ICOT Technical Report: TR-248

TR-248
Multiple Reference Managemenl
in Flat GHC

by
T. Chikayama and Y. Kimura

March., 987

ICERT. 10T

Mitg Wokusai Dlde. 21F 3 4536- 3191~ 3

IG D | =28 Mt 1-Chome Telex [COT Ji2usg
Minato-ku Tolvo 108 lapan

Institute for New Generation Computer Technology

Multiple Reference Management
in Flat GHC

Takashi Chikayama and Yasunori Kimura

1COT
21F. Mita Kokusai bldg., 4-28, Mita 1, Minato-ku,
Tokyo 108, Japan

Abstract

This paper describes an implementation scheme of flat GHC which maintains
information in pointers on whether the referenced data object has multiple refer-
ences paths or not. With this multiple reference information, several optimization
techniques become available: Reclamation of no longer required storage area with-
out applving the general garbage collection, destructive array element update, ete.
By keeping information on the pointers rather than in the referenced objects, no
exira memory accesses are required for maintenance of the information. This
is most advantageous in multiple processor implementations where pointers may
point to an object in a non-local memory area. The representation and mainte-
nance scheme for the multiple reference informatien is presented along with an
abstract machine for flat GHC and its instruction set augmented with the feature.
Preliminary results on its effectiveniess and overhead measured on a expcrimental
implementation are also given.

1 Introduction

In the execution of logic programming languages, data structures are used not so
many times before being discarded as in procedural languages. As logic program-
ming languages do not allow destructive updates, a new structure must be created
each time a small modification to a structure is required. Because of this, memory
consumption speed is much higher than in, for example, (impure) Lisp.

In case of sequential Prolog, this problem is partly solved by the backtracking
feature. Backtracking undoes bindings inside structures, which can be bound to
different values in the execution of alternatives; the same structure can be reused
with some modification. Moreover, on backiracking, memory area can be reclaimed
in a etack-like manner without the costly general garbage collection.

However, in case of so-called committed choice languages [1,5,6] without back-
tracking. memory consumption ratio is quite high and might be problematic from
the following two viewpoints:

o Asmemory area is consumed up tapidly, garbage collection must be executed
rmore frequently.

¢ The working set size becomes larger resulting in lower cache memory hit
ratio or higher paging overhead.

There are two ways to solve this problem.
¢ Incremental reclamation of garbages.
s Incorporating destructive operations.

Lisp svstems solve the problem by allowing explicit destructive operations (such
as RPLACD) in source programs. However, putting responsibility to the program-
mers is quite dangerous in concurrent programiming languages, as it is much harder
to know which portion of the program has or has not completed its execution at a
given time. It is desirable to recognize automatically when & certain storage area
has become inaccessible from the program. With the knowledge, the memory area
occupied by a no longer accessible data structure can be reclaimed, or, if similar
data structure should be created at that time, the new one can be obtained by
partially rewriting the original data structure in a destructive manner.

This paper proposes a method to maintain information during the execution
on whether two or more reference paths exist for a data structure. When the
last reference path to a structure is somehow known to have become no longer
required, the structure can be reclaimed or destructively overwritten and reused
damediately,

The rest of the paper concentrates on an implementation of so-called flat GHC
(FGHC), a subset of GHC[6] in which no nested goals in the passive part are
allowed. In FGHC, goal reductions can be regarded as an indivisible primitive
operation, as far as maintenance of multiple reference information is concerned.

Only one bit in each pointer is used for keeping multiple reference information.
This scheme has an admitted deficiency that, once multiple references are ereated,

O

Structure L] Structure

51 52

Figure 1: MRB of References to a Structure

it cannot detect when the number of references decreases. Conventional reference
counting scheme is advantageous in this point. The merit of the MRB scheme is
that it requires no extra memory accesses for maintaining the information. This
ie most effective in multiple processor implementations where pointers may point
to an object in a non-local memory arca.

2 Representation

Orne additional bit in pointers is used to keep the multiple reference information.
It is called the multiple reference bit, or MRB in short.

When a data object is accessed from the program, it is through a certain chain
of pointers starting from a root register. If any of the pointers in the chain have
their MRB set, this reference path is called a multiple reference path or an MRP;
otherwise, i.e., if all the pointers in the chain have their MRD reset, it is a single
reference path, or an SIAP.

The meaning of MRP or SRP depends on what kind of object the reference
path is for. Primitive operations for execution of FGHC manipulates MRB so that
the conditions described in this section should be maintained.

2.1 Data Structures

The MRB of pointers in reference paths to a data structure {not a variable cell)
's maintained so that one of the following two conditions is satisfied.

S1: There exists only one reference path to the structure which is an SRP.
§2: All the reference paths Lo the structure arc MRP's.

Figure 1 shows valid states of reference paths to a structure. Arrows starting
with a white circle represent SRP’s; those with a black circle represent MREP’s

2.2 Uninstantiated Variable Cells

The MRB of pointers in reference paths to an uninstantiated variable cell is for
knowing whether the referenced variable cell has two or less references to it. The
VRE is maintained so that one of the following conditions is satistied (figure 2).

U1: There exist exactly two SRP’s to the cell.

2

;)j—> UBV l UBV L - UBWV

Ul U2 us

Figure 2: MRB of References to an Uninstantiated Variable

o—- O o—— © ° o N
- ® L L
. . o
I 12 13 14

Figure 3: MRB of References to an Instantiated Variable

U2: There exists only one SRP to the cell. All the other paths, if any, are MRP's.

U3: All the reference paths are MRP's.

2.3 Instantiated Variable

The MRB of pointers in reference paths to an already instantiated vanable is
maintained in combination with the MEB of the data stored in the variable cell.
For an already instantiated variable, one of the following conditions should apply.

I1: The MRB of the data in the cell is reset and there exists only one reference
path to the cell which 1s an SRP.

12: The MRB of the data in the cell is reset and all the reference paths to the cell
are MRP's.

I3: The MRB of the data in the cell is set and there exists only one SRP to the
cell. There may be other reference paths to the cell but all of them are

MIEs.

14: The MRB of the data in the cell is set and all the reference paths to the cell
are MIF's.

Figure 3 shows valid states of an already instantiated variable. The MRB of
the data stored in the cell are represented by a white or a black circle, which
represent reset and sef status, respectively.

3 Applications

Various optimization schemes become available using the multiple reference infor-
mation. Here, two typical such optimizations, storage reclamation and destructive
array element update are described.

3.1 Storage Reclamation

Certain memory area can be reclaimed without using the general garbage collection
mechanism, Memory area may be reclaimed when the last reference path to the
area is consumed. A reference path to a data structure is known to be the last
path when it is an SRP, i.e., when 51 applies. A reference path to an already
instantiated variable cell is known to be the last path when I1 apples, i.e., when
it iz an SRP and the MRB of the cell is reset.

Reference paths are consumed in the following ways.

Dereference: When variable values are required, reference painters between vari-
able cells are dereferenced until the final result {an atomic value, 2 pointer to
a data structure, or & pointer to an uninstantiated variable cell) is reached.
As GHC has no backtracking feature, the dereferenced result can be stored
back to the original place (on a register or in & structure element). If the
dereference result should be stored back, variable cells in the reference chain
will never be nsed afterwards through this path. Thus, the reference paths
to them used in this dereference are consumed.

Structure Unification: If a goal is reduced after one of its arguments is unified
with some structure in the passive part, the reference path to the structure
given as an argument is consumed in the unification. Consider an example:

pl[XIY]) :- true | q(X, Y).

The reference path to the list cell unified with [X1Y) will never be used after
the reduction.

Unification with a Void: When an argument is unified with a veid variable,
the reference path passed as the argument is consumed.

Elements of Reclaimed Structures: When a data structure can be reclaimed,
all the pointers in the elements of the structure can never be accessed through
the structure. Thus, reference paths through them are consumed.

3.2 Destructive Update of Array Elements

If mutable arrays are to be introduced into GHC, its pure logical element update
operation might be defined as follows: '

update(0ld_array, Position, Data, New_array)
A new array is created which is the same as D1d_array except that the element at index
Fosition is replaced by Data.

Without the multiple reference information, the implementation cannot know
whether the version of the array before the update have other reference paths to
it or not. Thus, two versions must be kept somehow. The most straightforward
but costly solution is to copy the whole array. Sophisticated schemes such as (2]
can reduce most of this cost, but it still has a considerable overhead.

Using the multiple reference information, whether the version of the array
before the update has any other reference paths or not can be known immediately.
If there are none, reusing the same structure by destructively rewriting the updated
element will work correctly. This scheme can realize basically the same efliciency
as the scheme proposed in [7] without any complicated anelysis by the compiler
nor introduction of new notions such as butlt-in processes.

4 Maintenance of MRB

This section describes primitive operations for FGHC execution designed to main-
tain the conditions described above.

4.1 Creation of Data Structures

In execution of FGHC, data structures are only created as arguments of body
goals: Calls of usual predicates or the built-in unifier =", Consider an example:

recanc{[W|%],Y,Z) :- true

| recenc(X,IWIY],Z).
append([WIX],Y,Z) :- true | Z

= [W|U], append(X,Y,U).

A reduction by the first clause creates a new list cell [WI¥], and a reduction by
the second clause creates a new [WIU]. Note that new structures are never created
in the passive part in case of flat GHC.

When a new structure is created as an argument of a body goal, there can be
no other reference paths to the structurc and thus the MRB of the pointer to the
structure can be reset (S1).

4.2 Creation of Variable Cells

Creation of a new variahle cell 18 required when body goals have a variable not
appearing in the head. For example, a reduction by the following clause creates a
new variable cell for I.

compile{S, 0} :- true | parse(s, 1), generate(I, 0).

When a new variable is created, there can be no other reference paths to the
variable except those appearing in the same clause. Thus, the MRB of pointers to
the variable cell is determined by the number of occurrences of the variable in the
body part. Consider an example:

p :- true | q(X, Y}, (¥, 2), s(Z, Z).

Here, the MRB of the peinters to X and Y should be reset (Ul) and that to 2
should be ¢ei (U3). Note that two occurrences of the variable Z in the same goal
s(Z,2) are counted as they are, 1.e., two.

4.3 Dereference

When reading the contents of an already instantiated variable cell (including vari-
able cells where a pointer to another variable cell is stored), the MRB of the
dereference result will be determined by the following rules.

I1: When the reference path to the variable cell is an SRP and the MRB of the cell
is reset, MRB of the result should be reset. The reference path through the
variable cell can never be accessed from the program after this dereference.
Instead, a new path resulted from this derefercnce becomes accessible. As
they cancel out each other, the number of reference paths does not change.

12, 13 or I4: When the reference path to the variable cell is an MRP and/or the
MEB of the cell is set, the MRE of the result should be sef. In all such cases,
there may be multiple reference paths to the variable cell before the deref-
erence. Thus, there may remain other reference paths to the dereferenced
result after the dereferencing procedure.

4.4 Instantiation of Variables

Here, the word instantiaiion means not only giving some concrete value {atomie
or structured) to a variable, but also binding a variable to another variable by
connecting them with a reference chain.

On instantiation of a variable, MRB of the data stored in the variable cell can
be reset if and only if the reference to the variable cell is an SRP and the MRB
of the data to be stored there is resef. In all other cases, the MRB of the stored
data should be set. This can happen only when either Ul or U2 applies before
the instantiation.

T71: There exists at most one other SRP to the variable cell besides one used for

the instantiation. In this case, after the binding, there will remain only that
SRP to the variable cell (I1).

U2: There may be many other reference paths to the variable cell but all of them
are MRP’'s. In this case, after the binding, there may remain many reference
paths to the variable cell and to the data stored in the variable cell, but all
such paths are MEP's (12).

4.5 Duplicating References

When a pointer given as an argument is duplicated, in other words, when a variable
occurring in the head appears twice or more in the body of the clause, the reference
to the object will be duplicated. Consider an example:

p(X)y :- true | q(X), r(X).

Here, the reference path given as the argument X is distributed to both of the
body goals q and r. In such cases, MRB of the duplicated pointers should be set
to make reference paths through them an MRP. When the duplicated reference is
originally an MRP, then the duplication enly adds another MRP, which will never
violate the conditions stated above. When it is originally an SRP, there are two
cases depending on what is refercnced.

o If o data structure is referenced, i.e., if S1 criginally applied, reference du-
plications is a state transition to 52.

e If an uninstantizted variable cell is referenced, then there can be two ceses
depending on other reference paths to the same variable.

— If U1 originally applies, i.c., if there exists only one other SRP, the
reference duplication is a state transition to U2.

~ If U2 originally applies, i.e., if all other reference paths to the same
variable cell are MRP’s, the reference duplication is a siale transition
to U3.

o If an already instantiated variable cell is referenced, then there can be two
cases depending on the MRB of the data stored in the variable cell.

— If I1 originally applies, i.e., if the MRB of the referenced cell is reset,
the reference duplication is a state transition to 2.

— If I3 originally applies, i.e., if the MRB of the referenced cell is set, the
reference duplication is a state transition to T4,
4.6 Retrieval of Structure Elements

Retrieval of elements of a structure oceurs when an unification with an explicit
daota siructure is effected, as m:

pC[x1_.1) = true | q(X).

o |

If the reference path to the entire structure is an MRP, i.e., if S2 applies for the
entire structure, there can be other paths to the same structure and thus creating
a new reference to a structure element (X in the above example) is creating a new
access path in addition to one via the structure. Thus, the MRD of the retrieved
value should be set regardless of the MRE stored in the structure.

If the reference path to the entire structure is an SRP, ie., if S1 applies,
then the structure itself can never be accessed after the reduction. Retrieving
a structure element will add one new reference path to the element, but, the
reference path through the structure element will be discarded. As they cancel
out each other, there is no change in the number of reference paths in total. Thus,
in such cases, the MRB of the structure elementz can be simply copied as the
MRB of the retrieved result.

5 Abstract Machine

This section describes the characteristics of an abstract machine for FGHC im-
plementation which realizes the above described multiple reference management.
The abstract architecture is somewhat similar to one proposed by Warren for se-

quential Prolog execution [8], which will be called WAM in short in what follows.
Principal differences from WAM are described here.

5.1 Multiple Reference Bit Management

All the memory words and all the argument /temporary registers have one extra
bit called MRB, which is muintained to satisfy the conditions described in the
previous sections.

A goal reduction is considered to be an indivisible unit as far as the MRB
management is concerned, i.c., all the required conditions on MRB are maintained
correctly before and gfter each reduction, but not necessarily during a goal reduc-
tion.

A dedicated register called S is used for unification of structure elements as
in WAM. § also has its own MRB field. In the read mode structure element
unification, it keeps the information on whether the reference path to the whole
structure was an SRP or an MRP, It might also be reasonable to change the op-
code dispatch address depending on the MRDB of 5. As there is no write mode
unification in the passive part of FGHC, the same hardware mechanism used in
implementing read/write mode in WAM may be utilized.

5.2 Storage Allocation

The MRB scheme enables the reclamation of areas for independent data struclure
wirhout general garbage collection. Thus, the method of allocating new structures
always at the heap top is inappropriate. Free lists for data structures and variable
cells are maintained. It might be reasonable to use free lists only for frequently
used structures and use different scheme (such as the buddy system) for larger

o0

atom a atom a undef
undef ref o
unde

undef ref g

str str -

Structure Structure
int 3 int 3

WAM Scheme MRE Scheme

Figure 4: Variables as Structure Elements

structures. As structures are not allocated at the heap top, § register is used not
only for read mode unifications but also for write mode unifications.

Unlike the original WAM, structure elements should not be used directly as
variable cells to avoid fragmentation. When a structure element should be initiated
as a variable, a new variable cell is allocated separately, and a pointer to the cell
is stored in the element (figure 4).

5.3 Garbage Stack

When a garbage candidate is found in the passive part, its reclamation should be
postponed until the end of the passive part, since the clausc might not be selected
due to suspension or failure afterwards.

When a data structure is explicitly given in the source code, appropriate in-
structions for reclamation can be generated at the top of the body part. However,
when general unification (unification of two variables) is specified in the source
code, it might unify two structures, during which unpredictable amount of garbage
may be detected. Such garbages are pushed on to o stack called the garbage stack.
The stack is emptied cach time a goal reduction is initiated and each time a candi-
date clause fails or suspends. Its contents are reclaimed by an explicit instruction
at the top of the body part.

In many FGHC programs, general unification of two structure is rather excep-
tional. Thus, implementations without this garbage stack mechanism might be
good enough for most programs.

6 Abstract Instruction Set

The ahstract instruction set described lLere is similar to that of WAM. Notable
differences are:

» Dassive unification instructious will suspend when instantiation of variables
are required to accomplish the unification.

¢ The passive part is compiled so that argument registers are never destroyed
before commitment.

Table 1: Passive Unification Instructions

wvait_value X;, A4 wait_reused_value X;, A;
wvait_variable X;, A wait_constant Constant, A;
vait_list A,

read_walue _3{‘_1; read_reused_value _YJ'
read_variable X; read_constant Constant

s [nstructions are arranged so that the MRB information can be correctly
maintained. .
3
Only the instruttions concerning unification and maintenance of MRB will
be described here. for about structures, only the instructions handling lists are
described. Exteni:[i'n:g them to treat general structures is straightforward.

6.1 Passive Unification

The passive unification instructions corresponding to get and unify instructions
in WAM are c:.alled_,_ wait and read. These instructions are similar to their coun-
terparts in WAM, but they suspend when instantiation of variables are required
in the unification.

General unificatfon instructions have two variants: With and without the word
reused. In both of them, pointers to a structure in A; or in a structure element
used in the unification arc pushed to the garbage stack if they are an SRP. Ones
without the word reused also push such pointers in X;; ones with the word will
not. The latter is for when the unified data (X;) is used later and thus its conlents
should not be reclaimed.

6.2 Storage Reclamation

Instructions described in this section are for reclaiming storage which are known
to have become inaccessible. .
collect_stack
Reclaim storage area pointed from the garbage stack. This instruction will be generated
ouly when some general passive unification instructions are in the passive part.
collact_list A;
Reclaim the list structure pointed from A, if A, is an SRP. This instruction is generated
when 4; is unified with a list structure in the passive part.
collect_value A,
Reclaim storage area pointed from A, if 4, is an SRI% This instruction is generated
when A; is unified with a void variable in the passive part. When 4; references a

structure, not only that structure but also its substructures referenced through an SRP
are reclaimed recursively.

10

Table 2: Argumecnt Preparation Instructions

put_variable X;, A, set_variable X;, G
put_constant Constant, 4 set_constant Constant, G,
put_marked_variable X;, A set_marked_variable X;, G
put_list A; set_list &y

put_value Xj, A; set_value X;, G,
put_marked_value X;, A4 set_marked_value X;, G
write_variable X; write_marked_variable X;
write_value Xj; write_marked_value X;

write_constant Censtant

6.3 Active Unification

For simplicity, only the most generel instruction is introduced here for active
unification. Its arguments chould be prepared using the argument preparation
instructions explained below.
get_value X;, A;

General unification instruction of a variable X; with another variable 4;. During the

unification, structures or variable cells known to have become inaccessible from the
program are Teclaimed.

For efficiency, actual implementations may provide instructions which combine
argument preparation and unification. They will be very much like unification
instructions of WAM except that the MRB maintenance should be taken into
consideration.

6.4 Argument Preparation

Arguments of active unification and the body goal executed immediately after
the rednetion are prepared on argument registers designated by Ay put and write
instructions, which correspond to put and write mode unify instructions of WAM,
are used. For other body goals, arguments arc set in goal records in the goal queue
designated by G;; set instructions are used instead of put, in this case. This 1s
similar to the “goal stacking” method mentioned in [8]. In casc of Prolog, the goal
stacking method may have considerable overhead when backtracking takes place;
this is not a problem with backtrack-free GHC.

Instructions with the word “marked” in their names have the same functions
as those without it except that the MRB of the destination is always set. They
are for reference duplication.

6.5 Optimization

When a data structure is reclaimed and allocation of another structure of the
same size is required ab the same time, the reclaimed structure can be reused

11

plX, X, Y, ¥} :- true | g(X). pClEIY]Y - true | glX, ¥).

vait_reunsed_value K1,AZ wait_list A1

wait_value A3,A4 read_variable X3
cellact_stack read_variable A2
execute g/1 collect_list Al

put_value X3 ,A1
execute of2

ptX) := true | gq{[X]), r(X). p - true | gf¥), (X)), =(X).
enguene_goal ©f1 engueue_goal 3/l
set_list Gl set_marked_variable A1,G1
write_marked_value 41,G1 enqueue_goal r/fi
write_constant [T get_marked_value A1,G1
put_marked_value Al,Al put.marked value Al,AL

execute g/1 execute g/l

-
-

: Figure 5: Compilation Examples

immediately. For example, two instructions cellect_list and put_list can be
combined into one.
reuse_list A;, A;
The same as “put_list A;” except that if the MRB of 4; is reset, use the list cell 4;
points to in stead of allocating a new one.

When some elements of the reused data structure can also be reused as they
arc, for cxample, when the car part of the reused list cell is the same as what
should be stored in the newly allocated list cell, the following instruction might
be useful. :
replace_cdr 4, 4;, 4,

The same as the instruction sequence “reuse_list A;, A;; write_valus A;7, except
that, if A; can be reused, the cer part is directly reused without rewriting.

Using this instruction, the object code as shown in Figure 6 can be obtained
for list concatenation.

7 Comparison with Reference Counting

Reference counting is a widely used scheme for immediately detecting when a data
structure becomes free. However, the general reference counting scheme has the
following drawbacks.

s Amextra word for counting references 1s required for each data object. In casc
of GHC, each variable cell must have an extra word which almost douhles
the required memory space.

s Counting references up or down requires extra memory reads and writes,
which may slow down the execution considerably.

"
i

append ([WIX],¥,WZ) :- true | Wz=[WlZ], append(X,Y,Z).

before after
wait_list &1 wait_list Al
read_variable X4 read_variable X4
read_variable X5 read_variable X5
collest_list Al replace_cdr A1,X6,3%4
put_list X6 write_variable X7
write_value X4 get_value X6,A3
srite_variable X7 put_value X5, A1
get_value X6, A3 put_value XT,A3
put_value X5,A1 execute append/3

put_value XT,A3
execute append/2

Figure 6: Optimization of append

Time and space overhead of the MRB scheme is much smaller than the gen-
eral reference counting scheme. One bit MRB in stead of one word count reduces
the memary overhead considerably. By keeping the multiple reference information
on peinters rather than in the data, no additional memory accesses are required.
Especially, for shared objects in multiple processor systems, inter-processor com-
munication with locking is reguired for reference counfing; none such for MRB.

As the MRB scheme only distinguishes reference counts of 1 from many, once
multiple references are made, the system cannot recognize even when all of them
are disposed. However, in languages such as FGHC which do not have destructive
assignment nor multiple environments, data objects often have only one reference
paths to it. Thus, in implementations of such languages, this deficiency is not so
serious as in procedural languages.

8 Using MRB for Other Languages

Unfortunately, using the MIUB scheme for logic-based languages other than FG HC
is not as easy or not as effective.

¢ In sequential or OR-parallel Prolog, multiple references are indispensable
and probably much more frequent than in GHC.

o In non-flat languages such as full GHC, full CP or Parlog, goal reductions
cannot be regarded as an indivisible operation. The management of MRB
will be much more complicated.

o In flat CP, whether a unification is passive or active is determined at the
execution time. The object code must be ready to handle all the possible
cases, which may inerease the code size and also slow down the execution.

The MRB scheme may be very effective for dataflow languages. Actually,
FGHC 1 a datafiow language in some sense.

13

Table 3: Execution Statisties of Test Programs

cells | total | peak ratio| left ratio | extrat
primes list | 5,372 499 .09 0 .00 —

variable | 5,469 501 .09 0 .00 | 5,372
queens list | 14,208 | &705 .61 |8,515 .60 —

variable | 17,5661 | 15,164 .86 | 9,747 .56 6,544

t Number of extra variable cells required to separate elements from their parents.

9 Test Implementation

An FGHC system with the MREB scheme proposed in this paper has been
implemented. Table 3 shows the execution statistics of a couple of test programs.
The scheduling strategy is simple depth-first, and no suspension took place in their
execution. Tested programs are:

Primes: A prime number generator which generates all the prime numbers not
greater than 500. One process generates all the natura! numbers and other
dynamically created processes filter non-prime numbers out, and, finally, one
process prints out the result. A typical application of the stream communi-
cation programming style.

Queens: A program which gives all solutions of the 8 queens problem. A typical
all solution search program. Probably one of the worst cases for the MRB
scheme.

In primes, all the allocated list cells could be collected during the execution. In
queens, about 60% of them could not be collected. As no list cells are accessible
when the program terminates, they are the cells which had multiple reference
paths.

For about variable cells, 98% of them allocated in primes are additionally
required to incorporate the MRB scheme for separating them from their parent
list cell. In case of queens, it is 37%. Taking this and sizes of cells in consideration,
the ratio of the peak memory requirement using the MRB scheme and the total
memory requirement without the scheme are 13.8% for primes and 82.6% for
queens. It might be said that:

o For stream parallel programs, the MRB scheme is very effective.

» For search programs, the MRB scheme is not so effective. Still, it is good

enough to compensate the memory overhead imposed by separate allocation
of variable cells.

14

10 Conclusion

A new implementation scheme of FGHC which maintains multiple reference infor-
mation in pointers is described. Maintenance of the information requires no extra
memory accesses. With the information, several optimizations such as storage
reclamation without garbage collection or destructive array update become possi-
ble. From preliminary experiments, storage reclamation by the scheme 1s proven
to be very effective for stream parallel programs.

Acknowledgements

This work is initiated being stimulated by the optimization effort for stream merg-
ing by Tto and Kuno{3]. Discussions with members of KL1, PIM and Multi-PSI
groups of ICOT were very much profitable in developing the authors’ initially
vague idea.

References

[1] K. L. Clark and S. Gregory. Parlog: A Parallel Logic Programming Language.
Research Report TR-83-5, Imperial College, 1983.

[2] L. H. Eriksson and M. Rayner. Incorporating mutable arrays into logic pro-
gramming. In Proceedings of the Second International Conference on Logic
Programuming, pages 76-82, Uppsala, 1054

3] N.Ite, M. Kishi, E. Kuno, and K. Rokusawa. The dataflow-based parallel infer-
ence machine to support two basic languages in KL1. In IFIP TC-10 Working
Conference on Fifth Generation Computer Architecture, UMIST, Manchester,
1985.

[4] J. Levy. A GHC abstract machine and instruction set. In Proceedings of the
Third International Conference on Logic Programming, 1980.

[5] E. Y. Shapiro. A Subset of Concurreni Prolog and Its Interpreter. ICOT
Technical Report TR-003, ICOT, 1983.

6] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Lenguege
with the Concept of o Guard. ICOT Technical Report TR-208, ICOT, 1986.

[7] K. Ueda and T. Chikayama. Efficient stream /array processing in logic pro-
gramming language. In Proceedings of FGCS84, 1COT, 1984

(8] D. H. D. Warren. An Abstract Prolog Instruction Sct. Technical Note 302, SR1
International, 1983.

