ICOT Technical Report: TR-250

TR-230
KL1 Execution Model for PIM Cluster
with Shared ?\fiemor}f
by
M. SATO, H. SHIMIZU, A. MATSUMOTO
K. ROKUSAWA and A. GOTO

April, 1987

@987, 1COT

aitn Kokosa Bldg 21F (03 3i-3181-5

H: DT 1-28 Mita 1-Chome Telex ICOT J12964
Mlhnato-ki Tokvo 102 Tapan

Institute for New Genératiun Computer Technology

KL1 Execution Model for PIM Cluster
with Shared Memory

Masatoshi SATO Hajime SHIMIZU Akira MATSUMOTO
Kazuaki ROKUSAWA Atsuhiro GOTO

ICOT Research Center
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokye 108 JAPAN

Abstract

The parallel inference machine (PIM) is now being developed. The
target language of PIM is KL1, a paralle] logic programming language
based on GHC. PIM consists of a dozen or mpre clusters. The PIM clus-
ter is a tightly coupled multiprocessor with shared memery. This shared
memory architecture possesses not only the advantage of low communi-
cation overhead ameong processors, but also disadvantages, such as access
path bottleneck to shared data. This paper deseribes the effective KL1
parallel execution mechanism. introducing the various kinds of locality
in the data strueture alloeation, scheduling, and load balancing to over-
come these disadvantages. Evaluation results are shown using a software
simulater. As a result, this KL1 parallel execution model] can make the
most of the advantages of the shared memory.

1 Introduction

ICOT is conducting research and development of the parallel inference ma-
chine, PIM [3]. The PIM target language is the parallel logic programming
language. KL1, based on GHC [7).

Reducing the communication cost between processors is one of the most
important factors in parallel processor architecture. From the viewpoint of the
communication cost, the PIM hardware construction has a locality in processor

connection. The PIM consists of a dozen or more clusters. FEach cluster is a

2 KLI EXECUTION OVERVIEW 2

tightly coupled of eight or ten processors with shared memory. These clusters
are connected by networks, as a loosely coupled multiprocessor. Therefore, the
communication cost within the cluster is lower than that between the different
clusters.

This paper describes the parallel execution model within the PIM cluster.
Parallel execution of KL1 for the loosely coupled multiprocessor is being stud-
ied in the ICOT multi-PSI project [2] [6]. This will be also applied as the
intercluster parallel execution in the PIM.

In the design of a parallel execution model, the key issue is how to en-
hance locality even in tightly coupled multiprocessors with shared memory.
This is because the problems of data access bottleneck and data access syn-
chronization with lock/unlock in the shared memory architecture must be
solved, These problems can be avoided if there is enough locality in the data
accesses by processors.

Section 2.bﬂeﬂy introduces the abstract execution model of KL1 with ma-
jor data structures. Section 3 discusses how to enhance the locality in parallel
execution model using shared memory. Section 4 gives the implementation
features of this model. Finally, the primary evaluation results of parallel exe-
cution are shown as collected from a software simulator.

2 KL1 Execution Overview

2.1 Brief Introduction to KL1

KL1 is a parallel logic programming language based on GHC [7]. A KLI1
program is a finite set of guarded Horn clauses of the following form:

H:~Gr G| By By (m = 0n 2 0)

where H. G;, and B, are called the clause head, guard goals, and body goals.
| is called a commitment operator. The part of a clause preceding | is called
the passive-part (or guard), and that following it is called the active-part (or
body). A guarded clause with no head is a goal clause, as in Prolog.

I{L1 requires sufficient language functions to be used as a system program-
ming language of PIM, and must also be efliciently implemented on PIM. We
added several language functions to, and put restrictions on GHC with the
design of KL1 in mind.

2 KL EXECUTION OVERVIEW 3

- goal record
ready-queue A

goalreduction

@ # 7% gealrecord
. guert -Lmd_ mod¥ 9 I Ile}‘r isuspended)
| BT) br1b2 . :
gi.g22 | | g ::gsans on
L Are el — pmmx

i ¢ shared variable

- i el - _ puard goal
! resumption j b

exacution "= byp hody goal

environment

Figure 1: Abstract Features of KL1 Goal Reduction

Major additions to GHC are metalogical functions and pragma. Metalog-
ical functions treat logical values of goals as arguments, so that programmers
can describe system software such as operating systems. Pragma enables the
programmers to give hints for dynamic contrel of processing load in the PIM.
Generally, the programmer knows the expected load characteristics of pro-
grams and, it is difficult and costly for the system to balance the load fully
automatically, Pragma will be discussed in a later section.

KL1 clauses are restricted to the flat clauses, i.e., each guard can contain
only built-in goals. This restriction makes it easy to excecute head unification

and guard evaluation, and allows sequential search for candidate clauses.

2.2 (Goal Reduction Feature in KL1

Figure 1 shows the abstract [eatures of KL1 goal reduction.

The following data structures are used in KL1 goal reduction (Table 1).
Parallel goals are represented by goal recards and their execution environments
of variable cells. Fach goal record has one of two states, ready or suspended.
The ready goal records represent the currently reducible goals, and they are
arranged in a ready queue. The suspended goal record is associated with the
uninstantiated variable cell by a suspension record. This is used for synchro-
nization between parallel goals through the shared variables.

The goal records form a goal tree with metacall records to manage their

logical results (success/failure). The goal tree consists of metacall records as

- 3 =

2 KLI EXECUTION OVERVIEW 4

Table 1: Data Structures

Goal record Status of a goal

Link to goal records
Arguments list

Pointer to code

Pointer to metacall record
Metacall record Status of a metacall

Link to its brother metarecord
Link to its parent metarecord
Counter of children goals

Painter to a result variable

Suspension record | Link to a next suspension record
Link to a goal record

Link to an OR-waiting flag

nodes and goal records as leaves. The count of these leaves is managed by the
children counter in the belonging metacall record. This goal tree is used to
encapsulate the logical value of goals within a part of a subtree, so that the
whale systemn can avoid failure if the subtree fails,

From the implementation viewpoint, clauses in KL1 programs are com-
piled into WAM [8] like machine codes, called KL1-B [4]. Then the processor
performs goal reduction by executing the corresponding KL1-B codes. Details
of KL1-B are not discussed here, However, the abstract features of goal redue-
tion and the corresponding KL1-B codes are shown brielly through a scheduler
process and a reducer process in the following section.

The role of the scheduler is to select a reducible goal and to invoke the
reducer. Various strategies can he used for this reducible goal selection. How-
ever, it is assumned here that the scheduler simply dequenes a goal record from
the ready queue and passes it to the reducer.

The reducer performs a goal reduction through the following three stages,
guard test, body unification, and bedy geal fork.

(1) Guard test

In the guard test, each candidate clause is tested sequentially by head uni-

fication and muard evaluation to choose one clause whose body goals will be

— 4

2 KL1 EXECUTION OVERVIEW]

executed. Assuming that a candidate clause is:
X, Y,Z) 1= X=a] - .

The guard fest is represented by wait code as:
(Guard test: wait(X,atom(a),Next Clause).

The code of wait can be described as:

wait(X,atomla), Label): read X and check the equality
between the value X and atom 'a'.
if Sucecess then goto next cade
elseif the caller variable X is uninstantiated
then stack X on Stack and jump to Label
else jump to Label -

When the reducer finishes all guard tests without choosing any clause,
the reducer executes the suspend code, and then checks whether the stack is
empty or not. If the stack is empty, the reducer knows that this goal reduction
fails. If not empty, this goa! must wait till one of those variables in the stack
will be instantiated. Therefore, the suspend code provides each link between
the variables and the goal records in order to activate the suspended goal
immediately after the variables are instantiated.

{2) Body unifications

After one clause is chosen by the guard lest, the reducer executes the unifica-
tions in the selected clause bady. Such body unification is represented hy the
got code as:

XY, Z)i— o |V =a, Z= by

Body unification: get(¥,atom(a)).
get(Z,atom(b)).

Then the get code is described as:

—_ 0 -

2 KL1 EXECUTION OVERVIEW G

get(Y,atom{a)}: read the value Y.
case Y of
instantiated :
check the equality between the value Y
and atom 'a’
uninstantiated : write 'a’in Y
uninstantiated with link to suspension records :

resume the suspended records

When a get code instantiates the variable with suspension record in this
body unification, the reducer finds the suspended goal and enqueues it to the

ready queue,

{3) Body goal fork

If the selected clause body includes any user goals such as:
(XY 2):i—e | - q(YV,2) -,

the reducer creates the new goal records and enqueves them into the ready
gueue as new reducible goals and updates the children counter of the par-
ent metacall record. At this point, these new goal records are linked to the
metacall record where the reduced goal was linked in order to form a goal tree.

These operations are represented by set and enqueue codes as:

Body goal fork:
sot(Y,new goal record for q) .
set(Z,new goal record for ql.

engueue (new goal record for q) .

When one of the hody fork goal can execute recursively, the code execute
is used instead of engueue. At this execution, it is not necessary to update
the children counter. If there is no fork goal, this goal reduction is terminated

with the proceed code, and the reducer decreases the children counter.

6 —

3 EXTENSION TO PARALLEL REDUCTION 7

Inter Cluster Netwark
.

U

] . L
MUt Ji[im]puz i |
EPE'I Cache EEPE: Cache IPEnI'cC

| I —
| Shared Bus

SM-CNTL! ATU

0
T e LY

Fo——m—m—mm s m———— ———— —

------- =d besssmss=d

Clustert Cluster2 Clusterm

PE: Processing Element CC: Cluster Controller

PU: Processing Unit ATU: Address Translation Unit
LM: Local Memaory SM-CNTL: SM Controller

SM: Shared Memory

Figure 2: Configuration of PIM

3 Extension to Parallel Reduction

3.1 Consideration of PIM Cluster Architecture

Before considering the extension to parallel reduction, this section discusses
the features of the target machine, PIM. Figure 2 shows the overall configu-
ration of PIM that we are currently designing. As described before, PIM has
a hierarchical structure with cluster concepts.

Each cluster consists of several processors (PEs) and a shared memory (SM),
and each PE has a local memory (L3) and cache [1] for the shared memory,
Each PE can also interrupt other PEs and communicate by passing short
HEssages.

This section focuses on paraliel goal reduction by a multiprocessor with
shared memory, where each processor perflorms goal reduction in parallel com-
municating through shared variables in the shared memory.

The major advantage of using shared memory is the reduction in commu-
nication overhead among processors compared with message-oriented loosely
coupled multiprocessors. Using exclusive data access by lock/unlock, the goal
reduction, discussed in Section 2, can be extended to a parallel mechanism.
However, such a simple extension is not enough for realizing the high perfor-
mance PIM. This is because parailel execution on the shared memory machine
arclitecture also needs to solve the following problems.

- 7

3 EXTENSION TO PARALLEL REDUCTION B

¢ Exclusive data access mechanism, such as lm:]:,:’ unlock operations,
e Overhead in exclusive access to shared data.

o Access path bottleneck.

3.2 Locality

First, the concept of locality is defined for both software and hardware.

On the software side, application programs for PIM consist of various sized
modules (parallel processing components). It seems natural that such modules
are represented as goals in KL1 programs. Then some KL1 goals, followed by
many children goals or recursively invoked goals, correspond to large modules
{or large subgoal trees). In other words, a KL1 goal can be considered hoth
as a large module and as a component of modules. Some goals tightly couple
with cach other and some goals do not. The degree of this combining strength
is referred to as locality of goals.

On the architecture side, we are now designing 2 coherent cache mecha-
nism to enable quick access to SM from each PE. The coherent cache mecha-
nism generally depends on two kinds of memory access locality. One is time-
dependent access locality as in conventional computers. The other is interpro-
cessor locality, In other words, it is suitable for the coherent cache if there are
less overlapped memory areas among each processor’s execution. LM is also
available to use the locality, The local data structures which do not have to
be shared can be stored in LM. These are called localities in archifecture.

Application of locality of goals to the localities in architecture makes it pos-
sible to overcome the above problems. Therefore, the following three strategies
are introduced into the parallel execution model. They are:

o data structure allocation,
¢ depth-first scheduling,
e load balancing when using program locality.

These strategies can reduce the communication traffic between paralle]
processes (or processors), and also can reduce accesses to the shared memory.
Therefore, this model can make the most of the advantages of the shared

memory. The following subsections describe these strategies.

3 EXTENSION TO PARALLEL REDUCTION 9

Table 2: Map of Data Structures

Data Lacal/Shared
Ready quene Local

Goal records Local
Eunvironments Shared

Suspension records | Shared
Metacall records Shared
Code Shared

2.3 Data Structure Allocation

Local data structures are separated from data structures, discussed in Section
2.2, according to tleir data access characteristic (Table 2). Local data struc-
tures can be handled by each processor individually, so that such data can be
stored in LM and accessed in parallel without lock/unlock operations.

First, the ready queue and the parallel goal records are chosen as local
data structures for the following reasens. In KL1 goal reduction, the ready
quene is accessed when the reducer selects and dequeues a goal in scheduling,
or when it enqueues forked goals in body goal fork. Levy gave dequeune and
enqueue algorithms to one ready gueue shared among processors [5]. However,
{hese aecesses occur so often that the shared ready queue may cause an access
hottieneck. Therefore, we adopt individual scheduling by the individual ready
queue for cach processor.

We introduce the following distribution method by which each processor
can access goal records independently. Each processor dequeues a goal from
its own ready queue, and enqueues most of the new forked goals to it, except
for the following two cases. One is when it becomes necessary to make each
processor load in balance. In this case, goal records are distributed among
the processors. The other is when a suspended goal is resumed by other
processors. However, the number of times a goal is sent can be decreased by
adopting the distribution method. (The detailed distribution method will be
described later.) Therefore, a goal record area is allocated in each LM.

In addition to this separation, we introduce individual memory manage-
ment for the shared data structures. In case of environments, each processor
lias its own environments for allocating new variable cells. Other records, even

in the shared data structure, are managed by individual [ree lists in each pro-

-_ 0 —

Jd EXTENSION TO PARALLEL REDUCTION 10

cessor. As a result, most of the overhead can be avoided by the exclusive data

access in the memory management of the shared data areas.

3.4 Depth-first Scheduling

Considering a goal reduction, each processor can be expected to fetch the goal
record into the internal registers and accesses the goal environment. Then
the processor may fork new geals from the input goal. In this case, these
new goals often inherit the part of the input goal. For example, the goal
append{ X, Y, Z), which matches the following recursive clause, forks a new
goal append(X1,Y,Z1). If the new goal append(X1,Y, Z1) is scheduled con-
tinuously, the reducer can reuse the goal record and the environment of the
input goal append(X,Y, Z).

append(X, Y, Z) : =X = [U|X1] | 2 = [U|Z1],append(X1, Y, Z1).

In addition to this, such recursive scheduling enhances the memory access
locality when the local cache memories are provided for each PE in the PIM
cluster. In meneral, depth-first scheduling is more suitable for enhancing such
a locality than breadth-first scheduling.

3.5 Load Balancing when Using Program Locality

To make full use of the processing power in the PIM cluster, the parallel goals
should be distributed not only to keep the processor loads in good balance but
also to reduce the amount of wasteful communication between processors,
To realize this distribution, we adopt on-demand distribution and use the
designator to select the split goal which will grow to a large subgoal tree.
This designator is called the pragma. On-demand distribution and pragma
make it possible to suppress waslelul goal send/receive operations. In on-
demand distribulion, goals are distributed only when the receiver processor has
none goals to reduce, In pragma, processors can easily select the distribution
goal which has heavier reduction loads than communications overhead. This
distribution is called On-Demand with Pragma (ODFP) distribution.

4 KLI PARALLEL EXECUTION MODEL 11

IE Gealrecord
(ready)
't Goalrecord
i (suspended)
Suspension
record
Metacall
record
v | Shared
variable
s— Unification
«_. Processor
Communication

+-- Hook relation
« » = Scheduling

Figure 3: Structure of execution model

4 KL1 Parallel Execution Model

4.1 Overview of this Model

In this section, KL1 parallel execution is shown as a scheduler and three-stage
reducer process as in Section 2, Figure 3 shows the overall structure,

The scheduler on each processor has its own ready queue. [t dequeues one
goal record and invokes the reducer. Here, each scheduler can access its own

ready quene without lock/unlock.

(1) Guard Test

Wait test aperations, even for parallel goal reductions, do not need exclusive
access for the shared data, because the call variables are only read in wait
operations. Then the wait code is almost the same as described in Section 2.

However, when this goal is suspended, the reducer must obtain exclusive
access to the shared variables in the suspend code execution. Before suspend
code execution, the stacked variables have nol been locked, so another goal
may have instantiated the stacked variables. Therefore, the suspend code
can be described as:

.11

4 KLI PARALLEL EXECUTION MODEL 12

suspend: create the OR waiting flag.
reread the stacked variable with lock.
if Instantiated
then unlock it and retry this goal at first clause.
else create a suspension record,
set the pointer of OR waiting flag,
link the suspension record and unlock it

repeat reread and link for stacked variables.

(2) Body Unifications

In the body unifications using the get code, exclusive access to the call vari-

ahles is necessary if the variable has not been instantiated. The get code is
represented as:

get(Y,atom{a)): read the value Y with lock.
case Y of
instantiated :
unlock and check the equality
between the value Y and atom ‘2’
uninstantiated : write 'a’ in Y and unlock
uninstantiated with link to suspension records :

resume the suspended records

If the shared variables have heen linked with suspension records, it is neec-

essary to resume the suspended goals. A more detailed representation of this
resumption is:

4 KLI PARALLEL EXECUTION MODEL 13

shared variakle suspension recard
X |hook 4= ook -..q....-_..rundefl_ 1
ref he‘f T -]
IR I |
CR waiting flag
goal 1D
ref i
+—' goal record
Y |hook | undef
ref

Figure 4: Structure of suspended goal

resumption: save the pointer to the suspension recornd,
write the instantiate value with unlock,
check the OR waiting flag with lock,
if goal ID then
write NULL with unlock
and check to which PE the zoal belongs,
if self PE then enquene into self ready quene
else send the engqueue message to the belonging PE
elseif NULL then do nothing

repeat check and enquene for linked suspension record.

Since the goal records are allocated in LM, this resumption may require pro-
cossor communications if the suspended poal belonge fo another procezsor.
Additionally, this resumption requires synchronization between OR wait-
ing clanses if the suspended zoal has been waiting for one of variables. As de-
scribed above, the OR waiting flag is used for this synchronization. Figure 4
shows the structure of a suspended goal using an OR waiting flag. In this
case, the goal is waiting for one of two variables, X and Y, which shares an
OR waiting flag. The content of the OR waiting flag shows whether the other
variable has already been instantiated or not. The goal 113, which indicates the
goal address of LM, shows that the other variable has not been instantiated.

NULL shews that the ather variable has already been instantiated.

4 KL1 PARALLEL EXECUTION MODEL 14

(3) Body Goal Fork

The set code sets the goal's arguments at the new goal records in LM or
creates new variables for the goal’s arguments in the shared variable areas.
Even {or the creation of shared variables, the set code does not need lock
operations because the shared variable areas are divided for each processor as
described in Section 3.2. Thus the set code is also the same as described in
Section 2.

4.2 ODP Distribution

Distributed goals are restricted by pragma as deseribed in Section 3.5. Goals
with pragma are distinguished in the goal fork operation, engueue. The geal
fork operations with pragma are represented by p~enguene codes instead of
enqueue as follows. Here, & is the notation for pragma. Processors can
recognize that the goal, r, is the candidate goal to be distributed.

p o= e Iprquﬂrm""

Body goal fork:

enqueus (new goal record for gl .
p-enqueus (new goal record for 1) .

exescute(goal p).

These goals with pragma are distributad from busy processors to idle pro-
cessors in an on-demnand manner. Here, two-level goal requests from the idle
processor, the weak request and the strong request, are introduced to realize
effective goal distribution. When the processor becomes idle, this idle pro-
cessor first sends a request to a busy processor by setting the request flag in
the shared memory (weak regquest), and waits for distributed goals for a short
period. If the idle processor does not receive goals alter the weak request, this
idle processor sends the interrupt message for goal distribution to the busy
processor (strong request).

Figure 5 shows this goal distribution feature. Fach processor has two ready
queues, the high priority queue and the low priority quene. The processor
enqueunes the fork goal without pragma into the high priority queue by the

- 14

5 EVALUATION 15

enqueue code. When the fork goal with pragma is created, the p-enqueue
code first tests the request flag.

If the request flag is off, the fork goal with pragma is enqueued in the low
priority queue. In the former example, body goal p is scheduled recursively,
body goal g is enqueued in the high priority queue, and the body goal r is
enqueuned in the low prierity queue if there is no request. The processor can
execute the goal which is in the low priority queue if there is no goal in the high
priority queue. In fact, most goals with pragma are executed by the processor
which created the goal.

If the request flag is on, the processor creates the goal record directly to the
message bufler and sends the message to the idle processor. This check is not
costly because the cache memory can usually keep the request flag, and the
cache miss-hit occurs only when the request flag is set. Then the p-enqueue
code can be represented as:

p-engueue (goal record): check the request flag
if Requested
then create its goal record
as the message and send it.
else enqueune the goal record
" into the low priority queue.

Sometimes the busy processor does not execute p-enqueue codes after
the idle processor has set the request flag. In such cases, the idle processor
sends the interrupt message for goal distribution to the busy processor. Then
the busy processor which has received the interrupt message searches its own
low priority quene and sends the distributed goals, This request scheme is

more expensive than the first one described above,

5 Ewvaluation

In Section 3, the three strategics, which can reduce the overhead caused by
sharing data structures, were introduced into the parallel execution model.
Section 4 showed that the strategies of data siructure allocation and of depth-
first scheduling are very efficient both for reducing the amount of lock/unlock
operations and for enhancing the data access locality. However, to use inde-

15.

5 EVALUATION 16

x QUELE :)
-] : ¥ -
P-Engueus Eﬁ;u est Message
code Handler

& @ . s -___—EM >

Figure 5: Goal distribution

pendent ready gqueues on each processor makes it difficult to balance the load
in the cluster. Therefore, we introduced the load balancing strategy, ODF
distribution.

To evaluate the load balancing and localization effect in this model, we

define the following metrics and have developed a software simulator on the
VAX/11.

» Idle percentage: The percentage of idle time to execution time in each
PE. The unit time is assumed as one reduction in this simulator.

» Distribution ratio: The ratio of the total number of goals to be sent

to the other processors versus the given processor execution goals.

¢ Reference ratio: The ratio of the reference amounts to shared data
which are allocated in the shared memory by other processors versus the
reference amounts to shared data allocated by the given processor itselfl
If this value can be kept low, the interaction ameng processors can also
be kept low,

Data on memory access patterns, goal distribution, and execution time
are preliminary. The evaluation programs are the S5-queen program and the
Bottom Up Parser {BUP) program., The 8-queen program searches for the
positions of queens on an 8 x 8 chess board so that no queen captures other

queens. Because this program has a balanced search tree, it is easy to balance

6§ CONCLUSION AND FURTHER WORK 17

Table 3: Effectiveness of localization

8-queen EUF
Random | ODF | Random | GDFP
Idle percentage 3.2 0.4 13.4 6.6
Distribution ratio 0.566 | 0.001 0.053 | 0.031
Reference ratio (passive part) 1.991 | 0.023 0.827 | 0.322
Reference ratio (active part) 0.612 | 0.019 0.238 | 0.138

the load for the system. The BUP program generates parsing trees by analyz-
ing natural langnage sentences. This search tree is unbalanced, so it is rather
difficult to handle the load balance for the system.

Table 3 shows the simulation results, the average data for the four pro-
cessors. Here, the random distribution, in which the goals with pragma are
distributed randomly, is nsed as a comparison with ODP distribution. This
random distribution also uses the pragma to restrict the distributing goals and
to enhance the locality of data access. Asshown in Table 3, this ODP distribu-
tion can keep not only the distribution ratie, but also the idle percentage, low.
It also keeps the reference ratio low enough to make full use of the advantages
of shared memory.

6 Conclusion and Further Work

This paper described the parallel execution model in PIM cluster and eval-
vated the effectiveness of localization. Dy using the locality concepts, the
parallel execution model was able to reduce not only the communication traf-
fic hetween parallel processes (or processors) but also the accesses to shared
memory. It also described how to realize the goal distribution.

We have developed the software simulator of this model on the sequential
machine and evaluated it as discussed above. We are implementing the de-
tailed parallel emulator on an actual multiprocessor, Balance 21000, and we
are planning to evaluate this model on this parallel emulator.

REFERENCES 18

Acknowledgment

The research and development described in this article is being conducted
mainly by the members of the PIM, multi-PSI and KL1 groups both in the
ICOT Research Center and the participating companies. We also wish to
thank the ICOT Director, Dr. Kazuhiro Fuchi, and Dr. Shun-ichi Uchida for
valuable suggestions and guidance.

References

[1] A. Goto et al. Parallel Cache and Hardware Lock Mechanism for PIM
Cluster. TR 247, ICOT, 1987.

[2] N. Ichiyoshi et al. A Distributed Implementation of Flat GHC on the
Multi-PS1. In The proceedings of the Fourth Infernational Conference on
Logic Programming, May 1087,

[3] A. Goto and 5. Uchida. Towanrd @ High Performance Parallel Inference
Machine -The Intermediate Stage Plan of PIM-, TR 201, ICOT, 1986,

[4] Y. Kimura and T. Chikayama. An Abstract KLI Machine and its Instruc-
tion Set. TR 246, ICOT, 1887.

[5] Jacob Levy. Shared Memory Execution of Committed-choice Languages.
In Lecture Notes in Computer Secience : Third International Conference
on Logic Programming, July 1986,

[6] K. Taki. The Paralle] Software Research and Development Tocl : Multi-
PSI system. In France-Japan Artificial Intelligence and Computer Science
Symposium 86, October 1986.

|7] K. Ueda. Guarded Horn Clauses. TR 103, ICOT, 1985.

[8] David H.D. Warren. An Abstract Prolog Instruction Set. Technical
Note 309, Artificial Intelligence Center, SRI, 1983,

— 18

