ICOT Technical Report: TR-255

TR-255

Parallel Control Techniques for Retrieval
Processes in the Parallel Logic Programming
lL.anguage and Their Evaluation

by
T. Takewaki and H. ltoh

May. 1987

987, 1C0OT

Mita FKokuza: Bldg 21F (031 4963191 ~3

H :G | {28 Mita 1-Chome Telex 1C0T 132964
Minato-ku Tokvo 108 Japan

Institute for New Geheration Cnmputer-Technolngy

Parallel Control Techniques for Retrieval Processes in the Parallel
Logic Programming Language and Their Evaluation

Toshiaki Takewaki and Hidenori ltoh

Institute for New Generation Computer Technelogy,
Mita Kokusail Building, 21F,
1-4-28 Mita, Minato-ku Tokyo 108 Japan

Ahbstract

This paper proposes parallel control techniques for retrieval processes
in the parallel logic programming language, GHC (guarded Horn
clauses), which is used as the basis of KL1 (kernel language version 1) for
the parallel inference machine under development at ICOT. it also
proposes parallel processing of retrieval operations by division of handled

data.

The parallel control strategies are developed from the following
parameters: number of available retrieval processors, type of commands,
and size of the data to be handled. In this paper, the evaluation of the
technigues is a correction betwcen data size of processing and

parallelism,

Keywords: Knowledge Base System, Guarded Horn Clauses, Parallel

Control

1. Introduction

Knowledge information processing systems have been proposed from the

viewpoint of logic programming, such as an inference machine for efficient

inference processing and a knowledge base system for efficient retrieval

processing.

Advanced knowledge representation languages are developed in logic
programming to implement knowledge information processing systems. The
advantages of developing these systems in a logie programming environment are

development and processing efliciency, and expansion of facilities.

This paper shows that the basic functions of the knowledge base system van be
written in the logic programming language, GHC (guarded Horn clauses) [Ueda
85], which is used as the basis of KI.1 (kernel language version 1) for parallel

inference machines such as the Multi-PSI and PIM.

GHC is a simple, powerful and efficient parallel logic programming language.

A GHC program is a finite set of guarded Horn clauses in the following form:
H:-G1, ..., Gm | B1, ... , Bn. (m>0, n>0)

where H, G1, and B are atomic formulas defined in the usual way. H,Gi and Bi are
the clause head, guard goal and body goal. The notation | is the commitment
operator, The part of a clause preceding | is called the guard, and the part

succeeding | is the body.

This paper uses a subset of GHC, called Flat GHC. Flat GHC is allowed to

have only system predicates in guards of clauses.

2. Knowledge Base System

This section describes the knowledge base system model used in this paper. As
a first step to the knowledge base system, a deductive database system model

(Figure 1) is proposed which stores and manages a finite sct of Horn clauses as

User or Application Program J

Query
R T PR R PR P
' Deductive Processing Component e
; (IbB) |

M: I]atabase Pmcessmg Cumpunent :
= (EDDB) :_-_-;‘-’

Figure 1 Configuration of Hnowledge Base Model

knowledpe. This model consists of a deductive processing component and a

database processing component,

The first component manages an intensional database (a set of rules to derive
facts or define the viewpoint of facts), and accepts Horn clause queries. These
queries are compiled into equivalent programs that include a set of relational
queries, and are translated into retrieval commands in search in the EDB. The
second component manages and retricves items from an extensional database (a
set of facts: EDB) using their retrieval commands. The IDB and EDB are
assumed to be accessible in common by user or application prograrus, and the size

of the EDB is assumed to be very large.

The deductive processing component translates Horn clause gueries to

equivalent retrieval commands. An important part of this component is

o . _,,--g"'; ~ Processory
(emman Retrieval L—"
— oy
T Processors .
o oo O . EDB
Parallel ~ .
Controller "\-LL____ P .
rocessoly

Figure 2 Configuration of Database Processing Component

compiling (optimizing) Horn clause queries to equivalent programs. This is
called "knowledge compile”. This paper introduces the concept of partial
evaluation for its optimization. This method has several advantages: (1) it
reduces complex recursions to simple recursions and then handles them by
iteration, (2) il converts non-recursive queries to non-iterative programs of
relational operations, and (3) evaluation of non-recursive intermediate

expressions is not necessary, See [Miyazaki 86b] for details of the method.

The database processing component consists of multiple dedicaled retrieval
processors, the processors’ parallel controllers (including the query analyzer) and
EDB storage (shared database) as shown in Figure 2. Retrieval processors
perform the relational operations such as sort, join and select operations on the
sets of data. To search and handle the EDB efliciently, the database processing
component is equipped with multiple retrieval processors controlled in parallel.
The retrieval processor parallel controller receives a relational retrieval
command from the deduclive processing component, analyzes it, and produces a

strategy for efficient retrieval from EDB.

The following section proposes parallel control techniques for retrieval

processes.

3. Parallel Conlrol of Processes

Parallel control for retrieval processes is influenced by the following

parameters.

(a) Wumber of available retrieval processors,
(b) Type of commands,

{c) Size of data to be handled and searched.

This seclion describes parallel control techniques by number of processors.
The next section describes parallelism from the type of commands and the size of

data Lo be handled.

In the database processing component, three parallel control strategies for
retrieval processes are considered. The symbols n and /indicate the total number
of retrieval processors and the number of available retrieval processors when the

retrieval command is received from the deductive processing component,

{1) Data non-division method (method 1}
All commands from the deductive processing component are executed by a
single processor, without data division. The controller receives a command, looks

for an available processor, and allocates the received command Lo its processor.

(2) Dala dynamic division method (method 2)
The controller receives a command, and looks for all available processors. If
there are i available processors, the controller converts the command to i (variable

number) sub-commands, and allocates it to processors.

(3) Data static division method (method 3)
This method is a mixture of methed 1 and 2. The controller converts the
command to n (fixed number) sub-commands, The allocation of sub-commands is

much the same azs method 1,

The parallel controller of method 1 manages only free slatus for retrieval
processors; the parallel contreller does not need to know the busy status for
retrieval processors. Therefore, the parallel controller can execute by
demand-driven command from retrieval processors. Figure 3 shows part of the
program for method 1. The predicate 'RPscheduier’ checks for retrieval
processors, and assigns job to free retrieval processors. The predicate seleclRP

selects free retrieval processor for execution of command, command is assigned by

"RPschadeler ([C|T].StreamSty ¢= true | inspect{Stream3t.C,_.Li5t,New3t],
selectiP{List), 'RPscheduler’ (T HNewSt),
‘BPschedeler ([1 ,StreamSt) i- true | closedtream(Streamst]).

inspect([stream{N, St)lRest], Command,H, List,NewSt) ;- true [NewSt=[stream(N New)|NN],
checking state(N, 5t Ack HY, accept(0K, 5T, Cossmand New),
List=[{fck 0} |ListR], inspect{fest,Command H Listh NN},

inspect{[] . JHL, List, NewSt) := true | NewSt=[]. List=[].

checking_state(N.5 Aok haly) o= true | Ack=busy.
checking_state{N.[5|R].Ack Halt) :- true | Ack=free, Helt=halt.

sccept{ok, [G|AR].Exec KN} - true | GeExec, NH-R.
accept{ng, R i JHNp 1= true | R=KN,
selgctAP([{froe,A)|Rest]) - true | A=ok, rejoct{Aest).
selectRP{[{busy A)|Rest]} :- truve | A=ng, selectRP(Rest)}.

Figure 3 Part of Program for Method 1

"RPscheduler' ([C|T],5tream$t) :- true | inspect{Stream5t.MewStreamSt Ans],
checking_free(fns Freelist), divide(Freelist.[C|1]. NewStreamst).

"APscheduler'{[] ,Stream5t) :- true | clioseStream{Streamit),

divide{[] .C W5t) 1- true | 'RPscheduler’{C,5t).
divide{List,[C|T].5t) t- Listv=[] | sendRP{List,C.5t Newst), RPscheduler’ (T, NewSt).

Inspect{[] JMew, Res) - true | New=[]. Res=[].
incpect{[stream{H 5t1}|Rest] Mew Res) oo brue | New=[stream{N,5t2)[NewR],
Res=[{N.5tate)|ResR], Stl=[fns(State}|5t2], inspect{Rest NewH, ResH),

‘RPU{N,[term |Command]} :- true | Command=[].
RPN, [ins{C}|Command |} = true | C-free, "REY (N, Command).
TAPC(N, [emd(C}]Commang]) :- true | sendToRP{N.C, Response).

responsalAesponse Command Next), "RP°{N hext),

responze{and Command MY i- true | Command=N.

response{R ,[irs{C}|Cmd] N} - true | C-busy, response{R . (md N}.

Figure 4 Partof Program for Method 2

the predicate accept. The predicate checking state for the processor's
controller waits for judgment of free status for retrieval processor until the
cons-list ([_]_]) is instantiated at the second argument (first clause). If the
processor’s controller finds a free status for retrieval processar, it can hall an
inspection of other processors’ statuses. 1t instantiates the atom "halt"” in the

variable "Hali" (second clause).

Figure 4 shows part of the program for method 2, The predicate
'BPscheduler' checks status for all retrieval processors, and assigns to free
retrieval processors., The predicate closeStream informs every retrieval
processors that end of command. The predicate inspect inquires at every
retrieval processors for its status. The predicate checking_free searches for
number of free retrieval processors, and selects free retrieval processors. The
predicate sendRP divides job for each free retrieval processors through division of
data and sends out commands to free retrieval processors. The predicate "RP’
handles commands from other components, and manages the status for retrieval
processors. Arguments of the predicate 'RP" indicate the number of processors

and the stream of commands.

The predicate sendToRP sends @ eommand to a retrieval processor. This
processor instantiates the third argument to the atom "end" when a process comes
to an end. If a processor receives the command ins{C) for an inspection of status
when a processor is busy, then the atom "busy” is, returned by the predicate

"response”, otherwise, the atom "free”is returned by the predicate "RP".

4. Grains of Handled Data and Paralielism

Methods 2 and 3 subdivide grains of a process according to the division of
handled data, cut down free status of processors by using retrieval processors for

details, and increase parallelism.

The sort and join operations are very important parts of the relational

retrieval processing.

The data division sort and data division join operations are converted into
sub-commands and executed. For example, Figure 6 shows the process (oval) and
the flow of data (arrow) performed by the data 4 division. The symbol R indicates

the size of the data to be handled by ene command.

In the sort operation S(R), every sort (sort1-4) corresponds to a sort process in
order to handle R/4 data, the first level merge (mergel-2) corresponds to the
merge process for pairs of R/4 data streams after it has been sorted, and the last
level merge (merge3) corresponds to the merge process for pairs of R/2 data
streams, The data N division sort operation needs N sort processes, and logsN
level and N (or N-1) merge processes. Jlotal execution cycles for all merge

processes are proportional to the length of handled data, and are not influenced by

Cmerqm
{ sorty —

—>(divider (Cmerge —

b [Ll ¥

(a) Sort Operation
[joim
':]l;:ril'lz h

(append ——>
(_ joins)"’

M(_ioina.

{b) Join Operation

P
—{ divider

Figure 5 Data Division Process of Retrieval Operations

number of divisions. In short, the parts of sort processes are fast when the
number of divisions is large, but the communicalion cost for merge processes has

been piling up recently.

In the join operation (R1 |=<| R2), every join (joinl-4) corresponds to the join
process in order to handle R1/4 |> =i R2 {where 11 is greater than R2), and an
append corresponds to the append process for data streams after it has been
joined. The data N division join operation needs N join processes and one append
process. To remove the append process, & differential list is used that can partly
hold a value. (This is a property of logical variables.) In short, the parts of join
processes are fast when the number of divisions is large, and an append process

does not need execution time using a differential list.

The processes in the data division nperations are executed from left to right as
shown in Figure 5, and parallel processing of every process is possible when every

process receives data.

5. Evaluation of Three Strategies and Division Operations

First, three strategies are evaluated to control retrieval processes. Then,

parallelism is evaluated by division operations.

Each program is evaluated by the Flat GHC simulator on NECL0-Prolog. This
simulator can analyze the number of reducible goals and the number of total
goals for each scheduling eycle. Tt is assumed that a parallel inference machine
consists of a large number of processing elements (Fls), and that as many PEs as
required by the user are used. A PE and a retrieval processor should nol be

regarded as the same thing.

Figure 6 shows the reductions and cycles of transactions for 10 commands

using each strategy. One command needs 100 reductions and 100 cycles to be

6000 £ [Reductions | =~ | [Method 1 :
: Cycles — | | Method 2
5.000 Method 3 & }
’ Method 1d | s
& \ '
4,000
3,000 E 3 N
? : N - B L L .u
2,000
1,000 F \ <
- . _._____,,n_,—-—'—-r =
3 — S e —
- _-‘—:-—___‘_H_ - - — o _-_____-_g
o B 1 1 R | | Pi—
0 1 2 3 4 5 6 7 8 9 10

MNumber of processors

Figure 6 Reductions and Cycles for Each Strategy

resolved. The horizontal axis indicales the number of retrieval processors. All
transactions use 1000 reductions and 1000/ [number of retrieval processors/ cycles
that arc ealled ideal reductions and ideal cycles. The difference between read
reductions and ideal reductions is used by the parallel controller for retrieval

processors,

The program of method-1d in Figure 6 is implemented by a parallel controller
that is demand-driven by the retrieval processor and receipt of a command [rom
deductive processing components. Otherwise, a parallel controller that
periodically investigates the status of retrieval processors is implemented. The
parallel controller of method-1d is driven only when required, It requires less

labor than the parallel controllers of other methods.

Figure 7 indicates the number of reducible goals for each scheduling cycle.

210 -

Reductions . L
AU l. : Nan-division| —

2-division -

4 divizsion

8-division | =~ —

t—-—-—i—q---l-—-l—l——l-ﬂ:—d_.
] 44 20 120 160 200 240 280 320
et Cyeles
140 ~ Reductions (a) Sort Operation —|}r: &
| r_r".1L B
120 [_
I 1
e ' ||: P
100 iy .
a0
Cycles
24 Reductions
10 e \.
] ","__' T":___'_"'; ________ I-N'l_l 1 T | I b3 i 1
4] 41) B0 120 160 200 240
{c) Select Operation Cyeles

Figure 7 Reductions of Each Cycle for Retrieval Command

S11-

Table 1 Result of Division Process for Retrieval Commands

(a) Sort Operation

Pi?::i::z::f Reductions | Suspensions Cycles Eﬁ?ﬁ;;ﬁ?
1 2038 15380 218 13.663
2 2050 1349 308 7.987
4 2017 1075 257 4.658
8 2027 893 236 2.960

{b) Join Operetion

ré?;?ﬁ'}i;gf Reductions | Suspensions Cycles]‘;:1}:1?:1‘;:::;?
1 854 253 41 1.120
2 876 255 30 1.043
4 875 260 25 1.108
8 1005 268 19 1.065

(¢} Select Operation

hd?;?,: 2:‘12{ Reductions | Suspensions Cycles %ﬁ ;’LE;LF::I;
1 202 1 202 0.345
2 304 3 103 (.326
4 256 5 53 0.268
8 235 9 28 0.252

Table 1 compares the reductions, suspensions, cycles and execution time of
various operations. The surl and sclect operations handle data of 100 length. The
join operation handles data of 25 length and 20 length. The parallelism of division

operations was as effective as expected.

_12.-

(a) is the result of the sort operation. The execution cycles of merge processes
need the length of handled data when handled data is divided. This division sort
operation uses more execution cycles than the non-division sort operation il each
reduction is executed at the same cost. Reductions of the two operations are much
alike, and execution of the sort operation is faster than that of the non-division
sort operation. The execution of the division sort operation on parallel machines

is expected to be fast.

(b) is the result of the join operation. Handled data are not sorted. The join
operations generates a pair of data from two streams, and executes it in parallel.
The join operation initially has parallelism. Parallelism is increased by dividing
handled data. A data divider in which data are assigned to all join process and

reduced until empty is used.

(¢) is the result of the select operation. The select operations require less time
and labor than the sort or join operations, but they do require execution eycles of
the data length. Therefore, parallelism is increased by dividing handled data. A
data divider in which data are assigned to all select processes and reduced until

empty is used.

6. Conclusion

This paper described the possibility of developing the deductive database
system possessing a set of rules and facts using the parallel logic programming
language GHC. Three methods were suggested as parallel control strategies for
the retrieval process, und evaluated with simple data, Parallelism and execution
time were evaluated as data division representative of retrieval commands.

Thus, the following advantages are expected [rom the drductive database system.

13-

Control Processor

:. | ! | [R T E
' UBEIUE:IUE::UE:!UE:!iUE::UE::UE: |
:r Shared Memory J !

UE : Unification Engine

Figure 8 Hardware Simulator for Parallel Control

{a) The database (data and rules), system control program, database management
program, and user or application program can be handled with the parallel logic

programming in the same way;

(b} Parallel control program can be developed easily by GHC functions, such as
differential list, and-parallel mechanism, demand-driven computations, and

data-driven computation.

We are now developing a deductive database system on parallel inference
machines such as the Multi-PSI and PIM, which is also written in GHC, The
parallel inference machine controls queries sent to Lthe common database in the
deductive database machine. In this system, we will investigate the relationship

between the degree of parallelism and granularity of data to be processed.

The parallel controller of the database processing component and the
knowledge compiler of deductive processing component are some of the most
important parts in knowledge base system, This paper emphasized the datahase
processing component. The horn clause transformution method used as the
knowledge compiler in the deductive processing component was not described

here, See [1ioh 86] for details.

_14 -

We are also developing a hardware simulator for parallel control. This
simulator consists of a control processor, eight dedicated unification engines and
a shared memory as shown in Figure 8. We are considering an experiment for

this simulator based on this result of evaluation by software simulation in GHC.

Building on this research, we will seek to develop many facilities of the

knowledge base system in a parallel logic programming language.

Acknowledgments

We wish to express our thanks to Dr. Kazuhiro Fuchi, Direcior of the 1COT
Research Center, who provided us with the opportunity to pursue this research in
the FGCS Project at ICOT. We would also like to thank the members of the First

Research Laboratory and Third Research Laboratory at ICOT for their valuable

comments.

References

[Ueda 86] Ueda, K., "Guarded Horn Clauses”, Logic Programming "85,
Wada, E. (ed.), Lecture Notes in Computer Science 221,
Springer-Verlag, pp. 168-179, 1986

[Ttoh 86] Ttoh, H., Takewaki, T. et al., "A Deductive Dalabase System
Written in Guarded Horn Clauses”, ICOT Technical Heport
TR-214, 1986

[Ttoh 87 ltoh, F1., Abe, M. et al., "Parallel Control Technigques for

Dedicated Relational Database Engines”, Proc. of Data

Engineering ‘87, 1987

-15-

[Miyazaki 86a] Miyazaki, N., Yokota, H. et al. "KBMS PHI(2)", Proc. of the

[Mivazaki 86h]

32nd National Conference on Information Processing Society of

Japan, 1986 (inJapanese)

Miyazaki, N., Yokota, H. et al. "Compiling Horn Clause Queries
in Deductive Databases: & Horn Clause Transformation

Approach”, ICOT Technical Report TR-183, 1986

.16 -

