration & of (", Fae. oo fn™, p M) for mode
aualysis starting from v with its answer substitution v aued ite answer shariug N, and
|:]J} l,r"l:t],. ..., . ity . .‘} c {L;'ﬁ!] ,ﬂ: ﬁn'ﬁ. I-’J.'r'J.

Proof. 1t is proved similarly to Lemma 4.3.2,

Theorem 6 {Correctness of the Mode Analysis)

Lot Crawat (GpM) Coopatl GaM). Elpeat(GuM). T opar(GuM) be the sets defined for
the OLDT structure of (7. p. M) for mode analysis (with the depth-first from-left-to-right
strategy or any other strateoy) as {ollows:

Crocat(GpM} : the set of all calling patterus at local succese of GuM,

Cotrtat{GpM) ¢ the set of all calliug patterns at global suceess of GuM,

Etocat{GuM) : the set of all exiting patterns at local success of GuM,

Sptatat|GFp M) o the set of ull exiting patterns at global success of GuM.

Then
[#) _E_In:nI{G."M]I = CrocailfTp M)
“}} !:g.;,,;.u;{f:y.”] 2 (:F.!,;,z,a;“.rr‘j.:}"'fj
":'} E!rrﬂe![GF-"” :"r E.rf".'ﬁllt{?.lu'?'t}
() Eararatl GuM) 2 (G My

Proef. It is proved similarly to Theorem 5,

Remark. The reason the mode analvss neces the diarings while the type tuference does not
i# the differonce of the ardering steucinres. The iustantintion ordering and the set juclusion
ordering for mode analysis are not the reverse of cach other. while those for type luference are.
Underestimation of modes w.rt. the instantiation ordering does not mean overestimation of
them wort. the set iuclusion erdering, while it does Tor type inference.

7. A General Framework for Analysis of Succesz Patterns

Iu this section, we will generalize the approaches jn Scetion 4, 5 and 6 as follows:

(#) Term sete, alrtracted sabstitution aud abstracted atoms are introduced so that general
descriptions of term sets, substitutions and atom scts are considered.

(b} The overestimation eperations at steps (A} B} wud {C) are generalized so that general
approximations are coustdered.

{e} The information of sharings is zenerslized 20 that reneral constraints are considered,
7.1 Finite Approximation of Atom Sets

38

In geueral, a term set is ove of the following & + 2 subsets of the Herbrawd wmiverse
(possibly with intersections).

any @ the set of all terms,

;_1: a set of ferms,

Ty @ a set of terms,

Ty : a sct of terms,

B : the empty set.
We assume that there is an ordering = on term sets called the instantiation ordering such
that the set of term sets 1s a finite lattice wort. <. This means that the join operation v
w.r.t. the mstantiation ordering is always possible and there 15 a mimimum term set w.r.t.
the instautiation ordering. Because the term gets are sefz of terms, we can naturally define
the get incluzion ordering €.

An abstracted substitution pis an expression of the form
<X;«=1),Xo=ta, .-, Xyt
where £y.4a,1y are term sets. The term set assigned to variable X by abstracted substitu-
tion g i= denoted by p(X). We stipulate that an abstracted substitution assigns the minimum
element w.r.t. the instantiation ordering to variable X when X is not in the domain of the
abstracted substitution explicitly. Hence the empty substitution <> assigns the minimum
element to every vanable.

A constraint M on variables X0 Xo .0 X7 s a restriction on the substitured terms
to Xy Xa. ... X;. We assume that there are two orderings, the instantiation ordering and
the et juclusion ordering on constraiuts. (The more stonger a constraint is, the greater it is
w.r.t. the instantiation ordering, and the smaller w.r.t, the et inclusion ordering.}

Let A be an atom in the body of some clause in PU{G}, 1 be an abstracted substitution
ol 1he form

<Xy =t Xosta, . X, =t >,
and M bLe a constraint om variables X, Xa, ..., X,.. Then ApM iz called an ahstracted
atom, and denotes the set of all atoms obtained by replacing cach X;in A with a term in t;
without contradicting M. Two abstracted atoms AuM and By N are said to be unifiable when
ApM i DueN # 0. A list of abstracted atoms [Ayp My, Aapo Mz, -, Aqp, M) denotes the
set uuion U, Aqp: M, Similarly, GuM {or the pair (G, pM]! s called an abstracted negative
clause, aud denotes the sct of negative clauses sltaived by replacing eack X in & with a
term in t; without cout radicting M. When 7 iz of the form “Ay, 42, ..., 4.7, the abstracted
atenn Ay M s called the leftmost abstracted stom of GuM.

The analysis of success patterns wort. GuM iz the problem te compute
{a} some list of abstracted atoms which is a superset of Crooar{GrM).
(b) srime list of abstracted atoms whick 1s a superset of CorapalGprM).
{c} some list of abstracted atoms whick is a superset of (G uM)), and
(d} some list of abstracted atoms which is a superset of £ ppa{GrM]).

7.2 Abstarct Hybrid Interpretation for Analysis of Success Patierns
7.2.1 OLDT Structure for Analysis of Success Patterns

29

A scarch tree, a solution table and an association for analysis of suecess patterns are
defiued in the same way as mode analysis. (For Lrevity, we will sometimes omit the term
“for aualysis of success patterus™ bereafter in Section 7.) An OLDT structure for analysis of
siceess patterns i a triple of a search tree, a solution rable and an association. The relation
between & node and itz child nodes is specified by OLDT resolution for analysis of success
patterns i Section 7.2.3.

7.2.2 Overestimation of Abstracted Paticrns

Now we will generalize the operatious at steps {A), (B) and {C) in Figure 2.2.1. We
need to consider the situation abstracted from those in Section 4.2, 5.2.2 and 6.2.2,

(1) Overestimation of Unifiability

We need a procedure returning true if (aud Lopefully only if] two abstracted atoms
ApM aud BeX are wnifiable. By defining 2/ < t{Z] «= t > similarly, we can check the
unifiability. If the procedure is time-consuming, we can use the unifiability check of A and
Il instead of the exact one,

(2) One Way Propagation of Abstracted Substitutions and Constraints

We need a one way substitution-constraint propagation operation propagate(pM,n).
By defiring s/X similarly, we can define propaguteluM.n) if the propagation of constraints
15 well-defined.

(3) Overestimation of Abstracted Substitutions and Constraints

We need to define the join operation V for pairs of abstracted substitution and econ-
straint. If atom sets and constraints are appropriately chosen, we can define V in such a way
that the operations at steps (A), (B) and (C) are defined as follows:

propagatelp M.},

pMV propagate{v N),

sy Migy V propagate{yv; N;. niuq).

7.2.3 OLDT Resclution for Analysis of Success Patterns

The relation between a node and its child nodes of a search tree is specified by OLDT
resolution for analysis of success patterns as follows:

A node of OLDT structure (Tr,Th, As) labelled with [“a; aa,. . g, pM) s said ta
be OLDT resolvable (n 2 1) when p(X) # 0 for any variable X and @, satizfies either of the
following conditious,

{a} The node is a terminal solutiou wode of Tr, and there is some definire clanse “Rg -
By B, ..., Byp™ (m = 0} in program I such that @, and By are unifiable. Lot n be
an m.gu of ay and By,

(b} The node is a lookup node of T'r, wud there is some abstracted atom “Bur N in the
assoctated solution list of the lookup node such that a; and B are variants of cach .
other. Let 5 be the renaming of B to o).

40

The precize algorithim of OLDT resolution for analysis of success patterns 1= shown 1o
Fizure 7.2.3. Note that the operations at steps (A), (B) aud (C) are modified.

QLD Teresolve| [“ay, on, e . M) label] o label s
1= [
case
when a solution node is OLDT resalved with "By - By, Da,..., 8" m P
lot i be the moen. of ap and By
let 3y be a negative clanse "1 Ba, ... B, [or. g, Mon], a2, o007
let vy Mo be propagate(p M. n) — (A}
when a lookup node is OLDT resolved with “Be N7 in T'h
fet m be the renaming of JT to oy ;
let &y be a negative caluse "o, o 0"]
let pp Ny be uM W propagate(e N . n) — (B}
endcase
while the leftmost of G; is a call-exit marker [A;41, pisy. Mis1. 141} do
let @31 be Gy other than the leltmost call-exit marker ;

"o,

let vipy Mizy be g Moz V propagate(iy Noomig1) — (T]
add Ajeite1Nigr to the last of 45 yps1 Migr's solution list if it is not in it ;
1i=1+1;

endwhile

[Gnrw- F-ni.w}"l-nzui] = {Gf' VI"I"'III'} r
return (Grew, finew Mnew).

Figure 7.2.3 OLDT Hesolution for Analysis of Success Patterns

A node labelled with (“aj.a2,...,a,7, gM) iz a lockup node when the ahstracted
atom a,pM is a key i the salntion table, and iz a solution node otherwize (n > 1).

The initia] OLDT structure, immediate extension of OLDT structure, extension of
OLDT structure, answer substitution of OLDT refutation and salution of OLDT refutation
arc defined in the same way as o Section 2.2,

7.3 Correctness of the Analysis of Success Patterns

We can generalize the prools of the correctness in Section 4.2, 5.3 and 6.2 for general
analysis of success patterus by imposing the following conditivns. The set wclusion ordering
between labels of OLDT structures and those for analysis of success patterns 12 defined in
thie sne way as in Section 4.3,

Overestimation Condition

Tt (“aq, o, .oy &g, @) be a label of OLDT structure and (*Fy, f2, ... f.7, pM)
be alabel of OLDT structure for gemeral analysie of suceces patterns such that ("o, oz, ...,
an . 7] S (" Pz .. A7 g M) Then

(A} Let “Hy - By, Ba,....Bn" Le a definite clanse. When ay# is unifiable with Dy by an
m.en. § and oy i= unifiable witk By by an m.g.ou. g, then
I:_H]_,B:......Bm..Et.ti.ﬂil.ﬂj ----- ﬂn.-.'!?j
C(“By,By,....Bn.[f1, .0} Fa,. ., 807 propagate{pM.n)).

41

(B) Let Or be an atom and De N an abstracted atom such that Br € BeN. When (a
fresh variant of) Bris an lustance of aye by an instantiation 4, and a, is a variant of
I by a reusming g, then

(Taa....oon) ©(“fa. ... a0V propagate(v N,).
(C} When oy i= a callexit marker A, 0] and #; ie a call-exit marker [4], py, My,ml
then

(“az....an pa) © ("o, A7 My V propagate(pM, n;]).

Theorem 7. (Correctness of the Analysis of Success Patterns)

Let CrocatlGuM). Coobat(CpM), Tlocat(GuM), & robat{GuM) be the sets defined for
the OLDT structure of (G, g, M) for analysis of success patterns (with the depth-first from-
feft-to-right strategy or any other strategy) as follows:

Clocat{GuM) : the sct of all calling patterus at local success of (GuM},

Cotobat{G M) ¢ the set of all calliug patterns at global success of (GuM),

Erocat | GuM) @ the set of all exiting patterus at local success of (FuM]),

& otobet (GuM) : the set of all exiting patterns at global success of (GuM).

If the overestimation condition is satisfied, then
|:3] Efmuf{GFM} 2 wani‘G#H}
(b) Cotobat(GuM) 2 Corobar(GuM)
(¢} Erocat(GUM) 2 Eloeat (G M)
[(d) ?g:uLa:l’GﬂM} 2 Eg!nbdl[‘;ﬂ«"”

FProof. It iz proved similarly to Theorem 5.

Remark. Though we have shown a general framework, we can simplify several steps of the
OLDT resolution depending ou the structure of the terin sets, For example, We didn’t need
M in the type inference in Section 5, and we could check the unifiability of aypuM and By N
by checking the unifiability of &) and 8 iu the mode analysis in Section 6.

8. Discussion

The hybrid iterpretation in Section 2 is the basis of our abstract interpretation. The
original OLDT resolution by Tamaki and Sato [13] is different from our Lybrid interpretation
m the following two respects.

(a] In order to avoid the generation of infinite number of solution nodes, the leftmost atom
of the label of cach vewly generated nede is depth-abstracted to A by some depth d
after it is compared with existing keys of the solution tables to judge whether it is a
solution wode or a lookup node. When it is not classified into a lookup node and the
depth of the leftmost atom is greater than d, & new initial OLDT tree of A is added.
{Hewee the first element of their OLDT structure is a forest, not a tree.)

(b) A generated node is a lnokup node when (the depth-abstraction of) its leftmost atom
of the label is an instance, not necessarily variant, of some key in the solution table.

Our bybrid interpretation is still complete, but not necessarily complete with their multistage
deptli-first strategy ([13) pp.95-97). Nevertheless. the ahstract interpretation hased on our
bybrid iuterpretation with depth-first from-left-to-right strategy is effective, because the
pumber of abstracted atoms is finite due to each abstraction operation. The advautages
of the standard hybrid interpretation are of more importance for abstract interpretation,
becanse the top-down abstract interpretations are likely to dive into infinite loop due to the
abstraction operations, For example, theugh the standard top-down interpretation of the

42

predicate reverse recurses with shorter first argument, the abstract top-down iuterpretation
recurses, say {rom list to list, Le. recurses with the same value in the abstracted domain.

The deptli-abstracted pattern emuneration in Section 4 is a reformulation of the work
hy Sata and Tamaki [12] with the following modifications.

{a) Our approach applies the depth-abstraction to each substitution o, while their original
approach applies the depth-abstraction to cach atom under the substitution, This
modification exploits the fact thut the success and exit patterns are instances of some
atom in the body of some clanse m PU {G}.

{h) Onr depth d abstraction does not replace variables and constants at depth d, while their
original deptls d abstraction replaces every depth d subterms even if it is a variable or
a constant. This trivial modification makes the depth-abstracted pattern enumeration
more precise.

The type inference in Section 5 is an improvement of our previous work [4]. Our pre-
vious approach was basically bottom-up so that we needed some device to exclude irrelevant
goals. The device, called generalization or closure, employed in our previous approach is no
longer necessary in our new approach.

The mode analysis in Section 6 1= a modification and an improvement of the works
by Mellish [10]).[11] and Debray [3]. Melish’s approach, following his general framework,
first derives simmltaneous recurrence equations for modes, and solves them in a bottom-up
mamner. Debray’s approach is very close to ours cxcept that he did not use sharing as an
additienal infarmation. Thougl be pointed out the importance of the problem of “aliasing”
{zee Example 6.1.1), and gave a sufficient condition for sale use of his mode inference, the
result of his mode inference is not carrect in general when four modes any, ground, variable
and 0 are considered. The result of our mode anlysis is always correct due to the combination
with “sharing aualysis® in compensation for additional computational cost. {For the case
when just three modes any. ground and @ are considered, see [4].17].8].)

The framework in Section 7 i= motivated by the work by Mellish [11] to formalize a
common framework for logic program analysis. As mentioned in Section 1, Mellish’s approach
depives simultaneons recurrence equations for the sets of goals at calling time and exiting
time during the top-down execution of a given top-level goal, and obtains a superset of the
lenst solution of the spoultapeous recurrence erations using a bottom-up approximation.
Qur approach starts from a standard Lybrid interpretation, and obtains the superset by
abstracting the standard hybrid interpretation directly. We believe that, due to the more
direct correspondence between the standard interpretation and the abstract interpretation,
the name “abstract interpretation” fits with our abstract iuterpretation more paturally.

9, Conclusions
We bLave shown o common theoretical framewerk for logic program aualysis and its
effective examples for depth-abstracted pattern cunmeration, type mference and mode anal-

ysiz, Thiz method is an clement of cur system for analysie of Prolog programs Araus/A
under development [3).[71.[8].19].

Acknowledgements

43

As nsnal, we owe very mnels to Mr. Hisao Tamaki (Tbaraki University) and Dr, Taieuke

Sato (Eleetratecluical Laboratory). We would like to express deep gratitude to them for their
perspicnons and sthmnlative works [12]. [13].

Cur analyse system Argus /A under developaent is a subproject of the Fifth Generation

Computer System(FGCS} ~Iutelligent Programming System”™. The autliors would like to
thauk Dr. K. Pacli (Director of ICOT) for the opportunity of doing this research. and Dr.
K. Purnkawa (Vice Director of 1COT), Dr. T. Yokoi (Vice Director of ICOT) and Dr. H.
Ito (Clief of 1ICOT Jrd Laboratory) for their advice and cucouragement.

References

1]

(2]

[3]
[4]

5

o

7]

i8]

[10]
1]

[12]

3

Cousot.P.and R.Cousot, “Abstract Interpretation : A Unified Lattice Mode] for Static
Analysis of Programs by Construction or Approximation of Fixpoints,” Conference
Record of the 4th ACM Symposinm on Principles of Programming Lanmuages, Los
Angeles, pp.235-252, 1977,

Cousot.P.and R.Cousat, “Static Determination of Dynamic Properties of Recursive
Pracedures.” in Formal Description of Programming Concepts (E.J.Neuhold Ed), pp.
237-277, North Holland, 1978,

Debray.S. K.and D.5. Warren, “Detection and Optimization of Functional Computation
in Prolog,” Proc. of 3rd International Conference on Logie Programming, 1086,
Debray.5.K.. “Automatic Mode Inference for Prolog Programs,” Proc. of 1986 Sympo-
sium on Logic Programming, Salt Lake City, 1956,

Horiuchi, K.and T.Kanameri, “Polymorplic Type Inference in Prolog by Abstract In-
terpretation.” Proc. of Logic Programming Conference, pp.107-116, Tokyo, 1987.
Kanamori.T. and K.Horinchi, *Type Infercuce in Prolog and its Application,” Proc. of
Oth International Joint Couference on Artificial latellizence, PR 7T04-T07, 1985,
Kanamori.T., K Horiuchi and T. Kawamura, “Detecting Functionality of Logic Pro-
grams Based on Abstract Hybrid Interpretation,” to appear, ICOT Technical Report,
1087,

Kanamor, T.. K. Horiuchi and T. Kuwamura, "Detecting Termination of Logic Pro-
grams Dased on Abstract Hybrid luterpretation,” to appear, ICOT Technical Report,
10ET.

MaejiM.and T.Kanamori, “Top-dewn Zooming Diaguosis of Loric Programs,” to ap-
pear, ICOT Technical Report, 1987

Mellish.C.8., *Some Global Optimizations for A Prolog Compiler.” J. Logic I'rogram-
ming, pp.43-6G, 1985,

Mellish.C.5.. “Abstract Interpretation of Prolog Programs.” Proc. of 3rd International
Conference on Logic Progranunine, pp.463-474. 1086,

Sato.T.and H.Tamaki, “Enumeration of Success Patterns in Legic Programming,”
Proc. of luteruational Colloguium of Automata, Language and Programming, pp.640-
G52, 10584,

Tamaki H.and T.8ato, *OLD Resolntion with Tabulation.” Proc. of 3rd International
Conference on Logie Trogramming, pp.84-58. London, 1080,

44

