ICOT Technical Report: TR-274

TR-274

Performance and Architectural Evaluation
of the PSI Machine

by
H. Nakashima, M. Tkeda. (Mitsubishi) K. Taki
and K. Nakajima

July, 1987

€987, 1C0T

Mita hokusar Bide, 2iF 3 dab=-3101~5

H :O | 4-28 Mita 1-Chome Teiex 1COT] 42964

Minato=ko Tokwva 108 Japan

Institute for New Generation Computer Techno_logir"

PERFORMANCE AND ARCHITECTURAL EVALUATION
OF THE PSI MACHINE

Kazuo Taki Katsuto Nakajima

ICOT"

Abstract

We evaliuated & Prolog machine P3I [Personal Sequential Infer-
ance machine) for the purpose of improving and redesigning it.
Tn thiz evaluation, we measured the execution speed and the dy-
namic characteristics of cache memory, register file, and branching
hardware introduced for high-speed execution of Prolog programs.

Exscution speed of the PSI frmware interpreter was found to
be camparable to that of the DEC-10 Prolog compiled code on the
DEC-206¢. It was also found that P51 was faster thar DEC for
executing programs containing muoch anification and backirackiag
that require runtine processing.

With the cache memory, the hit ratie for applicatien programs
was found higher than 95%; this demenstrates that the Prolog
exceution has much memory access lacalicy. The memory ace
cess {requency and the appearance ratie between Head 2nd Veite
command were also investigated.

Canrerping the register file, use rate of each dedicaied 2ccess
mode was meascred and effuct of each mode was discussed. In
the branching function we confirmed a high appearance rate of
conditionz! branches aad multi-way branches based on tag values.

1 Introduction

We, an R & D team of the Fifth Generation Computer Svs-
temn project in Japan, have developed a Personal Sequen-
ual Inference machine (P51} pursuing high-speed execution
of an extended Prolog lenguage, larger memary capacity,
end an improved environment for interactive program de-
velopment. The design philesophy, machine architecture,
and hardware confizuration of the PSI have already been
reparted 234

This paper reports & result of performance and archites-
tural evajuation of tne PEI machine. In the evaluation, we
measured the execution time of Prolog applicatien programs
and the dynamic cnaractenistics of cache MmEnory, regisv_‘r

Zle, and branching hacdware that were introduced for high-

speed execution of Prolog programs. Aleasurement data
i regoried and effects of each dedicated hardware compo-

wnl are diEonsses refarming to toe data, The evaleation

Permiassing o [k vkt fes alk or part of this mztenal is grnn:l:d
provided that the copies are 0ot made or distributed for direct commereal
advantape. the ACM copvocht notice and the tithe of the publication and
it date appear, and notice is given that copying is by permission of the
Association for Computing Machinery, Ta copy otherwise, of 10
rapublish. requires o fee andior specific permistion

Hiroshi Wakashima

and Morihiro Ikeda

Mitsubishi! Mitsubishi?

was undertaken with

the zoal of improving and redesigning
the PSI The measurement resuls aiso includes interesting
data concerning the dynemic memory access characteristic
of Proiog application programs

2 PSI Architecture

2.1 Execution Method and Machine Ar-
chitecture

The P51 i3 & high-leve! langusse machine dedicated for di-
rect execution of the predicate logic language KLO. which
iz an extended version of Prolog.

I the PSI, & microprogrammed interpreter interprets and
axasutes machine-resident exprassions of KLO programs {in-
struction code)./" For the high-pesformance interpretive ex
ecution, PSI has several hardware supports deseribed in the
next subsection. A word format of the P5] consists of an 5-
bit tag part and 2 32-bit data part. In the instruction code,
each atom, predicate name end varioble is mainly expressed
in a word containing the corresponding tags. If arguments
for a predicate don't require one-word length expressions,
up to four 8-bit arguments are packed into one word in order
to reduce memary sonsumptinn.

Execution method of the microprogrammed interprater
is similar to that of the DEC-10 Prolog ol except for ex-
tended control functions ™¥ and number of stacks. That
ig, four stacks such as local, global, control and trail stacks
are used, The local and contrel stacks are separated in o
der to make inner elavse OR eperations efficient. The local
gtack is an aren for loenl variables. The global stack is an
area for variables appearing in compound terms. The trail
stack coatains address information to make variables un-
bound for backtracking, The control stack contains 10-word
controi frames a5 either environment frame for program ex-
ecution continuation or choice point frame for backtracking,
Control information for the current execution is held in a

“Fourtl: Research Laberatary. Institute for New Generation Com-
puter Tachmology 4-25, Mita 1.Chome, Ainata-ka, Tagva 108, JAFA N,

alformation Processing Dept., Infermation Systems and Tiectronics
Developnient Laberacary, Mitsubishi Elsctrie Corporation

*Naw Praduct Development Dept., Computer Werks, Mitsubisha
FElestriz Corporation, 323, Namamashiva, Namakuta city, Kanagaisa
AT JAPAN

register file called work file (WF) and saved to the contrel
stack as necessary,

The four siacks are allocated to independent logical ad-
dress spaces Insrruction codes and heap vecters (rewsitable
data structures} are stored in an area called the heap area,
which is also an independent logical space, The P5I sup-
ports coneusrent execution of multiple processes (programs)
guch as user processes and interrupt handling processes.
The heap area is shared by all these programs. while stack
areas for each prog-am are ellocated to independent logical
spaces. We call this lndependent logical address space sim-
plr an ares In order to allocate physical memory pieces
to the each area a hardware address translation table is
supported M

The P21 CPU roatains & sequencs control unit, & dara
processing vnit. & memory unit which includes a cache and
an address translation unit, and an /O bus intecface. The
data processing unit has two source date buses and a desii-
nation bus whick an ALU, a register file, memory interizce
registers. ete. are connected with. These hardwere compo-
nents are controlled with & microprogram. Microprogram
execution and next microinstruction fetch are done i pas-
allel. A console processor is connected to the CPU through
a consale bus for the maintenance, initialization, debugging
and measurements for the svaluation.?]

2.2 Hardware Features for High-Speed
Execution

The PSI has the following features supporting high-spead
execution of KLO W,

1. Cache memory for high-speed access to stack and heap
Brens.

L]

Large-capacity multiple-functional register file {(WE:
work file) for ihe interpreter optimization.

3. Multi-way branching function based on tag values, and
versatile condizional branching funciion,

4 Microproscammed parallel control functien (almost
hovizonse! microprogram control: 64 bits per instruc-
tion)

The specifications of the cache memory are (a) 8k words
eapacity, (b) two-set set aesociative method, (¢] store-in
{write-back) method. (d) 200n sec access time for hitting
and 300n sec for missing, (&) four-word block size, {I) four-
word black transfer between the main memory taking 3000
sec, () speciaiizsd Weite-siack command which eliminate:
block read-in on a writing mishit; which is used for the
comiliuuss pash operaiion to top of the stack.

The ragister Sie called she work file (WF) has 1-word ea-
pacicy anel enn exscure a read, and a result writing operation
within a mucroins:ruction cycle. The first 16 words of WF
heve dual ports access eapability, and the first 64 words and

the lest G4 word constant storage area are direct addressakle
from a microinstruction. The two address registers called
WFARL and WFAR2 can be used for indirect addressing.
They have automatic increment and decrement functions.
Ease-relative addresses are generated by two methods; one
cambining the lowest 5 bats of a data register (PDHR oz CDR}
to & base register, and the ather combining 5-bit addresses
specified by microinstructions to another base register. The
interpreter uses the tail resursion eptimization methed for
dvnamic eptimization "l The method ie implemenied wizh
reserving a pair of buffer arca on the work file {called the
frame buffer), The buffer caches the local variables for the
surrent execution. Two buffers are used alternately when
no local frame have to be saved inte the local stack, and

local stack accesses are reduced into the work file arces=.

These frame buffer areas in the work file can be accessed by
sither indirect addressing through WEARL or base-relative

addressing through PDR or CDE.

2.3 Target Performance

The P31 CPU uses maialy high-speed Schotthy TTL MIEIs
available in the market. The microinstruction cycle time is
200 nanoseconds. Its targst execution speed is 30K LIPS
{Logical Inference per Second), comparable to the perfor-
manee af the DEC-10 Prolog compiler on the DEC-2080.

3 Performance Evaluation

3.1 Program Execution Time

We executed some benchmark programs en the P35I and
on the DEC-2050 with DEC-10 Prolog Compiler and mea-
sured the execuiion time. Table 1 shows the results and
ratios between both measurements. For the DEC-10 Pre-
log compiles, mode and fast-code declaration were used for
the compilation. The execution time of these codes were
then measured several times with "statisties” predicate, and
the resnlts averaged. Measurements of the P5I used 2 1-
millisecond built-in timer of the CPT.

Benchmark programs (1) through (10) ia Table 1 are a
part ¢f programs presented in the first Prolog contest of
Japan.® They are afl small-scale programs that contain fre-
quent list processing. Sample programs (11) through (1%
are larger-scele programs for practical use, Among them,
BUP and LCP are parsers using different methods for natu-
ral lenguage processing; HARMONIZER is a music genera-
sign system that attaches harmonies te melodies according
tp musical koowledge, Number of source program lines af
these progroms are approsinately 304, 1300, 700 lines each.
Ard each of these uses urifieations of structural data and
backtracking., Especially BUP treats structures larger than
sight elements and nested structures. And HARMONIZER
uses freguent backtracking Progrem (11} and higher were
alsn wzed i the hardware evaluation described in the next

Table 1@ Execution time of benchmark programs on PSI
and DEC-2060.

programs ! P5limsec) | DEC{msec) | DEC/PSI
{1y mravarse (3] 13.6 G545 0.70
2. quick sore {30) 18.2 14.6 096
f3, tres traversing aLy Gl.l 1.18
(4% DLsp (tarald) 4024 4350 1.08
(5 lLsp (Rb29) 369 402 1.09
f3 lLisp (nreverse! 173 154 1.12
(v 8 qeeens {1) 05.9 97.5 1.01
(8% & gussps [all 157 1530 1.01
(8% reverse junction | 382 41.7 1.0G
{10 slow reverse (6) 044 £5.0 0.20
(11 BUPa 43 52 1.21
(12 BUP-2 139 194 1.4d
(i3 BUBR2 309 424 1.37
(34" hasmentzerl 65T 1040 1.32
{13y harmonizer-2 1578 2670 1.42
(167 harmonizer-3 4119 31320 1.30
(17 LCP-1 370 2035 0.78
{1y LCP-2 1387 1071 0T
{i0; LCP-3 2130 1536 0.78
SEL L0,

Table 1 shows that the P5SI has achieved a target perfor-
mence comparable to that of the DEC-10 Prolog compiler.,
Observing the Table 1, it is found that superiority of DEC of
P31 cepends on the program. DEC tends to be faster than
P51 for the program execution like (1} NREVERSE, which
processes simple list date and is optimized effectively by the
vompiler. For example, the compiler can remove the non-
determinacy applying the close indexing method, and can
optimize the code for Lisi unification, Oppositely P51 teads
to be faster than DEC for executing programs like {11} to
(16}, which have much unification between structural data
and invelve frequent backiracking. In other words, these
programs require much run-time processing. One reason for
this may be, the P35I requires more execuiion management
inmformation to be stacked, which in turn requires more over-
head for basic processing on simple programs than DEC.
Cozversely, P3I s relatively faster when backtracking and
nancacions herween siructures appear which are processed
coompietely by the microprogram.

Geeneraliv speaking. PSI is surniable at executing appli-
cation programs which require much run-time processing.

ver, DEC executes t0 program LCT faster than PSL
even though LOP processed siructural data. One reason
miay e e develoger of LOP Mr, L Pereira, i= also one of
the developers of the DEC-10 Prolog processing sysiem, giv-
ing him thorough knowledge of the svstem’s advantages and
dizacvantages (S example, performance of the structure
viincation fals dows wien oumber of structure eiements

excesd certain number). To analyze in precise, further rve
search 15 required.

3.2 Dynamic Characteristics of the Inter-

preter

We measured the dvnamie eharacteristies of the micropro-
gramrmed interpreter whea practieal-scale application pro-
grams were executed. The purpose was to collect statistical
data for wmproving and redesigning the system. Table 2
shows the exesution step ratios of each companent module
of the interpreter. For the sample programs, the window
system which is a component of the PSI operating system,
and a game progra called 8 PUZZLE were added. WIN-
DOW treacs few unificzations of structure data and less back-
tracking. 5o to speak. WINDOW rarely uses the functions
of Prolog. & PUZILL iz a search problem and conizins
much backtracking,

Rate of buili-in predicatesz call to the tota! prediceie call
were 825 for window aad 6377 Jor DUP, whick 202 0ot io-
cluded in the teble. Ther are muck higher than the use:
defined predicete call. However the rate of microprogram
execution steps for buili-in predicates (built) to the total
execution steps were 25.2% and 18.2% for each program,
seen in the table. These values are much less than the rate
of calls. It means that & lot of time is spent for execu-
tion control {management of call and return for user defined
predicates) not for executing built-ia predicates. This may
result from thé previousiy mentioned situation of relatively
large management information in KLO (ten-word frame) re-
quiring many processing steps. Teble 2 also shows that
getting arguments {get.arg) for built-in predicates is also
time-consuming. These conditions may be a useful focus
for efforts to improve the processing svstem.

On the other hand, observing the column uaify”™, val-
ues for BUP and HARMONIZER are large, demenstrat-
ing that these programs execute much unification. That
is, the unification iz one of the targets for performance im-
provement. Concerning the performeance of the unification
function alone, PSI was measured better than DEC.Fl To
improve the unification performance more, new instructlon
sat should be introduced which is suitable for 2 compiler to
optimize unification code.

4 Hardware Evaluation

4.1 Measurement Method

This secticn reports our measursment method of the dv-
namic characteristics of the hardware exscuting sampie
programs. Aleasurernents were intended Ior desermining
whether or not the hardware needed 1o be redesigned. Dy-
naric chasaeteristics of the cache memeory, work £le, and
branching functions were measured.

Table 2+ Execution siep ratios of each component module of the finnware interpreter ().

programs contral | unily trail | get-arg cut bouilt
{1} window 31,1 171 0 134 10.8 258.2
(¥ 8 pazzle 203 114 75 e] 3.3
{(3) BUP 223 | 430 4.7 5.2 5.6 19.2
(4] harmonizer 2.5 46.4 34 7.3 4.0 11.0
Table 3: Execution rate of each cache eommand in the total Tabe L Access frequency of each memory arca {segment)
micropropram evecution steps (). {51
I . — — : -
programs) read | write: | write | write | tatal programs heap | giobal | local | control | tradl
i stack | total . | stack | stack stack | stack
1} window-1 1.2 13 1.2 f 4.7 19.9 11 windaw-l 19.6 ‘ 4.6 16.3 j wy o 28
(2) windew-2 | 152 | 30 | L1 | 41 | 197 (2} window.2 | 366 | 44 | 127 ! 263 6.1
(3 windaw-3 17.6 3.0 14 ‘ 3.3 | 22.3 (3 wiadewd | 327 | 62 12.1 252 1 LB
(4} & puzdle 99 | 32 | 23 .1 | 16.0 {4} & puzzie 313 | 143 o339 o4 5.4
i3y BIP 15.6 1.5 2.2 ! 3.5 2L.3 ia) BUF 380 4.0 178 ¢ 120 1.8
{6} harmonizer | 13.3 4.6 22 | 68 | 221 (6} harmorizer 352, 1T | 30 128 | 3§
{iy LCP 170 | 39 | 2z [6.1 | 23.1 {7y LCP 447 | 229 | w1 | 174 1.4

The sample programs mentioned in the previous section
were used, 2ad several tools were prepared for data collec-
vion and hardware eveluation. For data collesticn, 2 simple
interpreter svstem calied COLLECT was installed in the
console processor of the PS1. This svstem was made to ex-
ecute command chains for CPU activation and data collec-
tion. Single steps or continuous steps up to a breakpoint
ware exocured repeatedly, and microinstruction addresses
and the contents of registers or memory were dumped onio
2 fexible disk each time the CPU stopped. For analysis of
:he work file and bravching circuit, we built a tool called
“IAP and analvzed microinstruction patteras. Using an
sidress pastern of microinstructions traced by COLLECT,
SIAP counts the number of specific patiern appears 1o a
ssecific microinstruction Beld. For analrzing the dymamic
sheracieristics of cache memory, we also made a eache mem-
sry simulator ealled PLIMS, Hit ratios and its variations ac-
zazding te the cache memory size were obtained by PMM3
with enele saquransd patterns and memory addresses cols
el e COLLECT.

+.2 Cache Memory

Ve cotlectad data concerming the frequency of cache mem-
wryomeeess and coche kit ratios. We osed these data to
avaiunie cache mamory of P31 which decreased access time
otk to the stack and heap aceas.

Table 3 li2eg the pppearance frequoney of each cache com-
sand [0oshows thar 16 ta 25.1% of all mirrninstruction

steps include cache commands; in ather words, about ons
in every five microinstruction steps is a request for memory
access. The ratio between Read and Write commands i3
approximately 3 and 1, ie., Read commands appear more
often than write commands. The Write Stack command
accounts for 50 to T3U of the total Write commands, in-
dicating that the command introduced for stacking data is
frequently used.

Table 4 shows the frequencies of accesses to areas, When
the accesses are grouped into those te the heap areas and
those to the four stacks, accesses to the heap area secount
for 30 to 55% of the total. Accesses to the heap aren are
mainly made to fetch instruction codes. Only the program
WINDOW uses data of the heap vector type, and thus the
frequency of its access to the heap area inerenses. It is alse
found that the frequency of instruction fetch varies depend-
ing on the programs.

The feequencies of accesses to the global, local, and con-
trsl stacks is also program dependent. The global stack is
frequently accessed if 2 program processes many structured
data. as is the local stack if a program contains many vari-
ahles as arguments | other than structured data elements)
or is the control stack 1f a program calls many predicaies
for few argrunents. Acecess frequencies to the trail stachk are
iow, G.4% at highest.

Table 5 shows cache hit ratios for arcas. Most of L
ratios are higher than 96% except for WINDOWs. Pro-
grams (3] throuzh {7) had especially high kit raties, while
thew are praciical-scale application programs effectively us-

Table 5: Czche hit ratios of each memory area (segment) (%).

programs heap global local control trail total
stack stack stack stack
{1 window-1 94.1 928 43.0 oo 4 8u.6 964
(21 window-2 £7.2 800 0%.5 503 832 91.9
(3 window-3 84.5 92.8 97.4 956 a8 T a0.7
{4} & puzzle 99.2 a5.4 50.6 9a.2 L 99.3
{3y ETP 022 96,8 59.0 §3.2 oa.7 980
(6} harmonizer 87.3 95.4 0%.4 og.2 ar.o 054
(71 LCP 95.6 018 802 1 801 034 0f.2
Perforaance improvesent
ratios {X}
4.0
33.0
3.3
a0 —
5.6
0 -
15.1
e —
E.3
I | I | i] i
8 52 124 312 Ik Bk

Cache eepory size (W)

Figure 1: Performance improvement ratios againsi the cache memory size.

ing backtrack and unificatien functions. This means that
the memory access locality far Prolog program execution
is high enough and the cache memory size of P31 is suff
cient. The reason why the hit ratios for WINDOW.2 and
WINDOW-J are low is considered that these program exe-
cutions contained process switching for [/Q services several
times, and that the locality of instruction codes decreased
because of the object ariented features of the ESP, a svstem
description language of P51 in which frequent predicate call
aoress “the clnes” occurred. Whether or not object-oriented
programming decrenses cache kit ratics, it may have to be
determined by further awmluation.

For the next, the capecity of cache memory and the num-
ks of eache gots are investizated. Data was obtained by the
cache memory simulator which simulated various specifice-
tions of ceche memory using a trace information of program
WINDOW,. Figure 1 shows performance improvement ra-
tios obtained by changing the cache memeory capacity from
£ word: te 2K words, Other specifications are same with
the cache memory of the P35I

Dedfinition is:

Performance improvement ratio = (Tne/Te) - 1 x 100

Tne: Execation time measured when cache memory does
not exis:

Te: Execution time measured when cache memory exists

As shown in Figerze 1, the improvement ratio saturates near
the eapneity of 517 words, This means that the 8K-word
capacity of cache memory can be reduced {0 some extent.

On the other hand. the direct mapping cache (single set
caclie} is more desizable than the two sets cache concerning
the design and hardware cost. Therefore, we investigated
performance improvement ratios when usiag twe 4li-word
eete and one 41-word set, The ratios obtaiced with one set
cache for WINDOW, SPUZILE, oz BUP was only 3% lower
thar those abtained with two sets for the same programs.
This value may be vzeful for judging the trade.off between
cost and performance.

To evaluate the store-ic method, the performance im-
peovement redio of this method was compared with that of
the sioce-through method using the cache memery simule-
tor. Store-in was 8% higher than store- through, confirming
the efectivensss of the store-in methed,

4.3 Work File
We mensused the spnearance frequency of each work file
{WT aceess mods for sample programs execution, Mles-

cent empleved the mizroinstruction patiern analvais
tont MAF. Table 6 showe the measurement results ohrained
Close resulis to the BUP were
Ty were execuled,

an BUF was enaruzed

W
obrained when other prog

As showsn in the "total” row of Table fi, the frequency of
access to the WE was 50,45 for being specified by micre-
program Source 1 icontrolling ALL input-1} feld, 20.1% by

Table 6: Dynamic frequency of the Work File {register file;
access mode (%)

access mode spurce | ! source 2 | destination
{ALU in-1) | [ALU in-2) | {ALU out)
(1) WFd-0r !12.21," 6,97 | L00f/esar !33-UT;’12.[;
(7} WFI0-3F | 38.5/33.0 - | 63.6/23.3
{3} Constant 2307130 | — —
f4) @GPDR/CDRE | L3/ 0.8 — 037 0.1
(57 &WFARL 46/ 26 - 22010
{67 WWIAR2 007 004 — 1.3 0.1
{7) H&WFCER 037 0.2 — i Lo 0.0
total 100/ 56.4 i 100/29.1 100,368

{Hate in the toral Work File accets couprs
fheate in the total microprogram execusion steps.

Source 2 (consroliing ALU input-2- Selc. and 36 €5 by Des-
tinazion feld {rontrolling ALT cusput bus) WFE is used as
ALT inpui-1in more than hali of microprogram execution
geeps, while & part of Source 2 and Destination access were
performed with Seurce 1 atcess concurrentiy and the rest
were performed independently.

The addressing medaes (1) through (3] are variations of
the direer addressing. These modes ware used by 0% or
more of ll aceesses to the WF. While one third of the G4-
bit length of a micrcinstruction word is used as a direct
addressing Beld for WF, the frequency of the use of this
modes canfirms the nsefulness of this feld.

Tunctions (4) and {7) for base-relative addressing and
functions (5} and (8) for indirect addressing are evaluated
below. The baze-relative addreesing function (4}, which uses
POR or CDR es an offset from the base, was used less fre-
quently than expected. This functiion was most frequently
used to execute WINDOW (pot shown in the table}, but
ihe highest frequency was enly 3.3% when PDR was uzed
end 1.7% when CDR was ueed, If each packed argument, 3-
bit) in a werd ean be also vsed as an offset from the base
far pointing variables on the WF [on the frame buffer). the
use rate of the function may increase somewhat. The in-
direet addressing function {3} through WFARL 18 used to
access the local frame bufler, a5 is funcilon (4). 907 or
more of indirect addressing successiully use the automatic
increment function. Funetion (8) is used to accwess the crail
bufer, U9l and funciion (T} is uged for general purposes.
The use rares of both were so low that the buffering of trail
stack and supporting functivuns {6* and (7i may have to 2e
reconsidered,

More than 99 of all accesses to the WF were found as
peeesses 10 directly addressable 123-word areas and twu G4
word loral frame bufers. Io this situation, reduvecing ihe
wark Sle capaciiy much from 1li-word may decrease hard-

were cost with little effect on performaence.

Table 7: Dynamic frequency of the branch operations in the
microproeTam vxecution steps (5]

aprration BUF | window | § puzzla
Typel
{1} nooperation 7.2 8.7 4.8
(27 il {eond) then 16.0 16.5 121
(30 if (meticond)) then 19.2 1740 0.3
(4) if tagisrc2) then a7 5.2 11
(3] case (tagin P/CDR)) | 108 a0 0.1
(6] cass {ira) 2.8 4.6 4.2
(T} case {ir-opcode) 0.5 14 L5
(8] goto 37 L 29
(8] gosub 4.0 57 6.3
{10] rcetura 3.5 54 6.5
(11) load-jr 0.8 S 0.y
{121 gota Gr 14 n.g | 0.y
Tvpel
(13} =zo eperation 0.6 V.8 i
[li} zoto 10.9 b i 152
Twped
{15} no aperazian 65 | N0 4.2
(16) goto Sjv { oo 0.04 | 003

4.4 DBranch Functions

Takle 7 shows the dyaamis frequencies of ench operations
appesred in microprogra brasch feld for thres sample pros
grarms exagution, The frequencies were measured with the
microinstruction pattern analysis tonl. In the "operation”
columan, macmenics of branch instruetions are shown which
are grouped inio three instruction types. Each group in-
cludes the No Operation function. The total appesrence
frequencies of 2ll the cperations, (1) to (18), is 100%, and
that of all branech functions can be obtained by subtracting
the appearance of Mo Operation functions. (1), (13) and
(15}, from 100%. This total is very high ranged from 77
to 83%. That &5, arvund 80% of all the microlnstruction
stens monszin branch operations. In these steps, it was also
measured that approximately 507 were exeonted with dan
magipulation ead appooximately 307 without dara manip-
ulation.

In Tahle T, 6

tyrpes of conditiona! branches are grouped
sl (3 Conditional branck [4) 1= bazed
roro s giver rag vaine. The otal of reguests
hes accounted far 33 ke 2O of all sreps
einforce conditienal bianch funciions is thos

inte fanerions:
00 COMDAT
for these b
The need 1o 1
anfirmed
The tag dspaich function. a multi-way branch function
: of the POR and QDR registers, 1s
ne maulti-way braneh funetion us
5 -1t tmges an 5-bit packed aparand) s shown
as (G5 The totnl royuwests for these funciions accounted for
Fto 4% ol all sreps. In ather words, every cighih step s a

B %
ghown 88 5. Ix
2

operands 1a;

Jied
nz paehed

=}

request for multi-way braach. Therefore, the funciions are
alsa VETY usaful.

The indirect hranching functions {12} and (18] wvie JR
{Jump Register) ¥l have low frequencies. JR is used as a
loop counter rather than an address register, its use ne-
counted for 9 to 12% of all steps. Therefore, prepacing a
dedicated loop counter may be a better strategy.

5 Conclusion

We measured and evaluated the pecformance of the PEL
and component hardware added for high-speed exscurion
af Prolog programs. We also presented measured valses of
dynamic memory access characteristics.

We confirmed simnilaritiss in performances of the P51 and
DEC-10 Prolog compiler on DEC-2080. Howewver, DEC iz
faster than PSI when executing programs that can be op-
timized well at compile time, while P31 13 faster than DEC
when executing application progracs zeguising mush run-
time processing. This characteristie can be consicerec 2t a
festure of a microprogrammed interpreter

The cache memery hit ratio for an epplication program
was measured as hizh as 36%. Therefoze, the cache memaory
is evolunted ns sufficiently effective, and alse the store-in
method es effective, and the 8 word capacity as reducible,
The measurement of dvaemic memory access characieristics
demaonstrated that the appearance ratio of Rend and Wnte
commands 15 3 aind 1, that every fifth microinstruction is a
request for memory aceess, and that acesss to the heap area
(mainly the instruction fetch) aceounts for 30 to 505 of all
microinsiruciion steps,

For the work fle evaluation, 0% or more of wock flle
access use direet addeessing, However, the need for an im-
provement of base-relative addressing was confirmed, as was
the possibility of reducing the 1K- ward capacity of the work
file. The multi-way brazch functions bazed on tag values
and eondivionnl hranch functions wers evaluated as suffi-
ciently effective.

Based on the above evaluation results, we have been 7u
designing the PSI hardware and improving the instruction
code suiteble for the compile time optimization. Results
will be reported in the other paper./®

Acknowledgment

Ve would like to thank the chief of onur fourth kRhoratory.
Dz 8. Uchida, for his advice aad she Dicectes of ICOT. T

Ir. Fuchi, for iy

ing us this opporsusity o de research

References

nadv., Nakashima,H., Yokotadl, Takilh..
Uelide. 5., Mithikawa, H., Yamamoto A, and A[izsuidl
: Foaloation of PST wiceo-intecpreter, Proc. of Comp-
con Spring #6, pp.173-177 (1086}

1T Nakadi

[20 Takili. YeketaM., Yamameto,A., NishikawaH.,

i3]

Tehida,5., Nakashima, . and Mitsuishi 4. ; Hardware
Design 2nd Implementation of the Personal Sequen-
tial Inference Machine (PSI), Proe. of the [Nterna-
tional Conference on Fifth Generation Computer Sys-
tems 1984, pp.39s-10%, Tokyo, (1084},

Yokota \f., Yamamoto,A., Taki ., Nishikewa H. and
Uchida,S. : The Design and Implementation of a Per-
sonal Sequenzial Inference hMachine PSI New Gener
ariem Compuiing, Voll, No2, pp.1%5-144, Ohmsha,
.}!

L
AFy

Yowora i, Yamamoto A, Takill., Nishikawa H.,
Urnidn.S., Nakejima, K. and Mitsul M. ¢ A Micropse-
goammeé [nterpreter for the Personal Sequensial [zfar-
gnee Mechize, Proc. of the International Corference on
Fifth Generation Computer Systems 1884, pp.210-215,

R

]
Toqvo, {J331).

& Texegi S et al : Introducing extended control struc-

7]

tures for Frolog, Proc, of 26th Inter-domestic conies-
ence, Information Processing Society of Japan, No.4D-
11, {1983}, In Jepanese.

Werren, DLH.IY. © Implementing Prolog -Compiling
Predicate Logic Programs, Vol.1,2, D.A L Research Re-
port No.39,40, Dept. of Artificial Intelligence, Univ. of
Edinburgh, (1877).

Warren, D H.D. ¢ An Improved Prolog Implementation
which eptimizes Tail Fecursion, Proc. of the Logic Pro-
gramming Workshop, Huagary (July 1980).

‘2] Okuno,H. - The Beport of The Third Lisp Contest and

The Firz: Prolog Centest, Proe. of the research work-
iag group, SYMI3-4, Information Processing Sociery of
Japan, (19583), In Japanese.

Nekashima H eand Nakajima, K. : Hardware Archi-
tecture of the Sequential lnference Machine : PSIIL
Froc. of Fourth Symposium on Logic Programming,
San Fransisco, (1587)

Ausociation for Compunng Machwiery
Tl e dine Ctrese

Asplosi

Kerun Takl

At Resecrch Laboratory

Institute for New Genaration Computer Tech,
4-28, Milg 1-Chome, Minato-ku

Tokyo 108 JAPAN

TR A\ moi

Authoris]:

&, THANSFER AGREEWENT

Caopyright to the above work (including without limitation, the right 1o publish the work in whaole or in
cert in gny and all farms and media, now or hereatier knownl is hereby transferred to the ACM (for LS.
Covernment work, 10 the extent transferable®} effective 25 of the date of this agreement on the understandg.

ing thet the work has been accepted for publication by ACM.

rowever, ezch of the author: reserve the following:
(1} ANl propriewary rights other than copyright land the publication righw transferred o ACMI,
suzh as patent rights. i
{2} The right t¢ use in future works of the author's own, such as articles or bhooks, 2l or part of this
paper with acknowledgment to ACM, and alse with prior notice 1o ACM if the use-ir for direc:
commercial advantage. '

[~ copy of this form must be signed by all authors or, in the czse of @ “waork made for hire,”" by the em-
cioyer and must be received by the Association for Computing Machinery — See Box C — before processing
£f the menuseript for publication ¢an be completed. This farm may be duplicated for signing by ¢o-authorm.
-~Jthers should ungersiand that consistent with ACM's policy of encouraging dissemination of infarmation
£227 peshished paper will appear with the foliowing notice:
"Fermission 1o copy without fee all or part of this material is granted provided that the copies are

not made or distributed lor direct commercial advaniage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given thet copying is by permission of

ine Axociztion for Computing Machinery. To copy otherwise, or to republish, requires a fee

zndfor spesific permiwion.”’)

| Sepmaren %}q‘m \'/‘ E ' Signeium m {’ﬁt{é“f"’;"

T Kazue Taki e tile Nokajine

e, ! mEt 2uthar

Tiele, if mot Avthor

i 2{‘_. .TU—?:'.'E FI?E"‘? Dinte E.’:.'-j%-'ﬂﬂf?q
Z.* DECLARATION FOR U.S. GOVERNMENT C. WHERE TORETURN FORM
WORK Author: Pleate return this fgrm 1a:
This certifies that the ahove authar(s) weote Lea Blue _
the paper, [a) as a pant of work as US. Computer Society of IEEE .
Covernment employees or, [b.)as other 1730 Massachusettes Avenue, NW
ngnzopyrightabie Government work, Washington, DO 20036
(202} 3‘?‘1—_11312
Secrprure
D. NAME AND DATC OF CONFERENCE
P ASPLOS '87 .
palo alto, California
Tt of med suthor Oetober S5=8, 1987
e ugree

Aisoeistion far Camputing Maehuery
11 W d0ne! Soimet R

splos il

Tile of work:

Kezuo Toki

AthReseorch Laboratony

Author{s): insttute far Mew Generalion Compuier Tech
4-Z28, Mita 1-Chome. Minato-ku

Tolyo 108 JAPAN

e A mal
A. TRANSFER AGREEWMENT |
Copyricht 12 the zbove woark {including without imitation, the right 1o publish the wark in whele or in
sernoinoany 2nd 2ll forms and-media, now or hereafier known) is hereby transferred 1o the ACM [for U.S.l
Covernment work, to the extent transferable®) effective 25 of the date of this agreement an the understand. |
ing thet the work has been accepted for publication by ACM,
However, each of the authors reserve the following:

(1} Al proprietary rights other than copyright land the publication rights transferred 1o ACM],

such 25 patent right.
{20 The right 1o use in future works of the author's own, such as articles or books, all or part of this

paper with acknowledgment 1o ACM, and also with prior notice to ACM if the use-ir far direct
cornmercial advaniage,

(A copy of this form must be signed by all authoa or, in the cae of 2 “wark made for hire,” by the em-
cloyer and must be received by the Association for Computing Machinery — See Box C — before processing
of the manuscript for publication can be completed. This form may be duplicated for signing by co-authors.
~uthors should understand that eensistent with ACM's policy of encouraging dissemination of information
fech published paper will appear with the following notice:
“Fermission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial zdvantage, the ACM copyright notice and the

title of the publication and its date appezr, and notice is given that copying is by permissien of

the Asociation for Computing Machinery. To copy otherwise, or to republish, requires 3 fee

énc/or speciflic permision.”)

LgnaTare]

! LT e » - -L.I. —
.‘f’}"'u'?r"i hi Yo pgf-iénsi(; s AL e {\\ff.’u"'\‘iLC'\\;—-ﬁ
be '

: d Frismg b -
— _Morihiro ILL{;{Q i '“H?w APRY Nalvoslowo

Titke, if ney Authar

Arme b

sslk ol R2ES AuThor

=in ____,"_':"_ - T{L-":'_E! = ?"? Data '?__1 - 5‘-*%"?-"" 9 'I!Ek"'r'{

2" DECLARATION FOR US, GDVERNMENT |-|C. WHERE TO RETURN FORM
WORK ' Authar: Please return this ferm ta:
This certifies that the above author(s] wrote Lees Blue
the pzper, {a.) as a part of work as US. Computer Society of IEEE .
Covernment employees or, {b.)as other I?HU_Massachusette§ Avenue, NW
noncopyrightable Government work, washington, DC" 20036

i (202) 371-1012
STEF-JT.JFI- -
—_ 0. NAME AND DATE OF CONFEREMNCE
ene AEPLOS 'B7 _ _
Palo nlto, California
Tulie, ol ngy 3uinar " Sotober E_E: lgﬂ?
Cu:s trghed
—_

11 WEET dia= STHEET

NEW YOHK, WY 0038

(213 BEmTda]
Teew £2VERE
acm Association for Computing Machinery

oo Authors Submitting Papers for the Proceedings of ACM
Sponscred Conferences

FROM: ACM Director of Publications
SOBJECT: ACM Copyright Procedures

Thank you for submitting a paper for the conference. ACM's publications
are read throughout the world, and we must deal with reguests forg
reprinting, translating, antheclegizing, and cther actions.

It is the poelicy of ACM to own the copyrights on its technical
publications to protect the interest cof ACM, its authors, their emplovers,
and at the same time to facilitate the appropriate reuse cf this material

by others.

The Onited States Copyright Law requires that the transfer of copyright of
each contribution from the author to ACM be confirmed in writing. It is
necessary that all authors sign either Part A or Part B of the copyright
forz and return it with the manuscript to the address on the form.

If vou are employed and you prepared your paper as a part of your job, the
rights to your paper may initially reet with your employer. In that case,
when vou sign the copyright transfer form, we assume you are authorized to
go so by vour emplover. If not, it should be =igned by someone so

authorized.

For jointly authored papers, an original signature is reguired from each
co-author. Por this purpose, the form may be duplicated before signing.

Authors who are 0.S5. Government employees and/or whose papers are not
copvrightaple as part of certain Government contract work, are not
required to sign Part A. but any co-authors cutside the Government

conTract are.

Part B of the form is to be used instead of Part A only if all authors are

U.5. Government employees and they prepared the paper as part of their-
job, or the work is an uncopyrightable product of a Government contract.

ACM authors have all rights scientific authors have historically enjoyed,
including the right to present orally the submitted or similar material 1
any form; the right to make minor reuse, with credit, in publications (and
majer reuse in works of the authors' own with notice and with crecit to
ACM); the right to republish with notice and credit to ACM, in works
published by the employer or for the employer's internal purposes, the
right to reproduce for peer review in reagonable guantities; and all

proprietary rights other than copyright.

Although it is not part of ACM's copyright policy to grant to authors or
their organizations the sole right to approve permissions for republishing
by third parties, ACM always seeks the approval of its authors in)
weighting such requests. This is done as a matter of personal professional
courtesy,

