ICOT Technical Report: TR-258

TR-258

A Self Applicable Partial Evaluator and Its
Use in Incremental Compilation

by
H. Fujita and K. Furukawa

May. 1987

CI1987. 1ICOT

Mita Kokusat Bldg. 21F {3 456-1191 5

H :D I 4-28 Alita 1-Chome Telex WO 132964
Ainato-kg Tokvo 108 Japan

Institute for New Generation Cumputef Technologi'_

A Self-Applicable Partial Evaluator and

Its Use in Incremental Compilation
Hiroshi FUJITA and Koichi FURULKAWA

ICOT Research Centre
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108 Japan

Abstract: This paper presenis an experimental implementation of
a self-applicable partial evaluator in Prolog used for compiler gener-
ation and compiler generator generation. The partial evaluator 1s an
extcnsion of a simple meta-interpreter for Prolog programs. and its
self-application is straightforward because of its simplicity. A mecthod
of incremental compilation is also described as u promising application
of the partial evaluator for knowledge-based systems.

1. Introduction

The general theory and practice of partial evaluation has been well developed for
software written in conventional programming languages. Recently, the same progress
has been made in relatively young logic programming languages such as Prolog. In
particular, partial evaluation has heen shown to be a fundamental technique to make
meta-programining feasible in practical use. However, there are many problems that
have been proposed, but not solved yet, although some of them have already been solved
in other languages or in limited contexts.

1.1. Overview of the Background

It is easy to read, write, and debug programs when meta-programming is adopted,
because of the high modularity and generality obtained. However, meta-pProgramimning
is frequently inefficient when the program obtained is executed, owing to the interpre-
tation overhead {Fig.1). This flaw is remedied by using partial evaluation {Fig.2). The
interpreter specialised for a program does not suffer from overhead because the program
has been digested and assimilated into the body of the interpreter code. Hence, it can
he executed with reasonable runtime efficiency (Fig.3).

Besides the naive usage of partial evaluation for program optimisation, a partien-
larly interesting application to compilers and compiler generators is well known [Futa-
mura T1], [Futamura 82] and [Ershov 78]. The specialised interpreter obtained above can

P: aobject-level program
1 meta-interpreter
Ap: answer to query on P

Ajp: answer to query on Ton P
P (= Ap) S: system (eg. DEC-10 Prolog interpreter)
I — Arp (I:Pw— Ap)
5 S:IxPw— Af,

Figure 1 Interpretation overhead in meta-programming

.

PE: partial evaluator
I H Iy I'p: specialised meta-interpreter wrt. F
T
PE PE:T=Pw—lp

Figure 2 Partial evaluation

Figure 3 Specinlised meta-interpreter running withiout overhead

be taken as a compiled code for the object-level program, in the sense that it perforius
computation specific to the program faster than its source code. Hence, the partial
evaluation corresponds to compilation. Stepping up one level, a partial evaluator can
be partially cvaluated with respect to an interpreter. The specialised partial evalua-
tor for the interpreter ean be taken as the corresponding compiler. Hence, the partial
evaluation in this ease corresponds to compiler generation (Fig.4). Further, a compiler
generator can be generated by partially evaluating a partial evaluator with respect to
another partial evaluator (Fig.5).

PE;:P‘I—}I}A

PE : PE x I~ PE;

PEpg : I — PEf

PE: PE x PE — PEpg

Figure 5 Compiler generator generation and compiler generation

1.2. Relation to Other Research

The research described in this paper is an extension of [Takeuchi 86G], in which the
first attempt to optimise meta-programming by partial evaluation was suceessful. How-
ever, the next step to realise self-application of the partial evaluator, thereby performing
compiler generation, compiler generator generation and incremental compilation, was
not accomplished. Advancing towards this step is our main motivation.

There has been steady progress in this field of research in the Lisp community
for some time. On the other hand, in the Prolog community, results are only recent,
and as far as the authors know, self-application of the Prolog partial evaluator has not
been successful yet. In reality, the present paper is viewed as a Prolog counterpart of.,
or extension of, [Jones 85] and [Sestoft 86], and largely shares its common principle.
However, our partial evaluation is simpler, structurally and rechnically, than those of
Lisp. because Prolog has better properties than Lisp in some respects, cspecially its
hinding scheme hased on unification.

With regard to other research in the Prolog community, (Safra 80] und [Levi 86]

obtained results similar to [Takenchi 86 in a slightly different context, but based on
almost the same motivation. aiming at optimising meta-programnming. Some general
aspects of partial evaluation as program transformation and improvement are described
in [Komorowski 82] and [Kursawe 8G]. However, they have no special concern with
meta-progrumming and self-application of partial evaluators,

1.3. Outline

Section 2 of this paper describes the development of a sclf-applicable partial eval-
uator in Prolog. Compilation, compiler generation and compiler generator generation
using the self-applicable partial evaluator are described in section 3. The partial eval
nator is extended, and thereby used in incremental eompilation in section 4, following
the scenario given in [Takeuchi 86}, Some performance results and evaluation are given
in section 5. After another possible application is described in section 6. tlus paper
concludes with a summary and notes on future research in section 7. The language

used for programs appearing throughout the paper is DEC-10 Prolog [Mereira 79

2. Development of the Partial Evaluator

A partial evaluator may be required to be as powerful as possible to obtain optimal
codes for a wide class of source programns. Such a partial evaluator tends to become a
large and complex program. On the other hand, it may be required to be as compact as
possible if the user applies it to itself, that is, partially evaluates the partial evaluator
using itcelf. The user may also reguire a partial evaluator somewhere between the most
powerful and the most compact. The user can use a full-power partial evaluator to
partially evaluate a minimal partial evaluator. thereby obtaining a specialised partial
evaluataor of medium size and functionality. In such a case, the partial evaluator is
not necessarily required to be self-applicable. Furthermore, it may be feasible to use a
language, Ly, for implementing a powerful partial evaluator which processes programs,
especially a compact partial evaluator, written in another language, Ly. Such a cross-
compilation-like technique is described in [Kahn 82] and [Kahn 84], where Lisp and
Prolog are coupled. However, it should be worthwhile to construct a minimal but non-
trivial self-applicable partial evaluator, which must be written in the same language 1t
can recognise.

2.1. Partial Evaluation of Prolog Programs

The partial information known prior to a program execution may be given in several
forms. The following two are very common in applications:

{1} Queries to the program are limited with respect to certain sets of constants or
restricted patterns of data structure.

.2} The set of facts, represented as unit clanses and referred to by the program, is
only partly given.

Partial information typically Hows top-down in case (1) and bottom-up in case (2]
respectively, but possibly alternately up and down during a computation, due to the

bi-directional nature inherent in unification.

Tn either case, unfolding is the most essential operation to perform constant propa-
gation, evaluation of evaluable predicates, climination of failing cases, and specialisation
in the end.

At first, we tried to develop a powerful and automatic version of the partial eval-
uator in full Prolog (with extra logical features) [Fujita 87a]. However, scll-application
was difficult primarily for two reasons. One is that 1t cannot handle some features such
as the cut operator effectively, which are used rather frequently in implementation. This
is the basic flaw, buf can be remedied somehow as in [Venken 84]. The other is more
practical; the code of the partial evaluator itself as well as its output is so big that it s
almest impossible to obtain results of a reasonable size and in a reasonable partial eval-
uation time. This raises the problem of space-time trade-off, in the sense of increasing
code size vs. decreasing run-time of the resultant code. To solve the problew, certain
criteria for evaluation of total perforimance must be established first. Then, the partial
evaluator should be organised to work along the criteria. In any case, the partial eval-
uator requires some sophistication concerning program anulyses, which will complicate
matters when it is applied to itself.

2.2. Partial Solver

In parallel to the above research cnhancing the partial evaluator and automating
it, another approach was tried. A tiny partial evaluator was developed as an extension
of the well known Prolog self-interpreter, solve, shown below.

solve(h) := solve_prim(A).
solve((4a B)) = solve(h), solve(B).
solve(h) - clause(A,B), solve(B).

The standard Prolog interpreter solves the goal, solve(4), with the same result as if it
salves the goal, A, directly. solve_prim{a) cvaluates goal A if it is true or any other
primitive defined in the system. clause(A,B) succeeds if A is unified with a head of
clanuse accessible in the system, unifying B with its body, otherwise it fails.

This simple definition of a Prolog self-interpreter. solve, suggests the following
partial solver, psolve.

psolve(A,R) - psolve_prim(A,R).
psolvel((A,B),(RA,RB)) :- psolve(A,RA), psolve(B,RB).
psolve(4,R) - clause(A, B}, psolve(B,R).
psolve(d,a) 1= suspended(A) .

The partial solver, pselve, partially solves a given goal. A. with the result of R which
is a conjunction of subgouls under A suspended to be solved. R is called residual
goal(s) for &, A goal yiclds residual goals if it is a primitive and partially evaluated by
pselve_prim with the result of the residual goals, or if it is a conjunction and some of
the conjunct yvields residual goals, or if it is of a user-defined predicate whose definition

can be secessed Ly clause and the subgoals vield residual goals, or if the goal itself
should be suspended for some reasou.

Note that psolve is related to solve in the foliowing clause:
solve(A) :- psolve(A,R), all_true(R).

where all_true(R) succeeds when R is a conjunction all of whose conjuncts are true.
Thus, if & is psolved with no residual goal other than true.it is, in fact, solved totally.
Conversely, it can be said that if A is solvable at psolve-time, it is, in fact, psolved
with no residual gouls; however, even if it is not solvable, psolve will yield residual
goals for it. In a sense, psolve covers only suceessiul sub-proof-trees from the root
goal, hence, the name “partial solver”.

2.3. Goal Suspension

What goal should be suspended and made residual” In geueral, the expansion of
a goal whose arguments are not fully instantiated may be of no use since 1t may not
reduce the real computation. Even warse, the expansion of such a goal would canse
infinite expansions of subgoals, making the process nonterminate.

For instance, consider the definition of append given as:

append ([HIX],Y,[H|2]) :- append(X,Y,Z).
apperd([1,Y,Y).

The gozl, append([1,2],Y,2), can be expanded finitely, or solved totally with
the resultant substitution Z=[1,21Y¥]. Also the goal. append(X,Y,[1,2]). is solved
with {X=[1, ¥=[1,2]} or {X=[1], ¥=[2]} or {X=[1,2]}, Y=[]}. However, the
goul, append (X,Y,Z), cannot be solved finitely, hence, it should be suspended by
psolve. The suspension will be forced if the following clause is supplied.

suspended (append(A,B,C)) := var(A), var(C).

That is. if the goal in hand is append(4,B,C) and both arguments A and C are unbound,
it is to be suspended. Thus, for example, append ({1 ,21%1,Y,2) should be psolved
up to append(X,Y,W) with the substitution, Z=[1,21W], and append(X, (], [1,2[Z])
should be psolved up to append(U, [1,2) with the substitution X=[1,210].

In general, a goal of recursive predicate must be unfolded very carefully. The safest
way, although it might be too conservative, is to find some well-founded-ordering (WFO
in the sequence of consccutive recursive calls.

plx) e pix") = pix") = ...

For one such WFQ which is often applicable to usual applications, the subterm relation
can be used. Suppose a goal in hand. p(x). matches the heads of its defining clauses
{p{t} :—...p(s)...], by the substitution & for the variables in t such that to = x for
each t. Then. all the recursive calls in the body of the clauses above are {p(x')} such

that se = x', for each 5. Now, if each of the x' s a propur subterm of x, the unfolding 15
safely performed. If x is a vector ol arguments, the above condition should be checked
at least at one fixed position in the vector.

Although there may be other WFO more complex than the subterm relation, 1t
ceemns difficult to find every possibility. Only a few of them might be mechanically
found by analysing the program clauses relevant to the given goal. The elaboration of
this issue is beyond the scope of the present paper.

2.4. Partial Solver as A Partial Evaluator

After the residual goal R is obtained by psolve, the solving process can he resumed
for A by solving B, provided that the condition s changed in preference for A 1o be solved
further. lu a sense, R is a (possibly conjunction of) subgoal(s) on the “snapshot of a
wavefront™ iu the proof tree for &, the root of which is labelled with &, At resunption.
the process can be restarted at the wavefront instead of at the root. as if R werc the
immediate subgoal(s) for A. Accordingly, A:-R can be considered as a program clause.
and is called a residual programe clause. Further, the residual program clause, A:-R,
is taken as a partially evaluuted program clause for &, and psolve i taken as a kind
of partial evaluator. A similar idea is deseribed in [Vasey 86|, where gualificd answer
corresponds to our residual program clanse.

Now, turning to the suspension mechanism, it should be noticed that the above
psolve is in danger of choosing the third instead of the fourth clanse. regardless of
the residual condition. The decision on which clanse should be chosen must be made
outside psolve. Therefore, the structure of psolve is reformed as follows:

psolve(A,R) :- psolve_prim(A,R). L (P
psolve((A,B),U-W) :- psolvel(A,U-V), psolvel(B,V-¥). ... {P2)
psolve(A k) - e1(4,8), psclvel(B,R}. ... (P3)
psolvel(4,R) :- expandable(A), psolve(4,R). L. (PA)
psolvei(a,[A12]1-2) :- residual(d). ... (PE)

Clause (P1) is the same as hefore. Now, at (P2}, if the goal to psolve is a conjunciion,
then the residual goal for it is given by appending the residual goals for each conjunct
given by psoivel instead of psolve. The conjunction of the residual goals is represented
Ly d-list™. At (P3), if the goal is a literal and user defined, then its definition is retricved
by cl, in place of clause, and its residual goal is given by psolvel, instead of psolve,
applied to the body goal of the selected clause. <1 is almost the same as clause
except that it is intended to retrieve only the subject cluuses sclectively, when they are
processed by pselve.

The newly introduced predicate psolvel checks the expandability of goal A and

* For exaunple, the list of two elemuents. [1.2] & represented as [1,21Z2]-2. which 15
easily appeuded to another d-list, say, [3,41W]-W. obtaining [1,2,3,4 W] =W, simply by
unifying the unbound tail of the first, Z, with rthe head of the other d-list.

=1

passes it to psolve if it is expandable at (P4), otherwise psolvel suspends it at (P5).
If & is residual. then it mayv not be expandable. Thus, a goal is added to the d-list if
and only if it is residual. Any goal that should be suspended cannot be expanded by
its defining clauses.

The new predicates, expandable and residual, are defined as:

expandable(A) :- \+&suspend(4).
residual{A) :- $suspend(A).

where \+ is the DEC-10 Prolog net operator which is interpreted by the negation as
failure rule. $suspend is essentially the same as suspended in the previous definition of
psolve, whereas it 1s marked by § at the head of the predicate name with the intention
of indicating that the condition will be given by the user. For example, the user can
provide the clause:

$suspend(append(A,_,C)) :- var(a}, var(C).

It seems redundant to have both expandable and residual, which are comple-
ments of each other; however, both are introduced so as to define psolvel without
using negation (or cut, if-then-else, ete.).

(hserve that all of the clauses for psolve and psolvel are of disjoint cases. The
only nondeterminacy is caused by ¢l in (P3), which contributes alternative results
for the residual goal and the residual program claunses. By backtracking the goal,
psolve(d). all alternatives of the residual program clauses for A can be collected. There-
fore, the top-level command for the partial evaluator using pselve can be introduced
as:

psolve_all(A) :- bagof((A:-R),psolve(i R) KewCls),
define(NewCls) .

The command pselve_all eollects all the alternatives for the residual gc'al.. R, using the
DEC-10 Prolog bagef primitive®. Then, it defines the residual program clauses, {4:-R},
for A, define(lewCls) asserts each of the resultant clauses in the list FewCls so that
it is accessible by <1 when it is further processed.

It should he noted that pselve_all is not considered as a part of the program for
the partial evaluator; it is just a command. Accordingly, bagef and define are con-
sidered command primitives rather than the primitive predicates for psolve program,
and never appear in the residual program clauses when psolve is applied to itself.

In principle. once the residual program clauses for & are obtained, any instance of
4 can be solved by using the residual program cluuses instead of the original program
clauses for A, It is iimportant to mention, however, that some of the goals appearing
in the residual program clauses may still need to be solved by the original program

* bagef(A,P,8) computes all solutions for A satisfving condition P with the resultant
list of solutions 3. if at least one solution exists. (therwise, it fails,

clauses, In particular, for recursively defined predicates, both residual and original
program clauses may be nceded.

2 5. Partial Evaluation of Primitives

The primitive predicates are those defined as the DEC-10 Prolog system predicates
plus psolve_prim. cl, expandable and residual. The predicates in the latter gronp
are called pseundo-primifives to distinguish them from the other genuine primitives in
the system, although they may be regarded as just primitives in the sequel.

The primitives are defined once and for all for their partial evaluation as well as
normal evaluation. For instance, the partial evalnation of true and DEC-10 Prolog is
and < primitives ure defined as follows:

Partial Evaluation of true, 1s and <

psolve_prim{true,Z-Z) =0

ground (B}, !, call(i is BJ.
simplify(B,C),!, is(A,C,R).

psclve_prim(A is B,Z-Z)
psolve_prim{A is B,R)

is(A,C,2-2) - var({c), !, A=C,
is(a,c,la is ClZ]-2).

psolve_prim(A<B,Z-2) :- ground(Ah<B), !, call{A<E).
psolve_prim(A<E, [A<B|Z]-Z) =1

Where ground(X) succeeds when X is a ground term, ic. it is an atomic coustant or
a compound term constructed only with function symbols and constants, or i short,
has no variables. simplify(X,Y) succeeds when X is a legal numerical expression,
returning a simplified expression, Y. which will possibly be identical to X. The detail of
the inner defnition of simplify is omitted. The standard interpreter of DEC10-Frolog
solves the call(X) primitive by taking the term, X, as a predication. thereby solving X
as if it were an immediate goal to be solved,

The pactial evalnation of pseudo-primitives are defined iu the following,.
Partial Evaluation of cl

pso]veuprimtclin,ﬁj,[cl(ﬁ,B}lZ]—Z} i— warf(a),!.
peolve_prim(cl{A,B), Z-2) - el(A,B).

Partial evaluation of ¢l should make it residual if its first argument, A, is unbound,
otherwise, it is solved as in normal cvaluation.

Partial Evaluation of expandable and residual

psolve_prim(expandable(A), [expandable(A) |Z] -Z) - var{4),!.
psolve_prim(expandable(d), Z-2) :- expandable(A),!.

psolve_prim(residual(A), [residual (A}]1Z]-2) - var({a),!.
psolve_prim(residual (A, Z-Z) :— residual{A},!.

Partial evaluation of these follows the same principle as that for cl. That is, if
expandable(A) (res idual (A)) is given a variable, ic. an unknown inner goal, &, then
it must be made residual at partial evaluation time, otherwise, it is solved immediately
in the present context as in the normal evalustion mode.

An explicit unification, X=Y, is always evaluated and never made residual. Further,
the partial evaluation of a (pseudo-)primitive never makes residual goals like var{_},
\+_, !{cut), ground(_), and call(_) and _==_ used in the definitions. They are
taken as more clemental than the primitives, and hidden within the black box of the
psolve_prim semantics. Accordingly, they are never specialised or exposed in the resid-
ual goals even when the whole partial evaluator is applied to itwelf.

Now. if goal 4 is psolved to be true then pselve(A,R) is also psclved to be true,
with the result, R=Z-2 (null d-list), that is:

psolve(psolve(A,Z-Z),Y-Y) := psolve(A,V-W), V==W.

In general, when partial evaluation of a goal, A, gives a conjunction of residual
goals R, Ra..... Hn, partial evaluation of psolve(A,R) should give the conjunction of
psclve(H; ,...). That is, the call psolve(psolve(A,R) ,B?) should result in:

psolve{psolve(4, Ul-W),
[psclvq{Rl,Ul-UE} ,PsulvE{RE,UZ-UB} ,...,psolve(Rn,Un-W)|Z]-Z)

This is coded in psolve_prim more precisely below.

Partial Evaluation of psclve_prim

psolve_prim(psolve_prim(A,R), [psolve_prim(A,R) [Z]1-Z) :- wvar(A),!.
peolve_prim(psolve_prim(A,Q),R) :-
psolve_prim[ﬁ.,F} ; PPIim[P,Q-H] .

pprim(A-C,W-W,Z-2) := A==C,!.
pprim([A|E]-C,U-W, [psolve_prim(A,U-V)IY]-Z} :-
pprim(B-C,V-W,Y-2),!.

The same trick could be used for psolve, however, it would turn out nothing but
hand-writing of the compiler gencrator. This must be avoided in principle, although it
seerns inevitable for primitives such us psolve_prim, hecanse it is against the motivation
of zelf-application, ie. mechanical (hopefully automatic) generation of compilers and
compiler generators ouly by the partial evaluator of the most general and minimal
structure.

The problem of what goal of psolve(4, ...} should be suspended and made
residual at the time of partial evaluation depends on iuner goal A, and is controlled

— 10 —

only by appropriate $suspend conditions which are accossible through expandable and
residual.

3. Compiler and Compiler Generator

The partial evaluator psolve is used in compilation, compiler generation and com-
piler gencrator generation.

3.1. Compilation

Suppuse that we have the following int as a meta-interpreter.

int(true,[100]). oL (I1)
int((A,B),Z) - int{a,X), int(B,Y), append.{I,"f,Z}. L1
int{not(A},LCF1) - int(a,[c]), € < 20, CF is 100-C. LW I3
int (4, [CF1) - rule(A,B,CF1), int(B,5), ¢f(CF1,5,CF). L (I4)
ef(X,Y,Z) - product(Y,100,W), 2 1s (=*W)/100. ... LI5]
product ([A1X],Y,Z) .= W is A*Y/100, product(X,W.Z). ... (18)
product (L1,Y,Y). LW IT
a.?pend{[hl.}:],‘:',[ﬂlﬂ} ¢+~ append(X,Y,Z2). ... LIB)
append ([J,Y,Y). ... (19)

This is tiny inference engine for rules with a certainty factor. Now, suppose also that
we are given the following rule as an ohject-level program to 1nt.

rulelshould_take(Person,Drugl, .o (R1)
(complains_of (Person,Sympt om) ,
suppresses{Drug,Symptnm},

not (unsuitable(Drug,Persen)) I, TG0l .

rule(unsuitable(Drug,Fersen), .. {R2)
(aggravates(Drug,Condition),

suffers_from(Persen,Cuuditjnn] 3, BOY.
rule(suppresses(aspirin,pain), true, 60). ...(R3)
rule{aggravate5iaspirin,peptic_ulcer}, true, 70). ...(R&)
ru]e{suppresses{lomntil,diarrhcea], true, 65). ...(R5)
rula{agg:avates(]omotil,impaired_liver_functicn}, true, 70). ...(RE)

Then, int is specialised with respect to rule, provided with the control information:

$5u5pend{intiﬂ,_}} .= wyari(d) ;
inst{n,cﬂmplains_uf(_._}} ; inst(A,suffers_froem(_,_)J.

11 -

$suspend(product(A,_,_)) :- var(A).
$suspend(append(A,_,C)) :- var{a), var(C).

Where inst (4,B) is a primitive, and succeeds if & 15 an instance of B, ie. Bo becomes
identical to A with some substitution o for variables in B, and fails otherwise. The goals,
int{complains_of{(_,_),.) and int(suffers_from(_,_),_), arc suspended because
they will be given only when the program is executed,

The compilation is performed by the command:

t= psa]ve_al](int(shauld_taka{_,_},_}j.

The specialised interpreter, int .14, 15 obtained as:

int(should_take(A,aspirin),[B]) :- L (Trid
int(complains_of(A,pain),C),
int(suffers_from(A,peptic_ulcer),D),
product(D,70,E},
F is 80+E/100,
F<z0,
G is 100-F,
append(C, [60,G] ,H),
product (H,100,1),
B is TO=I/100.

int(should_take({4,lemotil), [B]) :- Lo (Ir2)
int{complains_cf(A,diarrhoea),C),
int(suffers_from(A,impaired_liver_function},D),
product(D,70,E),
F is BO=*E/100,
F<20,
G is 100-F,
append{C, [65,G] ,H),
product(H,100,I),
B is 70=I/f100.

The code for int ;7. has been fully specialised for the queries to the object-level
program, should_take(Person,aspirin) and should_take(Person,lomotil).

3.2. Compiler Generation

The partial evaluator, psolve, is used to specialise itself with respect to the meta-
interpreter int, obtaining psolve jn4, which in turn is used to obtain the specialised

mcta-lnterpreter int o4 as shown in the last subsection.

The control information is given as:

$suspend(psolvel(a,_)) r= wvar({A) ; residual(A).

$suspend(int(h,_)) c= war(h).
$suspend(product (A, ,.)) - var(4).
$suspend(append(A,_,C)) :~ var(A), var(C).
$suspend(rulel.,.,.)).

Compiler generation is performed by the rommand:
1= psolve_all{psnlve(int{_,_},_}},

The compiler. psolve j¢. 15 ohtained as:

psclue{int(true,LIDDJ},ﬁ-ﬁ]. ... (Pi1)
psalve{int{{ﬂ,ﬂ},ﬂ}.D~E} i .. (Pi2)
psolve1(int(A,F},D—ﬂ},
psolvel(int(B,H),G-1),
p5010&1[append{F,H.G},I—E}.
pselue(int(not{A},[E]j,C-D) - ... (Paz)
psolvei(int (4, [E]),C-FJ,
psolve_prim(E<20,F-G),
psolve_prim(B is 100-E,G-D).
psolve(int(4,{B]),C-D) :- L lPigd
psolvel(rule(A.E,F},C*G},
psolvel(int(E,H),6-1J,
psoclvel(product(H,100,7),I-K),
psolve_prim(B is F*J/100,XK-D).

Each of the psolve jy4 clauses reflects the corresponding clause of the int program.
The clause (Pil} means that int(true, {1001) is always partially evaluated with the
null residual goal, or is totally evaluated as true. The clause (Pi2) means that the
partial evaluation of int ((A,B),C) gives the conjunction of residual goals, each of which
is given by partially evaluating int(A,F), int(B,H) and append(F,H,C) respectively.
The other cluuses, (Pi3) and (Pi4}, should be read similarlv. The non-recursive cf
clause has been ahsorbed into (Pid).

Wote that in addition to the main predicate int, the other two recursive predicates,
product and append. should be taken i by the compiler. because they will be called
from within the compiler. Thus, the following is added.

.- psclve_all(psolvelproduct(_,.,).)),
psolve_allipsolve(append(_,_,.),.)).

psolve{product([n1B],C,D),E~F) :- ...{PiB)
psalve_PIim[G ig A=C/100,E-H),
psnluel(praduct(B,G,D],H—F},

psolvelproduct ([J,A,A),B-B). ... (PiB)

psolve(append([41B],C, [4ID1) ,E) :- oL (PAT)
psolvel (append(B,C,D),E)}.

psolve(append([],A,A) ,B-B). G =18}

What will happen if one of the item of control information is not enough? For
instance, suppose that one of them is changed to:

teuspend(psolvel(d,_)) :- var(A).
instead of:

$suspend(psolvel (4,)) :- var(A) ; residual(A).
Then, the resultant code will hbecome:

psolve(int (true, [100]),A-4).
psolve(int((A,B),C), [int(A,D),int(B,E) ,append(D,E,C)|F]-F).
pselve(int(not(A), [B]), [int (A, [C]) |DI-E} :-
psolve_prim(C<20,D-F),
psolve_prim(B is 100-C,F-E).
psolve(int(a,[B]), [rule(A,C,D),int(C,E) ,product (E,100,F} |G]-KE) :-
pselve_prim(B iz D#F/100,G-H).
psolve(product ([A|B],C,D),E-F) :-
psolve_prim{(G is A*C/100,E-[preduct(B,G,D)|F]).
Psulve{pruduct([],A,ﬁ},B-B}.
psolve(append([AIB],C,[AID]), [append(B,C,D) |E]-E).
paoalva(append([],4,4) ,B-B).

The second clause means that partial evaluation of a goal int ((A,B),C) will always give
the conjunction of the goals, int(4,D), int(B,E) and append(D,E,C), immediately as
its residual goals. No evaluation or unfolding will be performed, even if the goals are
instantiated enough to be evaluated or unfolded when the compiler is executed. This
result 1s not intentional. It Is due to the inappropriate time of decision made on the
residual goals, le, earlier than the correct time. In fact, the most delicate task is to
have exact control information to continne or stop partial evaluation appropriately.

3.3. Compiler Generator Generation

The partial evalusior, psoelve, is used to specialise itself with respect to itself,
obtaining psolve peglves which in turn is nsed to obtain the compiler, pselve j,¢. a8
shown in the last subsection.

The compiler generator generation s performed by the command:
:= psolve_all(psolve(psolva(_,_},_)).
The compiler generator, psulvnpsglve, is obtained as:

psolve(psclve(A,B),C) :- ... (Ppl)
psolve_prim{psolve_prim(4,B),C).

— 14 —

pselve(psolve((4,B),C-D) ,E-F) - ... (Pp2)
psalvei{psulvel{ﬁ,ﬂ*ﬁ),E-H],
;solve!{psoluel(B,G-D},H-F).
psolve(psclve(A,B),C-D) :- ... (Pp3)
psolue_primicl{A,E},G—F},
psolvel(psolvel(E,B) ,F-D).
psolve(psolvel(4,B),C-D) := ... (Pp4)
psalve_prim(expandable{h},C-E},
peolvel(psolve(A,B) ,E-D).
psolv&{psnlval(h,[A]B]-B),G—D} := ...(Pp5)
psulve_prim{residual(k),E—D).

This is quite simple, and even seems to be trivial: however, it is enough to handle
psolve(psolve...) anyway. Note that the original clauses, (P1)...(P3), are needed
for the compiler generator to work as a whole.

Tucidentally. it would be interesting to compare this fo the self-interpreter of pure
Prolog. sclve, defined as follows:

solve(true).
golvel((A,B)) :- solvelA), solve(B).
solveld) ‘- clause(h,B), solve(B).

What will happen if the goal, solve(solve(A)). is given to the standard pure Prolog
interpreter? The result would be the same as when the goal, solve(k), or even A is
given directly. In this sense, it can be said that solve is idempotent. This interesting
property can be shown by partial evaluation as follows:

$suspend(solve(A)) ;= var(A).
$suspend(clause(h,)) :- var(A).

;- pselve_all(soclve(solva(Al)).
solve{solve(true)).
solve(solve((A,B))) :- solve(solvelhl), solve(solve(B8)).
selve{solvalAl) .= solvel(clause(A,B)), solve(sclve(B)).
At this point, if we assume:

solvelclause(A,B)) :- clause(A,B).

and, applyving the replacement {solve2(R) / solve(solve(A))} at each alom, then
the following resulr is obiained:

solveZ{true).
solve2((4, BY) = solveZ(A), solve2(B).
solveZ(A) = clausel{A ,B), solveZ(B).

Thus, the selve2 program, which is derived as the residual program for the special goal,
solve(solve(A)), is isomorphic to the original solve program. Now, let us compare
this with the result of the compiler generator obtained above. It would be possible to
replace the atoms in the clauses as:

psolve2((A,B),C) / psolve(psolve(A, B} ,C)
psolve_prim2((A,B),C) / psolve_prim(pselve_prim(A,B),C)
psalvei_?{{ﬂ.,ﬂ}) psolvel {psolvel {A,B),C)
¢12((a,B),C) [peclve_prim(cl(A,B),C)

obtaining the reformed program:

pselve2((A,B),C) :- psolve_prim2((A,B),C).
psclve2(((A,B),C-D} ,E-F) psolvel _2((A,C-G) ,E-HJ,

psolvel _20(B,G-D),H-F).
psolve2((A,B),C-D) ;- cl2((4,E),C-F), psolvel_2((E,B),F-D).

Obviously, it iz not isomorphic to the original psolve program. solve2 was another
interpreter in the same level as solve. On the other hand, psolve2 is not another
partial evaluator in the same level as pselve; it is essentially a different partial evaluator,
being one level higher than psolve. However, it can collapse to he the partial evaluator
isomorphic to the lower psolve in its behaviour, when it gives a null residue, ie.:

psolve(A,R) := psolve2((A,R),X-Z), X==Z.

4. Incremental Compilation

So far, the object-level program is assumed to be given as @ whole at one time. Now,
suppose that, say, (R3)...(R6) in section 3.1 or facts about other medicines arc given
only one by one ocasionally. Then, ean we do anything with the already known int
and partial rule at hand? According to the principle of partial evaluation, something
must be done even in such circumstances. To do this, however, the psolve used so far
should be extended somchow to manage this new situation.

4.1. Open Predicate

The predicate where not all of the defining clauses are given is said to be open. For
example, consider the following ancestor program:

ancestor(A,B) :=- parent(A,B).
ancestor(A,B) :- parent(A,C), ancestor(C,B).

where two parent relations are given as:

parent(p,q).
parent(qg,r).

16 —

If the parent relation is closed, ie. it is not open, then the ancester program is
computed immediately and simply reduced to:

ancestor(p,q).
ancestor(qg,r).
ancestor{p.T).

This is a solution table rather than a program, in the sense that it needs no more
computation (inference) than looking up the list of facts. However, if the parent is still
open, then the ancestor program should be partially evaluated to:

ancestor(p,q) .
ancestor(g,r).
ancestor(4,B)
ancestor(p,B)
ancestor(qg,B)
ancestor{A,B)

parent[A,E].

ancestor(q,B).
ancestor{r,B).

parent(A,C), ancestor(C,B).

The two parent relations have been ubsorbed mto the ancester clauses. The remaining
calls to parent in the third and the last clauses of the specialised ancestor program are
required to refer to other facts about parent which will be given in future. In general,
the specialised program with open predicates includes the original clauses as well as
thosc that have assimilated the known facts.

Thus. if the goal is of an open predicate, it is suspended somnewhere in the specialised
clauses. This is the essential mechanism to realise incremental compilation described in
the sequel.

4.2. Extended Partial Solver

The partial solver psolve is extended to handle open predicates.

pselve(A,R) t- c1(4,B), psolvel(B,R). L. L (PELY
psolvel ((4,8),X-2) :- psolve2(4,X-Y}, psolvel(B,Y-Z). ... (PEZ)
psolvel(4,R) - literal(A), psolve2(A,R). ... (PE3)
psolve2(4,R) - psolve_prim(A,R)}. ...(PE4)
psolve2(A,R) i- cpen(A), psolve(A,R). ...(PES)
peolve2(A,R) - psclve3(4,R). ... (PEE)
pselve3(A,R) - expandable(A), psolve(A,R). ... (PET)
psolve3(a, [Al2]1-2) :- residual(A). ...(PE8}

This nlso reflects changes in structure for optimisation purposes under the assnmptions
that the top-level guery to the psolve is always a literal and the body literals returncd
by ¢l in B are a right-linear conjunction, { By, (B2, .. A Bu-1.Ba). .)

17 —

Two new primitives are introduced: literal and open. 1literal(A) succeeds il
A is a literal, ie. not a conjunction, otherwise it fails. open(A) succeeds if 4 is a goal of
an open predicate discussed above, otherwise it fails. The user should inform whether
a predicate is open or not by $open, thus:

open(4) :- $open{A).

Moreover, the primnitives expandable und residual are redefined as:

expandable(A) :- $expand(A).
resideal{A) :- N+prim(A), (\+$expand(d) ; Sopen(A)).

Where another inner primitive, prim(A). succeeds if A is of a primitive predicate (iu-
cluding pseudo-primitive), otherwise it fails.

Now, the $suspend in old definition is replaced by $expand. For example,
$suspend(append(A,_,C)) :- var(A), var(C}.
is now replaced by:
$expand(append(A,_,C)} :- nonvar(A); nonvar(C).

That 1s, conditions for suspend and expand are complements of each other.

Note that if goal A is of an open predicate having some defining clauses at partizal
evaluation time, its partial evaluation calls c1(A...} through (PE35) and (PEL) obtain-
ing the definition for each clauses already defined, whereas 4 will be made still residual
at (PE8).

4.3. Compiling Program Fragments

Starting with the compiler generated by the extended pselve and int in a sim-
ilar way to that described in section 3.2, incremental compilation can be perforined
by specialising the interpreter with respect to program fragments given incrementally

(Fig.6).

For instance, suppose (R1) and (R2) from the rule definition in section 3.1 are
given as the first fragment. Then, int (gq4p9) i= obtained by:

$expand(psolve(A,_)) := nonvar(A).
$expand(psolvel(A,_)} ;= nonvar(A).
$expand(psolve2(A,_)) := nonvar(a),

{prim(A) ; open(A) ; expandable(a)).
$axpand(psclved(A,_)) :- nonvar(a), (prim(A) ; expandable(a)).
fexpand(int (A, 1) r= nonvar(A),

W+inst (A, complains_of (_,_}), “#inst(A,suffers_from{_,_}).
$expand(efi_,_,.)0).

- 18

Figure 6 Incremental compilation

$expand(product(4,_,_)) :- nonvar(a).

$expand(append(A,_,C)) :- nonvar(L) : nonvar(C).
fopen(ulel_,_,_0}.
;- psolve_all{psolve(int(_,.),.0).

The result 1s:

int(should_take(A,B),[C]) :-
int(complains_of(4,D),E},
rule(suppresses(B,D) ,F,G),
int(F,H),
product (K,100,1),
J is G+I/100,
rulelaggravates(B,K) ,L,M},
int (LK},
product(N,100,0),
P is M#0/100,
int{suffers_frem{4,K),0QJ,
product(Q,P,R)},
5 is BO=*R/100,
5<20,
T is 100-5,
append(E, [J,T),U),
product (U,100,V),
O is TO*V/100.

Suppoac,LHS}:uxliRl}aregﬂvm1ncxrthvn,inLER1+H2}isfuﬂherﬁpedahsndtu
1nt (g1+R2+R3+R4) V7

Rn+1

Figure T Compiler at stage n and its use

$expand(rule(_,_,_)).

:- psolve_all(int(should_take(_,_),_)).

The result is (Irl) in section 3.1.

In the same way, if (R53) and (R6) are given, (Ir2) is obtained. Further, each time
facts about any other medicine are given, compilation can be performed similar to that
above,

At this point, it should be noted that it is better to make psolveint (R1+R2)
first, then use it to compile facts about medicines, instead of using the bare psolve,
and int (g14+po)- In general, when an additional program fragment, [8ncy, is given, a
partial evaluator (’E') has to run both on Jx~ and Rye. On the other hand, the

specialised partial evaluator, PE;E , or the specialised compiler, Cv"}: g+ Deed run only
R

on Rpew {(Fig. 7). Clearly, the specialised partial evaluator, which has already digested
all of the raw materials given till that time. runs {aster than the bare partial evaluator,
which has to operate from scratch.

To obtain psolve ipt (R1+R2)" $open(rule{_,_,_J)) iu the setting obtaining
int (Ri+R2). is replaced by:
$open(rule(A,_,_)) :- inst(A,suppressesi_,_)) ;

inst(A,aggravates(_,_)).

Now, rule is not open in its most general goal pattern rule(_,_,_). However, two
wstantiated goal patterns, rule(suppresses...) and rulefaggravates. . .), arestill
open

The result 15 as fallows:

psolve(int (should_take(A,B),[C]),D-E) :-
psolve2(int(complains_of(A,F),G),D-H),

—) —

psolve&{rule{suppressas{B,F),I,J],E-E}.
psnlvei{int(I,L}?K—H),
psulvaﬁ{produ:t{L,iDD,H},H—D],
peolve_prim(P is IxN/100,0-Q),
psalvea(rule{aggravates{ﬁ.R}.S,T}.Q-U},
psclve?{int{ﬁ,v},U-H},
psulvei{pradu:t(?,iﬂﬁ,i),H-T},
psolve_prim(Z is T*%/100,Y-A1),
psalvei(int{suiiers_from{ﬂ,H},El],Ai-ﬂi},
psolve2(product (B1,2,D1),C1-E1),
psolve_prim(F1 is 80+D1/100,E1-G1),
psolve_prim(?1<iﬂ,ﬁi-H1},
psolve_prim(Il is 100-F1,H1-J4),
psulvei{append{G,EP,Ilj,Hi},Jl-Li},
pﬁnlveﬂtproductﬁkl.1ﬂ0,H1},Ll-Hi),
psolve_prim(C is 70+M1/100,N1-E) .

Note that it is cnough to have only the specialised compiler, instead of the spe-
cialised interpreter, provided that the compiler at cach stage is used many times. This
process is extended to any stage up to n in the sume way. At any stage, n, the spe-
cialised compiler can be used either to compile new program fragment, or to obtain
compiled code for the program fragments accumulated within the compiler till that
time, by running it with nill input.

5. Performance Analyses

This section describes some performance results and their evaluation. All data is
collected for the extended partial solver, pselve, defined m section 4.2.

Table 1 shaws the results in compilation, compiler generation and compiler gener-
alor generation, where code size is figured by the pnmber of body literals sumined up
for all the clauscs, vs. the number of elauses, which are relevant to the corresponding
program mentioned in the first column of the table. The implicit true primitive of a
unit clause is connted as one.

Compilation of the object-level prugram, rule (R), by using the compiler
psolve ;¢ (I'E(), took about 3/4 of the time spent by bare psolve (PE). Al
though extra time is required to generate PEp, it should become negligible if it is used
many times for different object-level program. The run-time generating psolve gg1ye
(PEpg) is small because PE is so simple.

Table shows the results in incremental compilation. An incremental specialisation
of the meta-interpreter, int (I), may proceed as:

I= ‘ri.Rl..ﬂ = ‘;':31,2.3.4}

which amounts to 1.18 (= 0.84 + 0.34) seconds of the total run-time, whereas another

Table 1 Compilation, compiler generation and compiler gencrator generation

Timne Cade Size
f}puralmn E[#ﬂf body Titerals)
[ﬂﬁ:) #Fof clanara
PE: IxRw—1Ip 1.27 %:%x%n—;%
PE: PE x I — FE; 1.07 B3 o M (28
PEr:Rw—Ig 0.58 i;:;ﬁ %p—h%

PE:PE x PEvw PEpg | 0.89 W B (B

FE: extended psolve (FE1 ... PER)
It int (11 ... 19)
H: rule (R1 ... RE)

Table 2 Incremental compilation

Time Code Size
Dppratmn Z{#afﬁody literals)
f\ﬂﬁﬂ] #Fof clouses
7 T i
PE:Ix(Ryg)— Ik, p 0.84 13,17 5 2, (T2
PE;: (Ryz2) — Iz, ,) 0.50 | i (5007
13416417 | 17 4 17
PErg, 3+ @ diR, 2y 0.19 "ﬁw 'D"*{ﬁt:'T
13 . 13 ., 17417 13+ 184+17
FPE: PE x Iig, 5) = PEip, 1.93 E e =S ulnd & =l =5
PE : PEy % (R12) = PEj, 2.52 EihRhEx - (%_t]—+—lg+;7
FPF - I':HI.:'} b [Ra.d] — IE‘_! R, (1.34 1; .];+17 o % (e %
PEI;R,_,; [Raa) sz & 0.22 ’3;_4_—'5:5:.5-3 : % — %

— 22

way may l')rl}ﬂf:'f‘d N
JH = IJEJ = PE"{RL . = "!Ilfﬂ: IR

which amounts to 3.81 (= 1.07 + 2 59 4 0.22) seconds. Tu general, specinlising compiiers
takes more time than specinlising interpreters does. However, of course. the specialised
compiler compiles a new program fragment faster than the partinl evaluator specialises
the specialised interpreter with respect to the new prograim fragment. For instance. (.50

ve. (.84 scconds obtaining I(g, 4, aud 0.22 vs. 0.34 seconds obtaining fgs
) i

R

Due to the limited examples, a more general conelusion about performance cannot
be stated in this paper. However, even if we tried more examples, there would still
remain certain diffienlties in evalnating the results fuirly and deriving some definite
statements on performance. because the performance of partial cvaluation is strongly
dependent on the specificity of the subject program. Some evaluation standard and
benchmarks need to be established.

6. Another Application

In some applications. a meta-interpreter, 7,. is used to meta-interpret another meta-
interpreter, fa. This can be extended to any level of hierarchy of meta-interpretation,
comprising the tower of interpretation (Fig.8).

Fach time a next lovel meta-interpreter is given, incrementally from the bottom, it
can be collapsed to the bottom level neta-interpreter. by partial evaluation { Fig.9).

At any level N the collapeed meta-interpreter IV can be specialised with respect
to the object level program that can be run on the N-th meta-interpreter Iy, which in
turn can be run on the (N —1)-th meta-interpreter. and so on, obtaining I3 . Thus, the
resultant I can ruu on the system far fuster than the original objeet-level program on
the tower of interpretation.

This method may ofer another kind of incremental compilation, which advinces
vertically across the ohject-inets houndary., raiher than horizontally on the snme level
as showi in the last section.

7. Conclusion

This paper presented a seli-applicable partial evaluator in Prolog. The partial eval-
uator is so simple that its self-apphcation can be performed straightforwardly, thereby
realising compiler generation and compiler generator generafion. We think that. al-
though the partial evaluator is emall and minimal in functionality, the success of its
self-npplication is not a irivial resulr, since it immplies another realisation of the impor-
tant theoretical result relating partial evaluation to compilation in logie language.

An application of the partial evaluntor Lo the ineremental eompilation of a meta-
interpreter speciahised with respeet to progeam fragments given incrementally was tle.
ceribed. The method will be promising wien nsed in the development of expert systems
whose knowledge basc is extended incrementally.

S -

I'l {H Azh JJ)

A F: program
I - E:=1 s IJ: meta-interpreter at level j
Az answer to query on =
) S: system {or machine)

Figure 8 Tower of interpretation

Iﬂ-l-']

PE: partial evaluator
I": meta-interpreter collapsed up to n
I,: meta-interpreter at n-th level

m =

PE PE. I KI"+1I—"I“+1

Figure 9 Collapsing the tower of interpretation

L-q‘l: r£ .-_r ‘4

Figure 100 Collapsed meta-interpreter running without overhead

It 15 desirable to discuss issues concerning automatic derivation of control informa-
tion such as $suspend or $expand, and enlargement of the class of the target language
from purc Prolog to practical Prolog with negation, cut, bagef, cte., thereby making
partial evaluation of primitives less tricky. [Naish 85] scems to offer materials closely
related Lo these issues. However, the claboration of them is bevond the seope of the
prosent paper.

There remain several research themes to be extensively pursued. The first is ob-
taining a more powerful partial evaluator (that is, applicable to a wide class of source

PrOErams, self-applicable and hopefully fully antomatic), after solving those Issues stated
above. The second is accumulating experience of partial evaluation with practical appli-
cations to tune up the algorithm or Leuristics. Some of these are being tackled [Fujita
£7b] and [Takeuchi 87]. The third is trying the same goals in other languages, especially
in parallel logic progranuming languages such as GHC [Furukawa 87}

Acknowledgements

We would like to express our gratitude to Dr. K. Fuchi, director of ICOT, for giving
us the opportunity of doing this researcl, We also wish to thank Mr. A Tukeuchi for
his adviee in initiating this present work, members of the First Laboratory of 1COT
for their useful discussions, and the referees for their suggestions and comments that
helped improve the draft of this paper.

References

[Ershov 78] A.P. Ershov, On the Essence of Compilation. in E.J. Neuhold (ed.): Farmal
Description of Programiming Concepts, 791-420. North-Holland, 1978

[Fujita 87a] H. Fujita, On Automating Partial Evaluation of Prolog Programs, ICOT
TAI-250, 1087 (in Japanese)

(Fujita 87b] H. Fujita, An Algorithm for Purtial Evaluation with Constraints, ICOT
TM-367, 1987

|Furukawa 87) K. Furukawa and A Okumura, Unfolding Rules for GHC Programs, in
A P. Ershov. D. Bjgrner and N.D. Jones (eds.): Proc. of Workshop on Partial
Evaluation and Mized Computation, Gl Avernes. Densnark, October 1987,
North-Holland, 1988 (to appear)

[Futamura 71) Y. Futamura, Partial Evaluation of Computation Provess - An Approach
to a Compiler-compiler. Systems, Computers, Controls, Vol. 2, No. 5, 40-50,
1871
(Futamura 82] Y. Futamura, Partial Evaluation of Programs, in E. Goto, et al. {eds.)
2IMS Symposia on Software Science and Eungineering, Kyoto, Japan, 1952,
Lecture Notes in Computer Science, Vol. 147, 1-35. Springer-Verlag, 1983

|Jones 85] N.D. Jones, P. Sestoft and H. Sundergaard, An Experiment in Partial
Fraluation: The Generation of a Compiler Generator. i J.P. Jonannaud {ed.):
Rewriting Techniques and Applications. Lecture Notes in Computer Science,
Vol. 202, 124.140. Springer-Verlag, 1985

Wahn 82] 1M, Kahn. A Partial Evaluator of Lisp Programs Written in Prolog. in
M. Van Caueghem (ed.): First Internaitonal Logic Programmung Conference.
Marseille, France, 19-25, 1982

{ahn 84] K .M. Kahn and M. Carlson, The Compilation of Prolog Programs without
the Use of a Prolog Compiler, in International Conference on Fifth Generation
Computer Systems, Tokye, Japan, 348-355, 1954

[Komorowski 82] H.J. Komorowski, Partia! Evaluation as a Means for Inferencing
Data Structures in an Applicative Language: A Theory and Implementation in
the Case of Prolog, in Ninth ACM Sympesium on Principles of Programming
Languages, Albuguerque, New Mezico, 255-267, 1982

[Kursawe 86! P. Kursawe, How to Iuvent a Prolog Machine, in E. Shapiro (ed.):
Third International Conference on Logic Preogramming, London, Uniled King-
dom, 1986, Lecture Notes in Computer Science, Vol 225, 134-148, Springer-
Verlag, 1986

{Levi 86] G. Levi, Ohbject Level Reflection of Inference Rules by Partial Evaluation
{Extended Abstract). in P. Maes and D, Nardi, (eds.): Weorkshop on Meta-Level
Architectures and Reflection, Sardinta, October 1986 (to appear)

[Naish 83] L. Naish, Negation and Control in Prolog. Lecture Notes in Computer
Seience, Vol. 238, Springer-Verlag, 1985

[Pereira 79] L.M. Pereira, F.C.N. Pereira and D.H.D. Warren, User's Guide to
DECsystem-10 PROLOG, Occasional Paper 15, Dept. of Artificial Intelligence,
Edinburgh, 1979

[Safra 86] S. Safra and E. Shapiro, Meta Interpreters for Real, in H.J. Kugler (ed.):
Information Processing 86, Dublin, Ireland, 271-278, North-Holland, 1986

[Sestoft 86] P. Sestoft, The Structure of a Self-Applicable Partial Evaluator, in
H. Ganzinger and N.D. Jones (eds.): Programs as Date Objects, Copen-
hagen, Denmark, 1985, Lecture Notes in Computer Science, Vol 217, 236-256,
Springer-Verlag, 19586

[Takeuchi 86] A. Takeuchi and K. Furukawa, Partial Evaluation of Prolog Programs
and Its Application to Meta Programming, in II.J, Kugler (ed.): Information
Processing 86, Dublin, Ireland, 415-420, North-Holland, 1986

[Takeuchi 87] A. Takeuchi and H. Fujita, Competitive Partial Evaluation — Some
Remaining Problems of Partial Evaluation, in AP, Ershov, D. Bjerner and
N.D. Jones (eds.): Proc. of Workshop on Partial Evaluation and Mized Compu-
tation, Gl Avernes, Denmark, October 1987, North-Holland, 1988 (to appear)

[Vasey 86] P. Vasey, Qualified Answers and Their Application to Transformation,
in E. Shapiro (ed.): Third International Conf. on Logic Programming, Lon-
don, United Kingdom. Lecture Notes in Computer Science, Vol. 225, 425-432,
Springer-Verlag, 1986

[Venken 84] R. Venken, A Prolog Meta-interpreter for Partial Evaluation and Its
Application to Source to Source Transformation and Query-optimization, in
T. O'Shea (ed.): ECAI-§4, Advances in Artificial Intelligence, Pisa, Italy, 91-
100, North-Holland, 1084

