ICOT Technical Report: TR-252

A PARSING SYSTEM BASED ON
LOGIC PROGRAMMING
by

Y. Matsumoto and R Sugimura

April, 1987

©1987, 1COT

MWlita Kokusar Blde, 21T {03y 456-31491—~ 35

ICOT 1-28 Mita 1-Chome Teles HCOT J32664
Minate-ku Tokvo 10 Tapan

Institute for New Generation Computer Technoldgy

A PARSING SYSTEM BASED ON LOGIC PROGRAMMING

Yuji Matsumoto and Ryeichi Sugimura

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku,Tokyo, 108, Japan

ABSTRACT

The paper presents a practical parsing system hased
on logic programming. A restricted Delinite Clauss
Grammar is assumed as grammar description and the
grammar is translated into @ parsing program written
in Prolog. ‘The system employs a bottom-up parsing
strategy with top-down prediction. The major
advantapges of our system are that the system workgin g
bottom-up manner so that the left-recursive rules do not
cause difficulties. the parsing process does not invelve
backtracking, and there is no duplicated construction of
same syntactic structures, Experiments are shown to
estimate the efficiency of the system.

1 INTRODUCTION

This paper presents a practical parsing system hased
on logic programming. Although the key algorithm of
the system originates from the authors' ides on parallel
parsing [Matsumoto 86], it provides a quite efficient
parsing environment even in sequential
implementation. We also present a grammar
description melhnd which is actuslly a subset of
Definile Clause Crammar (DCG) formalism [Pereira
80]., The restriction given to DCG guarantees that the
parsing system operates elMiciently, We do not think
this restriclion is too severe for grommar writers,

The current parsing system is called SAX, while the
parallel implementation iscalled PAX. In holh of them,
all the grammatical gymbals such as noun phrases and
verb phrases as well as lexical symbols are delined as
predicates of Prolog or of the parallel logic
programming language the system is implemented in.
In this sense it resembles DCGe transtated into Frolog
programs. The major advantages of our system are that
it works in a bottom-up manner 50 thal the left-
recursive rules do not cause difficulties, the parsing
process does nut invalve backtracking, and there is no
duplicated construction of syntactic structures. Ciar
previous bottom-up parsing system, BUF [Matsumaoto
B3], has similar charasteristics and we have almost
pqual performance from both of them when they are
executed by the Prolog interpreter, However, SAX is
nearly one order of magnitude more efficient when they
are both compiled, This is berause BUP keeps partial
parsing results by side effect whereas Lhey are
represented as processes in SAX.

As deseribed ahove, the basie algorilhm is based an
our paralle] parsing method. The current system is
specinlized for sequential implementation. The next
section describes the basic algorithm of our parsing

system and shows how grammar rules are translated
into s Prolog program, Section 3 explains how
grammar rules are written and examines the
performance of the system by a sample English
grammar and shows that we have achieved sufficient
efficiency in parse time.

11 OVERALL DESCRIPTION OF THE SYSTEM

This section bricfly deseribes the organization of
SAX. It is convenient to describe first the basic
algorithm for context fres grammars. Suppose we have
a context free grammar shown in (1), In the right-hand
side of the grammar rules, the symbel 'id" followed by a
figure stands for an identifier that indicates a
particular position in a particular grammar rule and is
not & grammatical symbel. When these rules are seen
as grammar rules (or more precisely as DCG rules) they
should be neglected. As a matter of fact, users need not
specify these identifiers. They are automatically
assigned by the SAX translator, which generates a
parser from the grammar. We omumit the lexical part in
the lellowing grammar rales.

i1} sentence --» np. wdl wvp.
np --» det, idd noun.
np --» np, idd coconj, idd np.
poun --3 noun, id5 rel_clause.
noun --» moun, idE PR,
rel clause -—» [Lhat], 7 vp.
pp --» prep, (dd np.

vp --» verb.
vp ==» verh, df np.
wvp --» vp, idl coconj. el WP

The parsing process operates from left to right and
from botlom to top, ie, from surfoce words to more well-
formed tree stractures. Suppose a noun phrase has just
heen found, there are twa kinds ol processes that must
be performed acearding to the grammar rules, The first
iz tn start parsing by using new grammar rules. The
other is to nugment already construcled incomplete tree
siructures to more eomplete ones. As mentioned in the
introduetion, all grammatical symbols are defined as
oredicates of the Prolog program. Therefore, the
discovery of a noun phrase curresponds to a coll of the
definition of np. Since the parsing process proceeds from
left to right and botiom to top, a eall aof np produces
identifiers id1 and 163 which indicate that the parsing
process has successlully proceeded up to these points of
the grammt rules. Itis defincd as s Prolog clause [2h

2 |||J1(I.['idll?l':.1d3[1}|'|'1.'|,‘r't}.

The gecond and third arguments of the clause
represent a set of these two identifiers by & difference
list. The first argument of this clause iz a list of
identifiers produced by the words or grammatical
symbols just preceding the noun phrase in the given
input sentence. The clause produces these identifiers
without regard to its contents. It will be, hawever,
modified when top-down prediction is made use of, This
elause corresponds to the first job for 2 noun phrose
mentioned above and the meaning is that by finding a
noun phrase these two rules are possibly used w build
up new parsing tree structures. For example, if idl is
received by a verb phrase this means that a sentence is
found, Similarly, the second job for the noun phrase is
to build up more complete tree structures using
partially constructed trees and iz defined by the Prolog
clauses shown in (3),

(3 np2([]).X.%}.

np2 ([1d4(X) | Xt], ¥, ¥t} :-
npld, Y. Y1), [oop2 (Xt Y1, ¥t).

np([idB(X)[Xt]. ¥, ¥t) :-
PPOXL Y YLY, [onp2(Xt,YL1.¥t).

np2([idI(X)|Xt].¥.¥t) :-
VP(X, Y, Y1), 1, np2(Xt,¥1,¥t).

np2([_[XL]. Y. VL) - np2{Xt.Y.Yt).

The second clause of (3) says that it can construct a
noun phrase if it receives 1d4, which is only produced
by a cocon jleoordinating conjunetion) that has already
received & noun phrass. The thicd and fourth elawese
correspond to the other ceccurrences of np in the
grammar rules. The first elause specifies that it
produces an emply difference list when it receives an
emply list. The last clavse is necessary o discard the
identifiers irrelevant to a noun phrase.

The definition (2) is for the occurrencez of noun
phrases ae the left-most element in right-hand side of
grammar rules, and the definition {3) is for the other
occurrences of noun phrases in right-hand side of
granunar rules, We call them {ype-one oecurrence ond
type-two occurrence, respectively. The complete
definition of a noun phrase is jusl a uninn of Lthese
definitionz as shown in (4).

4] np{X.Y.Yt) = npl{X.¥,¥Y1).np2(X,Y1.YL).

Il's grammatical symbol appears in grammar rules
only as either of type-one and type-two ocourrence, a
clause like (4) is nol neeessary for thal grammeatical
symbol. cocon] is an example and is defined like (5). It
has merely type-two oecurrences.

(5) coconj([].X.X).
Eﬂcﬂng[[1dqllj|lt] [ida{eyv].vLy -
coconj(Xt, Y
ﬂnLﬂﬂ][[!diﬂ{K}|It] [1d11[1}|?} Yty - !,
coconi{Xt,¥,¥
coceni{[_|Xt].Y.¥t)

Lexicon is delined in a quite sbraighiforward
manner, All words can also be defined conceptually as
Prolog predicates, though it is not practical when we
have 1.hmmands ol l||;~:Il:1'1_"‘5’|| ::11:r|11,-r|1,:5._ Fr_l:' [.]n: |1|'|.:-$.'r_'r'|L,
words are defined as (), which says that "the' is a
determiner,

:-cnnnnj::t.f,‘ft].

]

(G} tha(X.Y.Yt) :- det{X.Y.¥t).

FParsing of a sentence is done by calling the
definitions of the words thot eomprises the sentence,
For instance, (7) is the initial call for parsing "The man
walks,'

{7} the{[begin]. X0, []).man{ 40 X1,]).
walks{X1,%2.[]).fin(x2).

in order to specify that the grammatical symbel the
parser is looking for is a sentence, the following
delinition must be wdded to the type-bwo definition of
sentence,

{B) sentenceZ([begin|Xt]. [andl‘f] ¥t) :
sentenceZ(Xt,Y . YL)

beginisaspecial identifier W indieate the beginning
of a sentence, and end is produced enly when a sentence
iz found from the head of the input sentence. Tt is now
very clear that the parsing of & sentence succeeds when
the identifier &nd is produced by the last word of the
input sentence. inis the predieate to recognize end.

This summerizes briefly the basic algorithm of the
svstem. One more thing we have to mention is top-
down prediction to reduce the sesrch space of the
parsing process. Type-one clauses like (2) produce
identifiers without regard to the contents of the list they
receive, Since the received list consists of the contexts
just before the word or grammatical symbol that calls
the type-one clause, the parsing space can be reduced by
referring to the contents. The list it receives iz a list of
identifiers and each identifier hos its own expecting
grammatical symbol. For instance, 1d1 is expecting a
verh phrase, 102 iz expecting & noun, and a0 on. The
production of an identifier by a type-one clanse means
Lhe use of the grammar rele which the identifier
belongs to. As for the clause (2], 1d1 corresponds to the
wse of the first grammar rufe in (1), If sentence is not
expected or if any grammatical symbol that can be a
root of & tree with & sentence as its left-tost leaf is not
expected by any of the elements in the list it receives, it
iz ugeless Lo produce d1. Top-down prediclion can be
realized as a Gllering process in our parsing system. A
filtering process is assipned to each identifier produced
by a type-one clouse, and it filters oot all the
ennecessary elements from Lhe list (the context that
preceeds it), 1M all the elements in the received list are
filtercd out, the current identifier need not be produced.
{9 is the new definition of (2) that incorporates such a
filter. (100 and {11} give the auxiliary predicates.
tp_filter filters out all the unnecessary elements from
X and produces New X consisting of identifiers Lthat are
at least necessary. id_pair retorns the granumatical
srmbol that the identifier is expecting. 1ink chechs
whether the given two grammatical seymbol can be
related as parent and the lefi-most son of a tree.
Delinilinns of these elauses are penerated by the
translator automatically, tp_out returns an emply
difference list if New X is empty and produces the
identifier il Now X containg ot lepst one element, 1d3
does not have a [ilter bacause the head of the original
prammar riele it belongs 1o is R, the same grammatical
syinbol as itsell

0y npl(X, [id3(x)]¥].vt) :-
ip filter(X,sentence, New Ky,

)
Lp:uut[New_;.[iut{me-_;1{111.xt.v,vt:.

{10 tp_fﬂterl[[‘].r_,[]].
'Lp_filter{[lduds],Tel‘m.[Id!Hqud:]‘j -
Functor{ld,Idntf,_}.
jd_pair{ldntf Top_cat},
1ink(Term, Top_cat}),!,
tp_‘l"‘i'ltnrilds.Term.Heu.r_i-:m‘j.
tp__l‘tl‘t.er{[_]Ids],lcrm.ﬂnw__‘lds] - L,
tp_filter[lds.Tenn.Neur_idsj.

111} tp_out{[]._,_.Y.¥].
tp_out([_|_J.Y. Yt ¥, ¥t}.

I1I SYSTEM AND PERFORMANCE

Careful readers may have nnticed that there are
some difficulties in implementing full DCGs in our
parsing algorithin. Actually, amhiguities in grammar
roles that are handled by backtracking in DCGs are
expanded inlo processes, and they are solved in a single
environment (this means there is no restoration of
environments required by backtrackingl. DCG
formalism is o context free grammar augmented by
arguments in grammatical symbols and extra-
conditions (expressed by Prolog programs). Sinee
arguments in grammatical symbols of DCGs are
represented as arguments of predicates also in SAX,
they are treated in the same way. The simplest way to
treat extru-conditions is Lo put them in the
corresponding place in the transformed Prolog clauses.
Unfortunately, they may then have different meanings
for two reasons. Firstly, cxira-conditions are evaluated
only once in our system. In other words, only the first
suvcessful substitution to variables is computed.
Secondly, since ambiguitics spawn as many PICEsSes,
the same variables that should be in different
environments are inevitahly treated in a single
environment, This requires copying or renaming the
varinhles, and that would cost much in both time and
space.

Ta eope with these problems, we pul some
reslrictions on the extre conditions. Thul is, the gxira-
conditions evaluated dynamically in the pursing
process must be delerministic and subslitution to
varishles in the body of the grammar rules i3
prohibited. The second condition insists that only the
variables in the heads of grammar rules are allowed Lo
be instantiated. Thus, the Mow of data must be from
bottom Lo top. The form of & grummar rule af our
system isdefined like (12).

{19y ab --» al.{ extra 1 },... .an.{ extra_n 1
& { delayed_extra }.

In this rule, 'ai’ is a grammalical symbols possibly
with arguments, and extra_{i is an exirn condition (s
sequence of Prolog goals) evaluated dynamically.
delayed_extra iz nlso an extra-condition. It is,
howewver, not evaluated dynumically, & is the special
symbol to separate such an extra-comdition from the
synlactic description. As in DCGs, extra-conditions are
written between braces ({ and } }in grammar rules. Tn
the aclual implementation, pxira-conditions separated

A

by & are pushed into a stack-like dala structure and
they are evaluated after the apccesslul termination of
the parsing process. Such a parsing program i, of
course, generated by the SAK translator. The user can
also specify the strategy to evaluate these delayed
extra-conditinns, either in a top-down manner or @
boitom-up and left to right manner, To give the flaveur
of the translation of such & grammar description inta
Prolog programs, (13) and (14} show the transformed
¢lauses enrresponding to al and an of (12), in which a1l
ie the type-one clause for al, and anZ is the type-lwo
vlause for an. OF course, these definitions are more
complicaled if there are other occurrences of these
nonterminal symbols in grammar rules, One extra
argument is added to both grammar gymbols and
identifiers for earrying non-dynamic extra-conditions.
gxtra_1 is used as the condition to decide whether to
produce the identifier. EX is (a sel of) non-dynamic
extra-conditions included in the grammar rule that has
constructed al. It is passed to the next process through
the identifier. (14) succeeds only when extra n is
evalugted sucressfully. delayed_extrais passed to the
head of the grammar rule forming a tree structure
consisting of extra-conditions, Although the lenves are
aligned in reverse order, they are evaluated accarding
to the user's instruction.

(13) allfx EX.¥.¥t) =
tp_filter(X, al New X},

[extra_l.
I,p_aut[Hew_L[ml{Naw_I,EK}l!t].
NrLY.yt) s ¥ = vt), 1.
(14} an?.{'[iunll'_l.E}li}|Ta1'|],E.In.‘|’,YtJ 1=
extra n, !,

a0{X,[delayed_extra EXn|EX1],Y, V1),
an?(1ail, LC.YL.YL).

The restriction te DUG formalism may seem o strong
limitation in describing natural language gramimars.
The authors, however, do not think that this causes
difficulties in wriling grammars. In one view, it iz u
separotion of the test procedures for checking
grammaticality and the procedures for generation al
menning structures for Lhe inpul sentence. The extra-
condition extra's work as a test procedure to determine
whether to produce un identifier or & new process. Fur
example, extra_1 suppresses the production of the
identifier put at the place between al and aZ il its
svalualion fails. We recommend that users write test
programs (or reducing the parsing space ns dynamic
extra-conditions and write programs for construcling
meaning structures that do not affect the syntactic well-
fnrmedness a5 non-dynamic extra-conditions.

The system has been tested by un English grammor
with aboutl 200 grammar rules and about 500 lexical
entries. ‘I'he grommar is based an that of Diagram
[Hobinao 82] with some modification. Most of the
sample senlunces are collected from the abslract of
Robinson's paper and ure listed in the Mppendix, The
time requircd Ln obtain all the parse trees are listed in
Tuble 1. This experiment does not invalve the
morphological analysis, und inflections are treated by
grammar rules. Comma ie aleo defined as a lexical
entry. The morphological analysis part of the system is

now under development. It will be implemented as a
preprocess of the parser., It also employs a similar
model to the parsing nlgorithm, which will be reported
cisewhere, For the expreriment, we used Quintus
Prolog on VAN 11785 and ESP on I'SI Machine, the
Proleg Machine developed at ICOT. The speed of P51 is
about 30 kiloLIPS (Logical Inferences per Second). The
systemn ig currently used ms the syniactic analysis part
of our Japanese discourse understanding system
DUALS,

IV CONCLUSIONS

This paper briefly introduced sur parsing system
based on logic programming, Let us summarize the
main charasteristics of the system. The system employe
 bottom-up parsing strategy so that lefl-recursive rules
do not cause problems. The group of efficient parsing
algorithms called tableau methods, such as Earley's
algorithm |Barley 7] or Chart Parsing [Kay 8] use
gite-effects to keep intermediate parse trees, Our
system creates processes (predicate calls) when
intermediate parse trees are constructed, Tt gives the
same ellect to the parser without using any side-effects.
The translated Prolog program is delerministic and it
never hackiracks. In particular, the definition of type-
two clauses is a tail recursive program. These are the
rensons of the efficiency of cur system when it is
compiled.

The translator from s grammar of the restricted
DCG introduced in the precesding section to a Prolog
program has been developed. The parser automatically
produces parse trees consisting of non-dynamic extra-
conditions. If there is more than one parse tree, they
are evalunied after renaming the variables sinee some
parse trees may share logieal variables,

Several projects are underway at ICOT concerning
the system. A large Japanese grammar is under
develupment, which will eventually run on the system.
4 morphological analysis part, together with automatic
segmentation part for Japanese language are nlso
under development. EiTorls to extend the range of
grammar formalism are also being made. Az Tor
ayniactic deseription, we have already proved that even
Gapping Grammars [Dahl 84a] [Dabl 84b] can he
implemented in owr framework [Matsumoto 871, Some
of our members are comparing our system with other
genernl parsing systems.

APIPENINX : Somple Sentences
1. He explain s the example with rule s. {8 words)
2. Ttisnat Lie ed to a particular domain of upplication s
(12 words)
3. Diagram analyze & all of the basic kind s of phrase 5
and sentence 3 and many guite complex one 8. (21
waords}
4. The annotation § provide impartant infermation for
pther part = uf the system that interpret the expression
in the context of a dialogue. (23 words)
5. Procedure s eun ulso assign score s o an anslysis,
rate ing some application s of o rule as probable or as
unlikely, (24 words)

6. This paper present s an explanatory overview of a
lurge and complex grammar, Diagram, that is use ed in
a computer lor interpret ing English dialogue, (28
wisrrs)

7. lts procedure s allow phrase s to inherit attribule s
from iheir constituent & and to acquire attribute s from
the large er phrase s in which they themselves are
copztituent s, {32 words)

8. Conseguently. when these attribute s are use ed to
seb contexl sensitive constraint s on the acceptance of
an analysis, the contextual conslraint s can be impose
ed by conditien = on constituency. (34 words)

Table 1 Parse Time for Sample Sentences

I Sentence | Number fruft'%?:: {"iar:is:‘ '1]‘??:&5'?"
Number [of Words | Treps (msec) {msec)

| 1 B 2 160 60

i ' 7 12 1 290 126

I g 21 3 540 249
g 23 7 1100 508

s 24 4 690 882

i B a5 1 . STi] a94

R 32 12 1530 741

| 8 44 4 820 375

* Time measured by compiled Quintus-Prolog on VAX 11/78%
++ Time measured by compuled ESP on PS]

REFERENCES
[Dahi 8381 V. Dahl and H Abramson, “Un Gapping Grammars,”
Proc, 2pd Internationgl Cesference on Logi Progiamming,
Uppsala, Sweden, pp.77-88, 1984
{13kl Babi ¥, Dahl, "Mare on Gapping Crammars,” ['roc. Lhe
Inicrantional Conlerer Filth Generation Compuler Svilims
Tokyo, Jupan, ppbG8-677, 1384,
[Earlex 701 1 Farley, "An Elficient Conlext-Free Pareing
Algorithm,” CACM, Vol 13, No ¥, pp 84-102, 1370
IKep 80t M Kay, "Algorithm Schemata and Data Struclures in
Synlactic Processing,” Technical Report CSL-80-12, Xerox PARC,
Cicd. 1980,
[Malswmuie 831 Y. Matsumato, stal, "HUEP & Bottam-Up Parser
Embedded i Prolog,” New Generation Computing. Yol 1, Na 2,
e 145- 158, 1983
[Mal=nnteto 881 Y, Muleumates, "A Paralie! Parslng Syslem fore
Matural Languipe Analveis,” Prog. drd Internationn! Conferuigy
an Lagic 'roprogunaiog, pp-396-403, Lasndon, VHEG
|Matsumote 271 Y Malsumule, "Porsing Gapping Grammars in
Parallel,” 1 he published as 1001 Techaical Repore, 1987,
[Pergira B0] F. Perciea and 1. Warren, "Definite Clanse
Cirammae= for Lomguage dnalvsis - & Survey af the Furmalism
and 1 Comparizon with Augmented Tranzilion Networks ™
Artilicia] lntelligeney, Vol 13, pp 231276, 1880,
(Mohinsan 821 <., Bebinson, "Tiageom:
Diialagues,” CACKM . Val 25, Mol pg 27.47, 1682

A Goammar fnr

