ICOT Technical Report: TR-247

TR-247

Parallel Cache and Hardware Lock
Mechanism for PIM Cluster
by
A. GOTO., A. MATSUMOTO, T. NAKAGAWA
M. SATO and H. SHIMIZU

March, 1987

€987, 1COT

Mita Kokesai Bidg. 21F (3] 436-3191 -3

H :D | 4-28 Mita 1-Chome Telex 1COT J12961
Almare-ko “Tokye 108 Japan

Institute for New Genération Computer Technology

(Summary for ICPP’87 Short Papers)

Parallel Cache and Hardware Lock Mechanism
for PIM Cluster

Atsuhiro GOTO Aldra MATSUMOTO Tukayuki NAKAGAWA
Masatoshi SATO Hajime SHIMIZU

Fourth Research Laboratory,
Institute for New (Generation Computer Technology (ICOT)

Mita-Kokusai Building 21F., 4-28, Mita 1, Minato-ku, Tokyo 108 JAPAN,
Tel: 03(45613193 Telex: ICOT J32964

CSNET: goto%icot.jp@relay.cs.net .
ARPA: goto%icot.uucp@eddie.mit.edu
UUCP: ihnp4!kddlablicot!goto

January 13, 1987

Abstract

The parallel inference machine (PIM) is now being developed at ICOT. PIM consists
of a dozen or more clusters, each of which is a tightly-coupled multiprocessor with shared

memory and a common bus. KL1, a parallel logic programming language based on GHC,
is executed using a shared heap model on each PIM cluster.

A parallel cache and hardware lock mechanism is being investigated to enable quick
and exclusive accesses to the shared memory. The most important issue is how to reduce
common bus traffic. The data access characteristics of KL1 execution are examined first.
Then the write-back cache protocol having six cache states designed for KL1 execution on
each PIM cluster is described. Next the hardware lock mechanism is attached to the cache
on each processor. This lock mechanism enables ward by word locking efficiently, reducing

iwnmon bus traffie by using the cache status. Finally, the cache and lock mechanism is
evaluated using a software simulator, and its availability is confirmed.

L Inter-cluster Network |

PE, PE, || cC | ‘ PE, PE. || CC
1 cache | e][cache T cachél_. “c:u:he J
|

CC « Cluster Controller

Figure 1: PIM Overview

1 Introduction

The parallel inference machine PIM[6] is now being developed at ICOT. PIM has a hierarchical
structure with a cluster concept (Figure 1. Fach cluster consists of eight or more processors (PE)
which communicate through shared memory (SM) over a common bus. The PIM target language
is the parallel logic programming language KL1, based on GHC[9]. We now have two KLl parallel
execution models for PIM;: the message-oriented model[7,8] for intercluster parallel execution and the
shared heap modei[3] for the tightly-coupled multiple processors in each PIM cluster.

Focusing on KL1 parallel execution in oach cluster, quick and exclusive accesses to shared data are
the key issues. Parallel cache mechanisms are key elements in providing quick data access. Several
cache protocols have been proposed so far[1,4,5), each of which aims to solve the so-called cache
coherence problem. The next step is to clarify what kind of coherence protocol is suitable for KL1
execntion.

This paper first briefly analyzes KL1 parallel execution by the ghared heap model. Then the parallel
cache and lock mechanism for KL1 is given, followed by the evaluation using software simulation.

2 KL1 Parallel Execution by Shared Heap Model

2.1 Data structures in KL1 execution

The following data/control structures are used in KL1 goal reduction. Parailel goals are represented
by goal records with argument lists and their environments. Environmenis consist of goal argument
variable cells. The reducible goal recards are arranged in a ready queue. Some goals are waiting for
the instantiated values of variable cells in order to synchronize with other parallel goals. Such goal
records are bind-hooked with the variable cells by suspension records. The metacall records form a

goal trec, whose leaves are the goal records, to manage their logical results (success/failure).

2,2 Shared heap model

In the PIM cluster, a KL1 program is executed using the following shared heap model. Each processor
has its own ready queue. From the logical viewpoint, goal records are not shared even if they are
stored in the physical shared memory. On the ather hand, goal environments, metacall records, and
suspension records are shared among processors. Clauses in KL1 programs are compiled into WAM
like machine codes[10], called KL1-B[2]. Each processor dequenes a goal record from its ready queue,

Table 1: Data Access Characteristics in a KL1 Sample Program

ltead | Write | Shared
Code 545 0% | No
roal Records 11% 11% No
Environments 8% 2 Yeg |
Suspension Records | 0.5% | 0.5% No
Metacall Records 3% 2% 1 Yes

[Total [78.5% | 21.5% |

then performs goal reduction by executing the corresponding codes, accessing to the goal environment
in the shared memory.

3 Parallel Cache and Lock Mechanism

3.1 Observation about KL1 data access characteristics

Defore discussing the hardware mechanism, we have examined the data access characteristics in KL1

execution. From our preliminary simulation, data access characteristics can be roughly summarized
as follows. (Table 1)

First the code fetches are read-only operations, so they do not inenr the cache coherence problem.
Next, goal records are not logically shared. Therefore, even the write operations do not require access
exclusiveness,

Enviranments are shared logically and physically. In addition, KL1 needs more write accesses to
environments than conventional languages. Thus, it is very important to maintain the cache coherence
and access exclusiveness correctly and efliciently.

As a whole, the shared heap model almost keeps to the single assignment rule. This causes the
monolonous consumplion of memory areas. When the processor intends to use nmew environment
area, it can simply write the data into its own cache block without fetchiog a block, In addition,
the processor often communicates with other through one-write-one-read buffers. The cache block for
snch a buffer can be purged immediately after the receiver processor reads in,

Because of the single assignment behavior of KL, exclusive access to goal environments are nec-
essary only when the processor intends to instantiate undefined variables. However, rather frequent
word by word locks may be necessary, even if the operations after locking data are simpie and the
locks may not conflict 20 often. We have to provide a simple and efficient hardware lock mechanism.

3.2 Parallel cache with lock directory

Cache performance is usually discussed by the hit-ratio. Howewver, in the shared memory architecture,
the common bus traffic is a more important factor. We have designed a parallel cache and lock
mechanism (Figure 2), which can reduce the common bus traffic. The basic idea is almost comparable
to Bitar & Despain’s cache[l], however, it has suitable features for KL1.

The cache mechanism is hasically write-hack cache. The cache directory (C1)) maintains six internal
~iates {Table 2} with address tags for each cache block. The six states are made from the four
attributes: velid/invalid, ezclusive/shared, origin/copy, clecn/modified.

The lock directory (LD) maintains the locked word addresses with three states, shown in Table 3.
Lock operations depend on both the entry state in LD and the corresponding cache block states in
€D, so both CD and LT are updated simultaneously by processor commands and bus commands.
With this lock directory each processor can lock a lock by word up to the number of the lock directory
entries. [n addition, the lock directory always snoops the common bus, so the cache block for a
locked word can he ﬁwapppﬂ ont. However, when the processor tries to lock more than one locks, the

CPU i
& +
Controller
%a':&? i CD : Cache Directory
‘leplup Array LD : Lock Directory
Cache
BUS

Figure 2: Cache and Lock Mechanism

Table 2: Cache States

Abbr. Meaning

EC Valid, Origin, Exclusive and Clean
EM WValid, Origin, Exclusive and Modified
5C Valid, Origin, Shared and Clean

SM Valid, Origin, Shared and Modified
C Aalid, Copy, Shared

I Invalid or not used

processor bas to keep the incremental or decremental order for the locked-word addreszses in order to

avold deadlocks.

3.3 DBasic actions

WWe provide various processor commands suited for KL1 execution as in Table 4. The correspending
operations of cache and lock mechanism differ with the CD and LD states. The cache states EM and
EC are used to avoid the bus traffic caused by useless invalidate and lock commands to other cache,
Additionally, the cache status E{” and 57 are used to avoid unnecessary wrile-back operations.

The processor commands, dw and rb, are provided for the monotonous memory consumption
mentioned above. When the cache receives dw commands with a written word and its address from
the processor, the cache checks the address. If the address misses the cache directory but matches the
caclhie block boundary, the word s written directly into 2 new cache block without fetching a block
from the shared memeory or other cache. When the processor reads one-write-one-read buffers, the
read buffer command rbis used. This command fetches a block, invalidating the source hlock on ather
cache. The fetched block is purged after the processor finishes reading the content.

The read with lock command Ir acts as follows, The lock operation on the lock directory depends on
the cache block status, When miss-lut vecurs, the lock, feteh and tnvalidele commands are broadcasted

Tahle 3: Lock directory states
Abbr. Meaning

L Locked without waiter
LWV Locked with waiter
E not used

Table 4: Processor commands

Abbr. Meaning Operate On
r Read cD
w Write CD

dw Write directly without fetch CcD
th Head one-write-one-read buffer CD

Ir Read with lock CDh,LD
uw Write with unlock CD,LD
u Tolock LD

through the common bus to query other caches as to whether the word can lock or not and to fetch
ihe Block. When the word address hits the cache of SM, 5C or C, the [ock and invalidate commands
are broadcasted. On the other hand, the cache status is either EC or EM; there is no other cache
which has the locked word. Therefore, the processor simply sets the locked word address in the lack
directory without broadcasting any bus command.

4 Ewaluation and Discussion

A software simulator was developed for evaluating the above cachie and lock mechanism. Then we ex-
amined the dynamic characteristics such as bus traffic and cache hit-ratio on several sample programs.

The cache states, EM and EC can avoid most of the bus commands imvalidate and lock, reducing
the bus traffic by about 60~70%. In addition, the processor command dw reduces the bus trafic
abount 30%. On the other hand, modified/cleen does not reduce traffic so much. This is because most
cache blocks containing goal environments are already modified. However, the effect of modified /rlean
depends on the program code. More detailed evaluation is necessary.

5 Conclusion and Further Work

The cache and lock mechanism was designed based on the data access characteristics of KL1 programs.
This mechanism shows good performance on XL1 parallel execution by the shared heap model. More
detailed hardware design and evaluation will be perfarmed.

Acknowledgment

The research and development described in this article is being conducted mainly by the members of
the PIM groups both in the ICOT Research Center and the participating companies. We also wish
to thank ICOT Director Dr. Kazuhiro Fuchi and Dr. Shunichi Uchida [or valuable suggestions and
guidance,

References

il P. Bitar and A. M. Despain. Multiprocessor cache sycironization. In Proc. of the 17th Annual
Iniernational Symposium on Computer Architecture, Junc 1026,

[2] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. Technical lleport,
[COT, 1986. To appear as ICOT Technical Report.

[3] M. Sato et al. KLI Erecution Model for PIM Cluster wiith Shared Memory. Technical Report,
ICOT, 1986, Lo appear as ICOT Technical Report.

[4] R. H. Katz et al. Implementing a cache consistency protocol. Im Proc. of the 18th Annual
International Symposium on Computer Architeciure, Jnne 1985,

5] J. R. Goodman. Using cache memory to reduce processor-memory traffic. In Proc. of the 10th
Annual International Symposium on Computer drchitecture, 1983,

[6] A. Goto and 5. Uchida. Toward a High Performance Parallel Inference Machine -The Interme-
diate Stage Plan of PIM-. TR 201, ICOT, 1986.

[7] N. Ichivoshi, T. Mivazaki, and K. Taki. 4 Flat GHC Implementation on the Multi-PSI. Technical
Report, ICOT, 1886. To appear as ICOT Technical Report.

18] K. Taki. The parallel software research and development tool : Multi-PSI svstem. In France-
Japan Artificial Intelligence and Computer Science Symposium 86, Octaber 1986,

9] K. Geda. Guarded Horn Clauses. TR 103, ICOT, 1985,

(10] David H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 308, Artificial Intelli-
gence Center, STU, 1983,

