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abstract

it has been difficult te understand logical relaticonships
between various strategies for recursive query processing. The
difficulty results from the fact that we use both catabase and
logic programming concepts  together to realize efficient
processing strategies, and from the lack of common principles for
these strategies. This paper tries to give a common ground to
strategies based on the concept of restricted least [ixed polints.
This concept is an extension of Aho and Ullman's strategy and can
be applied to a broad class of gueries. Because restricted least
fixed points are much smaller than original least fixed points,
they can be computed efficiently. The concept alsec gives a
criterion to compare strategies based on what they compute rather
than how they compute the result. First, the principle of
restricted least fixed points and restrictors is discussed.
Mext, classification and comparison of strategiles are discussed
based on what they cowpute, and strategies which appear very
different are shown as variations of algorithams to compute some

kinds of restricted least fixed points.
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1 Introduction

Humerous strategies Ior recurzive guery processing in
deductive databases have been proposedé over the past few ycars.
As a result, it is known that most queries can be processad, at
lsast in principle, and several strategies of good performance
have been found. liowever, it is difficult %o decide which
strategy is appropriate to a given guery, because these
strategies look very different from each other. The main reason
For tnhis confusion is that this field is on the boundary of

datahase technology and logic programming technology, and many

techniques have been applied to the same problem.

An attempt to clarify this cituation has been made by
Bancilhon and Ramakrishnan in  their extensive  survey
[Bancilhon€Gal. They used several characteristics to classify
strategies. 5 common measure to compare the performance of
strategies was also used. However, it iz still difficult to see
why the performance of an algorithm is roughly the same as

another algorithm. ror instance, the magic

ot strategy
[BancilhonB86b] is bottom up, compile and iterative. In contrask,
the recursive gquery/subguery strategy (QSQR) [VieilleB6] is top
down, interpretive and recursive. It is interesting to sec that
these two strategies show the szme performance except for the
non-linear case, although they are exactly opposite in the
classification [Bancilhongéal. Their explanation for this
similarity is that &the algorithms show the cane behavior as
measured by:

(1) the amount of duplication of work,

(2) the size of the set of relevant factz, and
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(3) the arity of intermediate relations.
However, their explanation does not show why these strategies

behave this way.

Seeri and Ramakrishnan proposed a principle of sideways
information passing (sip) to discuss the second criterion ahbove,
and pointed out that 211 published strategies in the literature
could be described by sip [BeeriB7]. They also claim that the
collection of sips and the control strategy are distinct,

possibly independent components of a guery evaluation strategy.

This paper discusses the problem from a different angle.
The authors' previcus paper proposed the concept of rectricted
least fiwed points (rlfp) and thelr computation  algorithm
[iiyazakiglal. zlthough this concept may be seen as another way

to realize sips by side rules, the underlying principle is
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he principal icdea is to restrict the size of gerived
relations rather than restricting the computation, Because
restricted least Cfixed points are much smaller than original
lcast fixed points, they can be compuled efficiontly. This paper
Giscusses how this principle can be used to clarify the
relationships of various strategies. Thus, the notion of rlfp
and sip complement each other as foundations of recursive guery

processing stralegies,

Chapter 2 summarizes the concept of restricted least [ized
points and restrictocs propossd in the authors' previous Daper.
Chapter 3 discusses the propagation of restriction conditions and

decomposition o¢f restrictors. Chapter 4 proposes a criterion to

classify strategies and <¢lassifies  strategies. Several



stratecises are =hown a&s variations of ways to compute restricted

least fixed points.
2 Restricted Least Fixed Points

A query is expressed by & sct of llorn clauses &s shown  in
egquation l-a. It is assumed that there are no funclions ot
structures in predicates to simplify the discussion. The query
has its eguivalent relational expressions as shown in eguation
1-b [CeriBf] [MiyazakliBe].

:—rl(a set of arguments).

rk:=hk{rl,r2,...,cn). (There may be

geveral clauses for the same rk.) [(Eg.l-a)

answer = (J{rl)
rk = fk{rl;ertllrrn} knlrzrll!fn
(Eg.1l=b}

whaere 1k corresponds to derived relations. Rmong rks, rl
corresponds to the result relation that corresponds to the coal.
Op is a selection operator corresponding te Etnhé goal.  Base
relations stored in extepsional database (EDB) are not shown in
eguation 1. The answer of this gquery can be obtained by
computing least fixed points of rks and then computing C¢(cl).
Several strategies have been proposed teo compute least fixea
points [BancilhonB6al. However, computing least fixed points
directly is not a good way to answer the guery because uzually
only small subsets of rks contribute the answer and these subsets
may be computed without computing entire derived relations.  One

way to reduce the size of derived relations to answer the query
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was proposed by Bho and Uilman [Aho79]. The essential point of
their strategy is as follows. Concider a query with one derived
relation,

answer = (Or)

r = £ir).
f(r) may be separated into two parts; one does not  involwve I,

and the other involves r. In other words, f(r) = g + hi{r) where

+  means union, i1f h(r) is commutative, 1i.e. O {hie))
h{Cxfr}), then £(r) is said to be commutative, and Cp{r) =
CAL(r)) = Cplg) + B Ox(r}). Therefore, if r' = CGplr), we get

answer = r'

r' = Cp{g) + hir').
Using this equation, the answer can be computed without computing
the whole derived relation, r. Although this strategy does not
always work, the idea can be extended to a more general strategy.
Firet, if h(r) is commutative and r' = (Og{r), the following
equation also holds,

answer = (- (r')

v! o= G"F{fl[['}:l
This equation does not always hold in gencral either, but there
may exist a selection operater ¥ such that

Celr') = Cplr) = answer

r'o= CME(E")),
if such ¢ is found, the answer can be computed by computing o'
instead of r. When D iz the domain of r, i*tr} = (oM o).
fﬁD) is denoled as r* and the following eguations obiained.

answer = Op (r')

r'to=pF o £t

These eguations are generalized teo the following eguations.

b |
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efinition of restricted least fixed poinks

For a given query, Q, erpresscd in equation 1-b, consider
the following set of egualions.

answer = U}{rl‘] = (0z{rl)

rk' = rk* n Tk{rl',r2",...,rn')

for k=1,2,...40 (Fg.2)

where each rk* is called a restrictor of rk, and <rl#*,...,rn*> is
called & restrictor of Q. Each rk' is & restricted fixed point
of rk, and <rl',...,rn'> is called & restricted fixed point of Q.
if a restrictor is given, the answer can be obtained by computing
the restricted least fixed points. It is clear that computation
can be done by any strategies that compute least fixed points.
By setting rk*s as small as possible, the tine for dquery

processing can be minimized.

Two trivial restrictors are immediztely shown., One ie a set

of domains. In this case, eguation 2 reduces to eguation 1l-b.

i

cther restrictor is E%JDJ when £(r) iz commutative. It is

qar

easy +o seze the following properties from eguation 2.
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If pk is a restrictor of rk, then =& D b iz alsc =

restrictor of ck.

Property 2

ior any k, rk' iz a subset of (r&* N rk).

The concept of restricted least fixed points is useless
unless non—-trivial restricters are given, It ir not usually
possible te dscide restrictors without consulting the EIB.
Therefore, restrictors are given as derived relations. As a
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resuli, restrictors and rlfps are given as least fixed points ol
a new set of rules. Expressions of restrictors are given by a
cel of Horn clauses rather than by relational alocbraic eguations
to simplify the discussions. Note that the distinction between
rk' and rk is not made in the algorithm, because the distinction
iz no longer necessary once the transformation from eguation 1 te
eguation 2 is made. However, we distinguish between rk' and rk

whenever necessary.

Meaoorithm 1; aleorithm to set rk' and rk*
I: Initial condition
rl*:-rl_init*., (arguments are the same as
rl on both sides)
Define rl_init® a5 a unit clause whose argumenis
are exactly the same as those of the goal.
Variables in rl_init®* are considered to represent
their domains in the corresponding relational expression.
II: Clauses for rk (definition for rk' with ' omitted)
Transform rk:-hi{cl,...,cn).
to rhi=rk* hki{rl,...,rnj.
by adding rk*, where arguments of rk* are equal to
those of the head predicate,
Make the above transformation for every clause in Q.
III: Clauses [or rk* (definition for rk¥)
(1) Select an rk
{2) Select a clauce modified in II
which has rk in its body.
{3) The clause is in the following form

if rk is moved to the farthest right.

=1
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rii=r3*,gi(rl, .. En), k.
Generate the following clause from the above.
rk*:-rj*,qj(rl,...rn}).
where the arguments of rk* are same as the
rightmost rk in the selected clause.
(4) Repeat (3) if there are mere than one rk in the body

{(5) Repeat (1) to (4) for every possible combination,

Intuitively, the definition algerithm simulates an idealized
theorem prover that determines every possible value before
entering a new predicate call., It is idealized because it is not
possible to determine every possible value, and an actual theorem
prover such as Prolog has a different control strategy. Thus,
the definition of rk*s does not always give a restrictor. Let us

discuss the condition for restrictors.

The head predicate is regarded as depending on predicates of

the body in a rule. Consider a rule

rj:-rj* hj{rl,...,rn).
Numbers are attached to predicates to distinguish predicates with
came name in the body of a rule., When a rule defining rk¥* is
constructead,

rk*:=ri*,gj(rl,...,rn}.,
rk* Gepends on the predicates in the body. Because iR depends on
rk*, we have a dependency graph that represents the gependency of
numbered rk on other predicates. Let 5§ be a set of clauses
defining rk*s generated £from the same rule in step 11L. The
dependency graph of § 1is a graph obtained by superimposing
dependency graphs of rules in 8. &5 is said to be consistent iff
its dependency graph does not have a coycle. Intuitively,

_— g —



consistency means that § represents an executable orcer of
predicate calls for the rule. The definition of rk*s is called

consistent iff every S generated in step III is consistent.

Klgorithm 1 gives a new set o©f Horn c¢lauses. The least
fixed points of derived relations in these clanses can be
computed. For these derived relations, there is the £following

Lheorem,

Theorem

Let rl*%,...,rn* and rl',...,c0n" be least {ixed points which
satisfy rules given by the above algorithm. If the definition of
rk*s is consistent, then <rl¥,...,rn*> and <zl',...,rn'> satisfy
eguation 2. in other words, the definition of rk*s gives a
restrictor if it is consistent.

The proof of this theorem is civen in [Miyazakigia]. If the
definition of rk*s is not consistent, a restrictor can be

obtained by making 1t consistent.

Corollary
The definition of rk#*s hecomes the definition of a restrictor
if it becomes consistent by removing some predicates in the body

of its delining clauses.

In algerithm 1, rk#*s are introduced for all derived
relations. Because non-recursive derived relations may be
Girectly evaluated, we may choose not to introduce restrictors
for them. A guery is called linear iff defining clauses have at
most one occurrence of recursive predicates in body. The next

property immediately follows,



1f rx*s are not introduced £for non-recursive predicates
corresponding to derived relations, the definition of rk#*s given
by algorithm 1 for & linear gquery Q 18 consistent and is &

restrictor of Q.

L restrictor of O is separable iff its defining clauses do
not have rk's in the body, L meparable restrictor can be
computed before computing restricted least [ixed points. From

algorithm 1, the following property is aobwvious.

It is assumed that restrictors for non-recurszive derived
relations are not intreduced. Thnen, a restrictor of ¢ given hy

algorithm 1 is separable if Q is linear,

If the definition of rk¥*s is not consistent, some predicates
in the body must be removed. The restrictive power of a
restrictor depends on which predicates are removed. It is
usually easy to find which predicates should be removed. 2 few
examples of the use of restrictors for non-linear and mutually
recursive gueries are shown in [Miyazaki&ial. The next chapter

discusses a way to make a restrictor from the definition of rk#*s

he natural way to propagate restriction conditions,

3 Lecomposition of Restrictors

It is desirable tuv retain precicaces that propagate
restrictive conditions when a resbrictor is generated from rk*s
given by algorithm 1. When the wvalues of some arguments are
given, the values of the remaining arguments can be determined by

- 10 —
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referring to the EDB. Once some argunents &re  cetermined, tne
values of arguments with the same varlable name in other
predicates are &lso determined,. Thus, the condition can be
propagated through predicates defining rk¥s. Therefore, the

natural way is to retain such predicates as far as possible.

In the definition of rk*s given by algorithm 1, socme
arguments of predicates for the initizl condition are variables.
Relational algebra must be extended & little to allow wvarisbles
in tuples, although the extension is conceptually easy becauce a
variable unifies every constant, Moreover, some arguments of the
restrictor may remain unbound during computation of & least fixed
point. The implementation would be easier if there were no such
arauments. Restrictors should be decomposed to eliminate such

arguments,

This chapter discusses & way to determine a restrictor and
1%

then a2 way to eliminate free variables.

“he natural way to cenerate a restrictor from clauses
defining rk*s is first to analyze how the restriction conditions
can be propagated. Let us consider that each argument of
predicates in restrictor definition clauses can be assigned a
bound or free prefix. The bound prefix is passed through
precicates. A restrictor can be generated by the following

algorithm.

I. Enalysis of binding relationship

Bssign bound or free prefixes to the initial condition according

11—
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to its binding relationship of arguments.

Starting from the initial condition, generate new clauses as
follows. This procedure is terminated when no new binding
relationship of rk*s is generated.

(1} Select a clause and assign a given binding relationship to
the restrictor in the body.

(2} Rssign bound to variables with same name that have been
assigned bound.

(3) Except for restrictors, assign bound to arguments of each
predicate if one of the arguments is assigned bound. This
means that relations propagate conditions. Repeat (2) and (2)
until there are no arquments to be assigned bound.

(4) Assign free to all remaining variables,

1I. Transformation
(1) Eliminate predicates in the body that correspond to derived
relations whose arguments are all free.
(2) If the result is coneistent, then terminate. If not, mnake
it consistent and reassign the bound or free prefixes. The
definition of consistency can be extended to allow Gthe same
predicates with different binding relationship to depend on
each other, because they represent different branches of a
proof tree.

the elimination of predicates in step IT (1) gives a consistent

restricter for many gueries. However, the following problems

CEmain.

{1} The way to determine which predicates to be eliminated, 1if
the result of step II (1) is not consistent.

(2) If several bound prefixes can be propagated through different
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predicates, the performance of later computation may be
improved by eliminating some more predicates that have bound
prefixes in the body of restrictor gefinition.

(3} The restrictor definition may have predicates corresponding
to base relations whose arguments are free. Thelr presence
conceptually gives mere restrictive power. However, 1t is not
usually a good way to retain these predicates, because
evaluating these predicates for restrictors is time consuming

if they correspond to large relations.

Detailed discussion of these problems is beyond the scope of
this paper. They should be treated in the discussion ol Further
optimization. Similar problems in literature are determination
of =ip [BeeriB7] and the wave front problem [Han8€]. Howcover,
the third problem does not arisc if every base relation is larue.
Tn such a case, all predicates with [ree arguments snould be

eliminated to improve performance, and it is assumed that such

predicates are always eliminated in the following discussiuons.

liext, the problem of £free varisbles in restrictors is
discussed. These arguments can be eliminaled by decomposing
restrictors, If & vrestrictor has n araguments, it can be
expressed as the union of 2%**n componcnis in principle. For
instance, & two arqument restrictor, a*({,Y¥), can be decoaposed
as

s

o e
o

[

(K Y)i—a_bb*{X,Y).
a* (X, ¥)r—a_bi*(X}.
a*{X,Y):—a_fb*(Y).
a*(X,Y):-a_ff+,
where a_bb means that both arguments are bound during
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irst iz bouond bot the second is

Fh

computaticn, &_bi means {hst
not, and so on. Note that if there is & last component then all
other components are subsumed by it, The decomposition algorithm
uses the bound or free prefixes attached by algoerithm 2.
Blgorithm 23: Decomposgition of restrictor
T. Decomposition
(1) Classify restrictor definitions according to the binding
relationship of the head.
{2} Rename the restrictor predicaetes according to  the
classification.
{(3) Omit arguments assigned free from decomposed restrictor
rredicates,

{4) Express the restrictor by decomposcd predicates.

IT. Elimination of original restrictor predicates from other
clauses
{1) Eliminate original restrictor predicates by substituting
original restrictors by decomposed restrictors. This last step
iz just a special case of general simplification procedure
called Horn clause transformation [MivazakiB6 and 87b]. In
this case, the elimination ig straightforward, because
restrictor predicates are expressed as a disjunction of

components and do not include recursive expression.

Example 1; Non-linear ancestor
Query
r—ancestor {constant, X},
ancestor (X, Y} :-parent {¥X,¥).

ancestor (X, Y} :-ancestor {X,2),ancestor (,Y).



Query with ancestor* is given =2 follows., The goal ané the
initial condition is omitted.

ancestor (X,Y):-ancestor* {¥,V),parent (X,Y}.

aHCEEtOr{E;Y}:-ancestor*[x,yj,ancestarLx,?},

ancestor {E,Y).

ancestor* (¥, Y):—ancestor_init* (X, Y).

ancestﬂn*{x,zj:-ancestur*{K,E],ancestor{ﬂ,f}.

ancestor*(Z,¥):~ancestor* (X,Y),ancestor (4,2).
The definition of ancestor* 1is not consistent. The initial
binding relationship of this guery is [b,Zl. The result of step
I of algorithm 2 is as follows.

ancestor® (h:¥,f+%) =ancestor* (bX,L:Y),

ancestor (£:%,f:Y).
ancestor*(b:Z,L£:¥) i=ancestor* (i, L:Y),

ancestor {b:k,b:E).

Cnly one binding relationship [b,f] is obtained, and step Z

eliminates ancestor (f:7,f:¥) in the f{first clausc to make the

-

definiticn consistent. The first clause Dbecomes requndant and

may be discarded.

The step T of decomposition algorithm generates one clause,

ancestor bf*(I):;-ancestor_b{* (K},ancestor (X, Z).
after eliminaling ancestor*(¥,Y) using [ancestor =~ (3, Y) -
ancestor_bf®(2).], the following result is oubtained,

s—ancestor (constant, X} .

ancestor (X,V) :—ancesbor_bE* (X)), parent (¥, Y],

ancestor (X, Y) :=ancestor_bf* (4),encestor (X, 8),ancestor (£, Y],

ancestor_init* (constani,X}.

ancestor bf* (%) i—ancestor_init*(, Y],
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encestoi_bi* () :—ancestor_bf*(¥),ancestor (¥,2).
Examcle 2: Unstable same generation [Bancilhon86b]
Query
:—sg {constant,¥).
sg (X, X).
sg (¥, Y) :-parent (X,X1),sg (¥1,%1),parent (¥,Y1}.
Except for the initial condition, the definition of sg* is
sg*(Y1,X1):-sg*(X,Y),parent (%,%1),parent (¥, ¥Y1).
Because this is consistent, it gives the restrictor. The binding
relationship of the initial condition is [b,f]. During binding
relationship analysis, the following clause is obtained.
sg* (£:¥1,b,X1):—sg¥* (b:¥,f:¥),parent (b:X,b:X1),
parent (£:¥Y,£:¥1).
The head of this clause shows a different binding relationship,
i.e. £,b]. ‘'Therefore, we continue and get another clause
sg*{b:¥l,f,X1):—sg* (£:X,bs:¥),parent (£:X,£:X1),
parent (b:¥,b:¥1).
Predicates with free arguments are eliminated, giving
sg* (£:¥1,b,%1):i-sg* (b:X,f:¥),parent (b:X,b:X1l]),
sq* (b:Yl,f,%1):~5g* (£:X,b:Y),parent (b:¥,b:¥1).
The result of step I of decomposition is as follows.
sq_fh* (X1):=sg_bf* (X),parent (X,X1).
sg bf* (Y1) :-sg_£fb*(¥),parent (¥Y,¥1).
The restrictor has now two components.
sg* (X, Y) i—sg bi*®(X]).
BQ¥ (¥, V) :i—sg_fbh*(¥).
The final results are
t-8g (constant, ¥).
sa (X,X):=sg_bf*(X).

— 16 —
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g {X,%):-sg _fb* (X).
sg{x,Y]:—sg_bf*{ﬁ],par&nt{x,xl},sg{Yl,xl],parent{Y,El}.
sg{X,Y}:—sg_bf*{fj,parent[x.xll,sg{il,xl},parent[E,Yl}.
sg_init* (constankt,¥).
sg bE*(X):—sg_init* (X,¥).
sg fb*(Xl):-sq_bf* (X),parent (X,X1).
sq bf* (¥1):-5g fb* (¥),parent (¥,¥1}.

Because there are two binding relationships, the definition of sg

is also split into two expressions.

Thig chapter discusses the relationship of query processing
strategies. The set of equations (or clauses) that defines
restricted least fixed points can be regarded as eguations that
define a new set of relations. Clearly, relations that satisfy
set of transformed equations differ in size from those dGefined by
the original set of eguations as shown in property 2. These
relatione can be computed by any algorithm that computes the
least fixed points. Because restricted least fixed peints are
much smaller than original least fixed points, they can be
computed efficiently. The differnce can be as large as several
orders of magnitude if base relations in the FDR are large, This
ciggeste a classification criterion of strateglies based on what
they compuie. This c¢riterion has a close relation Lo
periormance, becausc the larger the result of computation, the
more time consuming it is.  Three wain classes and  one
supplementary class can be identified with this criterion,

(1) Class r: Strategies that compute least fixed points,
(2) Class (O*(r): Strategies that

— 17 —



(&) compute restricted least fixed points, or

(b} transform rules to define & new set of derived relations
that include those corresponding to restricted least fixed
points, or

{c) compute answer based on rules given by (b).

(3) Class QCplr): Strategies that compute the answer without
explicitly computing rs or ﬂ?ﬁx}ﬁ.

{¢) Class transformation: Strategies that transform queries to
other forms, They do not usually affect the size of derived
relations, although the derived relations themselves are

sometimes eliminated or added.

The relationship of strateqgies is discussed based on  this
classification. We have not tried to survey this field, and
examples are used to discuss the wvariations. Therefore, the
following examples are not intended to be complete. The strateay
described in the previous chapters is called rlfp in this

chapter.
4,1 Clazs r

Most strategies belonging to the first clage are based on
the principles of the least fixed points., Some examples of
strategies of this class are:

Naive evaluation (frequently called by other names)

Semi-naive evaluation [Rancilhonféal

Lelta driven [RohmerBé)

Drderca naive evalualion {compenent by component)

[CeriBa]
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These strategies compute the least fixed points in bottom up
fashion. The naive evaluation is the basis of this class of
strategies, Other strategles have been proposed to reduce the

amount of duplicated work.

5 class of)

There are three subclasses in class tlﬁr]: @*{r}—a, -b  and
-C. The first consists of strategies that compute {Yﬁr}s hefure
answering the query. Examples of this subclass are QsQI and QSQR
WieilleB6]. These strategies are based on the top down method
and look completely different from bottom up strategies as
summarized in [Bancilhondéal. However, we <can see Lhat
restricted least fixed points are computed as sets called Mhns_Ri,
and the role of the restrictor is performed by sets called
Inst_lM_Rj where M denctes the binding relaticnship. The sets,
Inst M Rj, are used as conditions of subqueries. The order of
predicate calls is determined by a selection function.  Although
these concepts are closely mixed with top down control strategy,
it is easy Lo see that Q50 and rlfp compute gsgentialiy the same
derived relations under the assumption that a proper selection
function is used in Q5Q. There are several strategies preceding

050 that belong to this subclass.

The second subclass of class C%(r) consists of strategies
such as magic sets [BancilhonBeb], generalized magic sets
Beerifi7], Alexander [Rohmer86], and rlfp. The common points of
these strategies are:

(1) They transform a set of clauses to another set of clauses

where predicates corresponding to derived relations are



Page 20

transformed to predicates that satisfy equation 2.
(2) A set of predicates for new derived relations is introduced.

They include predicates that have the role of restrictors.

The difference of these strategies may be found in
(1} the transformation algorithm,
{2} the transformed set of rules, and

{3). the power of the restrictors.

The generalized magic set is based on the concept of sideway
information passing (sip). 8ip is represented by a graph and
essentially corresponds to an execution order of predicate calls.
Once sip is given, a generalized magic set is determined by using
a special type of rules called the adorned rule set. The adorned
rule set consists of rules where predicates have a suffix to
distinguisgh binding relationship, The original derived relations
and transformed relations are not distinguished in this strategy,
but the generalized magic set can be seen to have the same role
as the restrictor of rlfp. Although the algorithm of generalized
ragic sets is more complex than that of rlfp, they produce an
esgentially eguivalent set of clauses under the assumption thal a
proper sip is chosen in the former strategy. The way to choose
sips is not described in [Beerif7]. The formalism used in the
generalized magic set is more complex because it allows functions

in predicates,

The relationship of the magic set and generalized magic set
is discussed in [Beerig7]. The relationship is easier to see
based on Lhe concept of restricted least fixed points, because

the magic set is obtained by modifying & restrictor slightly. A

— B -
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magic set is obtained by eliminating all derived ({or recursive)
relations in the body of clauses that define restrictors. Thus,
the magic set is equivalent to rlfp for linear gqueries. In fact,
the restrictor of example 2 is the same as the magic set

discussed in [Bancilhon86i].

Another example of this subclass is the Alexander strategy
[RohmerB6] . It was pointed out that Alexander is essentially a
generalized supplementary magic set [BeeriB7]. Supplementary
magic set is a variation of the magic set discussed in section
4.4. Alexander divides the problem into three Kinds of
predicates: phs, Sols and Conts. Although the transformation
algorithm is different, Pbs correspond to restrictors, and Sols
correspond to restricted least fized points. Conts are special
predicates that pass information from one rule to another. if
Conts are eliminated from the rule =et by Horn clause
transformation discussed in section 4.4, & rule set similar to
rlfp is obtained. Concepts corresponding to the analysis of the
binding relalionship or choosing sips are not discussed in

[Rohmer86].

The last example is Aho and Ullman's. Because rlip 15 an
cxtension of Aho and Ullman's strategy, this strategy is a
special case of rlfp where G$==C} . Moreover, it is casily shown
that the restrictor given by algorithm 1 is in fact reduced to Cg
if the guery is commutative. The relationship of class gf{r]
strategies is summarized in Figure 1. The restricting power of
resktrictors in these strategies is

{aho and Nilman's) =< {magic sets} =<«
{08, generalized magic sets, rlfpl.

_ 21 —_—
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The restricting power of magic sets is eguivalent to the
uecoumposed  restrictor of rifp if the latter is separable, Thus,
this eguation and property 4 answer the guestion in chapter 1,
ioe. why QSQ0R and magic sets show the same performance for

linear gueries.

Because strategies in the class ((r)-b give a new rule set
but not the answer, the actual computation is done by other
strategies such as those in class r or class Qﬁrj-n. The
conputation of restricted 1least fixed points by class r
strategies frequently has redundant operations. The strategies
in class O%r)-c were proposed to reduce the redundancy. The
magic counting and the generalized magic counting are known as
efficient strategies based on magic sets and generalized nmgic

sebs respectively [BancilhonB6b] [Beerifi?].

4,13 rg

The third class consists of strategies that try to compute
answers divectly. Examples of these strategics are:
Henschen and Hayvl's [Henschenfd]
Aho and Ullman's [Aho79]
Prolog
Among these strategiec, Ao and Ullman's may be regarded as a
special  case of rlfp combined willh semi-naive evaluation. The
name of the class, Up(r), is overestimated iﬂ. a sense, because
restricted leasl [ixed polints are identifled in many strategies
in this class. The name "class implicit OF(r)" may be more

suitable,

— 02 -
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For instance, let us analyze the processing of Frelog, which
may be regarded as a guery processing strategy [or deductive
databases. Piolog answers a query by refutation, The processing
can be regarded as subsequent predicate calls. Consider the

following example.

Crapple 3: Linear ancestor
Query

:—ancestor (¥X,constant).

ancestor {(¥,Y) :=parent (X,Y).

ancestor (X,Y);—parent (X,2) ,ancestor (2,Y).
prolog first attempts to get parent (X,constant} using Lhe first
clause, 1f it fails or more answers are necessary, it Lries to
gets parent (X,Y),ancestor (¥, constant}. This time it first geis
parent (£,¥) and uses a value of Y, =say yl, Lo get
ancestor (v1,constant) and so on., Tf all values to be used to get
all answers in subsequent calls of ancestor{X,Y) arc collected,
they are eguivalent to the following restrictor. The definition
of ancestor® given by algorithm 1 for this query is

ancestor* (¥,Y)r—ancestor_init* (1,Y).

ancestor* (%,Y) ;—ancestor* (X,Y) ,parent (X, 5).
Because +this query is linear, the above clauses define a
restrictor. If the binding relationship is analyzed, it is

ancestor ([:4,b:Y) r-ancestor* (£ :¥,b:Y) ,parent (£:X,£:2).
parent (F:%,f:%) should be deleted to improve the perlformance,
However, Drolog evaluates a clause from left to right and the
above restrictor corresponds to the set of values Froloy uses Lo
answer the guery. Moreover, restricted Jeast fixed point is

found in Prolog processing if all instances of ancestor during

— 23
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execution are collected together.

Restrictors and restricted least fixed points can  be
identified in 0llenschen and WNagvi's strategy by comparing its
seguence of expanded relational algebraic expressions with that
of restrictors and restricted least fixed points. Although
strategies in this class can be mwore efficient than other
strateglies, they can be applied to only a limited type of

queries.

4.4 Class transformation

The last class consists of strategies that transform a set
of rules into another equivalent set of rules. These strategies
differ from class Gﬁr}-h, because they do not usually affect the
size of derived relations., However, derived relation themselves
may be eliminated or added by them. Examples of these strategies
are

Semantic Query Optimization
using Integrity constraints [Chakravarthy86 ]
Redundancy elimination [SagivB7]
Horn clause transformation (elimination of derived
relations by partial evaluation)
[MiyazakiB6 and 87b]
Substition in relational algebra (elimination of derived
relations) [CeriB6]
Pewriting of common expressions (adding derived relations

for common expressions)
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These strategies are independent of other classes of
strategies and can be used as a supplement Lo other strategies.
the following example shows the use of Horn clause transformation

as preprocessing.

Example 4: Reducible mutual recursion

=g {c, X},

gi{X,¥):—a{i,Y).

q (X, ¥):-b{X,2),p(2,Y).

PO, Y)Y i-c(E,Y).

pls,¥):=d({X,2),q(2,Y).
where a, b, ¢ and d are base relations. Although some strategies
such as Henschen and Magvi's can process this query efficiently,
other strategies may not be efficient or may not be applied
because p and g are mutually recursive. Horn clause
transformation transforms it to the following set of rules by
eliminating p.

1=q(c,X).

q¥,Y):—aiX,¥).

q(¥,¥):-b(X,2),c(Z,Y).

qiX,¥Y):=b(¥X,2),c(E,81),q(21,Y).
Decause this is a simple query with one derived relation, many

strategies can process this query efficiently.

Another example of Lhis class is rewriting of cowmon
expressions to aveid redundant operations. Although this
strategy is frequently used in traditional databases, 1is use has
not been fully investigated for deductive databases. M use of
this method is the generalized supplementary magic set discussed
in [BeerifB7]. Rewriting common expressions may be useful in
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combination with magic sets or rlfp because common expressions

can be freguently identified in them as seen in algorithm 1.

The relatiunship of strategies is suwemarized in Fioure 2.

5 Conclusions

The concept of the restricted least f[ixed point was
introduced to restrict the size of Jderived relations instead of
restricting computation. The way to realize this concept and the
relationship of  this concept with other strategies were
discussed., It was shown that what strategies compute iz a good
criterion of wvarious strategies and that restricted least fixed
points can be identified in many strategies. The performance of
query processing may be improved peveral orders of magnitude Ey
choosing good restrictors. Thus, Lhis concept gives a good

foundation of recursive query processing strategies.
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