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1. Introduction

The idea of programming in constructive logic [Beeson 86] ie as follows:
Given a theorem with the following form,
For all X : TYPElL there exists ¥ : TYPE2

such that F(X,Y)
The proof of thie theorem should be given by human beings, and must be a
CONSTRUCTIVE proof. ‘Constructive’ means, roughly speaking, that one should
not use the refutation to prove the existential property: one must shew how
the required cbject can be kuilt up by finite steps of fundamental operation
that can be ioplemented on computers. After the constructive proaf is given,
the program that has the theorem az itz SPECIPICATION will be darived through
the procedure called ‘the proof compilation alserithm based on the
realizabilivy interpretation’ |Takeyama £7). The code ewtracted through the
procf compiler is called 'realizer' or 'realizer code'. The correctness of +thae
derived programs can be assured by the proof checker system that automatically

checks the procfs of the theorems (Sakai B6].

Constructive proef strategles reflect the logical structure of algerithms
well, so that constructive proofs of thecrems can be referred to az good
program specifications, and theorems can be referred to &5 good specifications
of software functions. Thinking on the procf etrategy for a theorem
corresponds to the design stage of the algorithm which satisfics a

specification so that the proaf strategy depends mainly on the creativity of



programmers. For that reascn, a full automatic theorem proving technigque 18
not pnecessary. What is necessary is a procf checking technigue whieh has
theorem proving facilities to £i11 the trivial inference step in the

proofs automatically.

Thic paper extends the programming in eepstrustive logic by introducing

some petalsgical control mechanisms. The motivation is te make writing the
generate and test type, oF exhaustive search type, programs easier in the
paradigm of ‘'writing programs as proof of formal specifications’. Section 2
outlines the proof compilation algorithm, Section 3 investigates a prime
pumber generator program. Some difficulties in writing prime number generator
prograns in constructive logic are peinted out, and the reason why PROLOG but
pot constructive logic makes it easy to write such programs is discussed.
Section 4 iptroduces a method to parameterize proof trees and modified proot
compilation procedure to overcome the problen pointed out in section 3.
Section 5 again investigates the prime number generator program in the
axtended framework defined in secticn 4. 0J [Sato 86], typed logical system,
iz used threugheout this paper as the background formal system of censtructive

logic.

9. putline of Proof Ceompilation

——— e e 2 - -

The proof compiler analyzes & given proof tree from bottem to top,
extracting the code step by step for the inference rule attached to each

node of the procf tree.

The code generating algerithms for overy inferance rule of Gentzen t¥ype
natural deducticn system are shown below. Algorithms for inference rules ol
induction and if-then-else Elimipaticn rule in GJ are gmitted sinece they

are pot used in this article., The same algorithm is shown in [Takayama B7].

¢4 Notations i3
Ext(Conclusion, Rule) is the procedurs which extracts realizer codes from

the proof tree whose copclusion is "Conglusion', and it is consluded by

ra
|



‘Rule’. Ext{Porsulal/Formula?, *) means that when the realizer code of
Formula? is needed in the procedure, Ext(Formulal,=), then the realizing

wariable sequence of Formulal will be used instead of the realizer code.

If a:ol (this means "term a2 has type ol”) and biod, then &, b is

a term of type ol ¥ o2, p0 and pl are the projection function: pO(a, b) = a
and pl{a, b} = b. For every provable formula, there is a realizer

sequence that realizes the formula. The length of the realizer sequence can
be determined systematically by the structure of the formula. Realizing
variable of the formula is the wariable for whieh the reslizer code of the
formula is te be suhstituted. Bv({Formula) denotes the realizing variable
sequence of “Formula'. A[ Ev{Formuia) <= *** ] means substitution of code
sequence **¥ for Rv(Formula). Apply(Terml, Term?) means the application of

tambda term Terml to Term2Z, i.e., Terml(Termij.

mem={®1l)  ——=={*2)
A B

e PACS S
AN B

EXL(ANE, M-I) == Ext(A,*1), Ext(B,+3)

e (") S A

Ao B BB
s (/\7E) —mmmmmm (/ACE)
A B
Ext(h,/\"E} == pO0{ Ext(A/B,*} ) Dt (B, /\-E) == pl{ Ext{A"E,*) }

———===(*) ——mm—=—= ()

& B
Rl Wt S A
RSB h S B
L AR AV - PRV & i EXT(AW/B.NS-T) ==
Index of A, Ext{h,%) Index of B, Ext(B.=)

Caution: 'Index of A', for example, is a suitable term which indicates the
position of A in B\/B. The index may be cne of terms 'L’ and 'R° ol type '2°,

or more generally, matural numbers can be informally used.



1 &) [ B ]

—mm=(®l)  =m-(*2) —-=(*3)
M/E c c
- (W=E)
[

Ext(C,%/-E} == if p0{ Ext{&\/B,*1} } = Index of A

then Ext{C/A,*2) [ Bv(h) <= pl{ Ext{AN/B,*1)
else Ext{C/B,"3) [ Ev(B) <= pl{ Ext(A\/B,*1)

e e CP LS &
B =>B

Ext(A—2B,—»—1} == lambda [Rv(A)]. ExXt{B/A,=)

A k= B

e B B -0

B

Ext({B,-»-E) == hApply{ Ext(h-35,*2}, Ext(h,*1} }

{Al1-1)
hll X:Type. A{X)

Ext(Aall X:Type. A(X), RAlLl-I)

== Rll ¥:Type. Apply( lambda [X]. Ext[A(X).*) , X}

(W1} mmmmmmmeeee (%)
t BRll X.A(X)
-—— —— —={All1-E}
AlL) where 't is term

Ext(Al{t), ALl=-E) == Ext(all X.A{X).*2) [ X < t ]

Yy
3



e S (=2
t R{t}
B el -~ 4 ¥ 1
Exist X _R(X}

Ewt(Fxist X, A(X), Exist-T)} == &, Ext{h{t), *2}

1 &0 ALY ]

—— {11] ————[rz}

Exist X.A(X} [

——————————— e e [ E L gL =E )
C

Ext(C, Exist=E} == Ext{C/[A{t11.*2) [ RviA{t}) ¢- pl{ Ext(Exist X.A(X),®1) ]

£¢ Other Inference Rules 3

----—I t}

A

Ext(a,*) == {nil)

3. Generator Programs

3.1 Prime Mumber Generator in Constructive Mathematics

realizabilicy interpretation is effective in the program derivation when

the constructive existence proof is given. The meaning of this feature will
ba made elear if the medified 'Eratosthenes Algorithm' that find prime number
less than 100 is investigated. The vonstructive proof which corresponds to
this algorithm will be shown later, but this proof cannot be referred to as a

'‘proof of existence of prime number®,

In the following, 'N:imnet' is & type declaration that means 'N has a natural

nunber type’, and type declaeration will be often omitted for brewvity.

Theoram:
Exist N:mat. two_digit_prime{N)
vhere two_digit prime{H} == Cwo_digit_nat(N} /M sieve(N)

two_digit_nat(H) == digit(Hl} S digit{W2) A H = I0+N1 + H2



sieve(H) == N > 1 A
ARll Krnat, All Limat.{ N = E*L - K = 1 % K = N}

digit(N) == N = 0%/ H = 1%/ N=20% N=3% N=4
SR E SA/H = 6N H= 7% N=8%H-3

Proot:
In the proof tree below, inference rules on arithmetic/terms [Satc BG] are
abbreviated as (*), (**), (=) and ($5}). (=) denotes the rules of sgualities.

This convention will be held throughout subseguent desceriptions of proof trees,

[t=F*L, E:nat, Linat]

@aad
m——em———{\ =1}
—————— (=) I E=1 %/ K=t
nl n -= ={=¥-1}
et T =KoL
nl=nl n2Z=n2 =¥ E=1%/K=t
______ ;V_I} _______EV_IJ 8 R e S S B . _ﬂ-..‘hll_l:l
nl=0 ni=0 All L. (t=K=L
Vs W ' -) Eel\/K=t)
. e (=3 Rl -5 B i A
W W t=liwnl ——=—=(*} All ¥,L.(t=E~rL
nl=89 nd=% + n2 £l =i E=1%/K=t}
i Skl - [/ =T =={/ 1)
t two_digit_nat(t) sieve(t)
T e s s e - - - - - —————————— [EXist-1)
Exist N, two_digit_prime(H)
Nete: (#3E is "E=1' or "K=t'.
The code saquence axtracted through the prosf compllation is;
£, Index of nl=nl in nl=0%/...%/nl=9% ,
Index of nid=n2 in n2=00,/...%/ni=9% ,
All Kinat. All L:nat.
hpply( lambda [K,L}. Index of E32 in K=l /K=t ., (KE,L}) )
't' is the prime number extracted from this proof. Other codes are the

information which indicates that 't is actually a prime number®. Notice that
in the framewerk of constructive logis, 't' must be an individusl prime
number, for example "31', and in this casze, nl and n2 are 3 and 1,

Index of nl=nl im nl=0/. ,nl=9 is 3, and Index of nZ=n2 in n2=0%/. . M/n2=9 is
1. Conseguently the prime number generator program cannot be extracted,

although this proof seems to reflect the Eratosthenes algorithm well. This



can be seen as follows:

{1} From the point of view of eonstructive logic, the prooi ol existence of
prime number is to give one individual natural number and to show that
it is actually a prime pumber; otherwise te shew how to construct any
prime number - im other words, how Lo censtruct the set of prime numbers.
The first case corresponds to the proof given above, and the existence of
a given prime number., Mereovexr it note that there is no deseription in the
proof on how te find the prime number. In cther words, an algorithm which
generates prime numbers cannot be extracted from this proof. For the
second case, one must show the general procedure to construct prime
numbers above the bar "===({#*=}'_ and then realizability interpretation
will extract a program that generates prime numbers, however, that prool

iz likely to be difficult.

{2) Pxtracting genaerator tLype programs regquires some kind of mechanism that
can treat "families of proafs' or ‘parameterized proof® explicitly. If
't' can be regarded as a parameter in the proof given above it can be
referred to as a 'schema of proof' which, if 't Ls instantiated to some
individual prime number, can become a proct of the theorem. This prckblem
iz elear when a prime number generator program wWritten in PROLOG is

investigated.

{3} The constructive meaning of legical sentence Exist X:Type. A(X} is a
pair 't, p" where 't' is an element of Type, setisfiying A{t} and
‘p' is a proef of |- A(t). Note that one such 't' is sufficient,
In other words, there is no need to obtain all the elements of Type
which satisfy A(X). However, generater type procrams are the procedurse
which finds all such elements, Conseguently, some extension is necessary

in order to treat generator type algorithms naturally in the Iframeworzk of

consbructive logic.

1.2 Prime Humber Generator in PROLOS

3.2.1 Program Transitoermation Technigue in Legie Programming Language



In logic programming languages like PROLOG [Bowen 831, the prime number
generator can be written in a style very similar to that of the
theorem given in 3.1. The only difference iz the definition of the
‘giave' predicate. Sentences such ag that defined in 3.2 cannot be
written explicitly in PROLOC mainly because it should be an executable
logical formula so that some restriction in description is posed for
the purpose of runtime efficiency. To be a PROLOG program, &

technigque of pregram transformation such &8 that seen in [Sate &

Tamaki B4] and [Lloyd & Topor 84] must be applied,

sleve(M) == K » 1 / ALL E:nat, A1l Linat. (KW = E*L =» E = 1%/ K = Hj
The defining equation symbol '==' is rewritten into the symbol of Horm
clause ':-', and the implication formula is translated into a
disjunction formula by the logical eguivalence in the clasaisal logic:
A - B (=} A %/ B . The conjunction symbol '/\' iz rewritten
inte ',"'.

m=3 sieve(H] :— M * 1 , ALl E:mat. All L:mat. { 7 H = K*L %/ K = 1%/ K = N
Use the logical eguivalence A %/ B % C =3 T({& “B /M, TC) in the
glassical logic and the definition of negation "A <= A - Fbottoms,

w=d  gieve(H) :— W » 1 ,
ALl F:mat. A1l Lenat.{ H = E*#L , ~ K =1, 7 K =N -2 fthottoni )

Use the definition of ineguation: A == B {=} T A=B,

==} sieve(N}) := ¥ » 1 ,
A11 E:nat. All L:pat.{ M = ¥K*L , K =\= 1 , K =%= K -2 Sbhottomf ) (**)

Replace All K:nat.... part by '"g(M)', defined as follows. Kote that
it is suffisiant that K &pd L be two digit neatural numbers because two
digit prime numbere are new being investigated.

g({H) := two_digit_nat{k}.

211 L:inat. [ N = K*L, E=\=1, E=\= N =} Sbottom$ )
Using legical equivalences in the classical legiec,

T Rl1l X.A({X) <==» Exist X.  A{X)
and

Exist X A(X)} =» B £==> R1l X { A{X} —-* B }
g(H) can be transformed as follows:

Qi) = two_digit_nati{k), N = E*L , E=\=1, E=\=H.



=3 mieve(H) :— N » 1, Tg(H).

Conseguently, the two digit prime number generator program in PROLOG

iz as follows:

sieve (WY := N > 1, “+ g(H).
qiW} = two_digit nat(K}, Z is R mod K, 2 = 0, K =%= 1, K =\= N.

two_digit_nat(kK) :— digit(d),digit(B),
X is 10"a , K ia X + B,

digit{0y.

digit{l}.

digit(2y,

digit(a).

digit(4).

digit(3). -

digik{6y.

digit(7}.

digit(8).

dlgitiay.

3.2.2 Interpretation of PROLOG Execution in Froof Trees

o 11 e . . e e e e o e e D S . B O

Execution of PROLOS preograms can be interpreted in the proof tree of Gentzen
type natural deduction cazily, This docs not apply to programs with
metelogical contrel mechanisms and 'negaticn as feilure' programs,

The interpretation given here 1s slightly different from the -:ardj.nary

cne in that the execution of PROLOG is interpreted as the refutation
procedures [Lloyd B4).

For inferemce rxules, the constructive version of npatural deduction like

that of QJ [Sate BE] if used here.

The above program is translated to the set of axioms as follows. In this
procedure, all free variables are interpreted as being universally
quantified, A= B, 'RyB,. . ." and A ; B ;..' are interpreted as "H -* A",
"RAMEL.Y and A NS B NS L. respectively as in the transformaticn shown

ip the previous section., For 'sieve', {*"*} in 3.2.1 is usged instead of the

actual PROLOC definitieon te aveoid difficulties in "negaticn as failure'.

Axl: ALl N:imat, | two_digit_nat{N) /% sieve(H) -} prime(N) }

Ax2: ALl W:maw, A1l Ml:nat, A1l HM2:nat.



digit(Nil) M digit(NZ) /M N = 10*K1L + K2
~¥ two_digit nat (N}
Bx3: Rll N:mat. All K:nat.
H ¥ 1 M
{ H = E+L /M ¥ =\= 1 /M K =\= K -2 Sbottomi )
=% mieve(N)

kll L:nat.

Axd: ALl N:inat,{ M=0D %/ ... %/ M=% - digit(N) )

When the query ':— prime(N).' is given with wvariable 'N' free, 'N' i=

interpreted as being existentially gquantified, and execution of the program

can be seen as the proof of 'Exist M:pat.prime(K)" using the axioms glven

above .,

___{I-}
[nxl] t
two_digit_mat(t) /N sieve(t)
=) prime(t}
—mmmmmmmm———m (= }=E}

TREE-1 TREE-2
el F 4 T
two_digit_nat(t)
N Bleve(t)

i primeafk)

-{All-E)

m==m=—==m——————(Exist-1)
Exist N:nat, prime(HN)

£4{ TREE-1 »?»
i
[ax 2] t
————————————————(A11-E}
A11 H1.
k11 NZ.
{digit{mMl}
FAY
digit{M2)
FAY
C=l0*H1+NZ -=={"}
-* two_digit_nat(t}) nl
R11 W2,
(digit{nl}
A
digit (M)
PN
t=l0*pl+N2 ===i*}
=y two_digit mat{t)) ne

{R11=E}

(A11-E}
digit(nl)
P

(1) (2 t=l0*nl+n2

e PATS 3

digit{nl}Mdigit(n2) At=10*nl+n2

digit{n2)
A
t=10*nl+n2
=% two_digit_pat{t)

two_digit_nat(t)

where subtree (1) and (27 are as follows:

(1)

- = [ =}~ E}



nl
~~~~~~ =) —mm ()
nl=nl [Rx4] nl
= L e - {ALL-E)
nl=0%/. %/ nlmg nl=0%/. % nl=9% —» digit(nl)
et et e L = ——— wm=f——E}
digit{nl})
(2}
____{ LD
na
———=y T (*)
n2=n [Bx4] n2
U - - mo—m e m=m—=——[A11~E)
B2=0%/. . %/ nl=% n2=0%s . W/ n2=% -3 digit{n2)
- - el £ B
digit(n2}
<{ TREE=2 >3
[ E:nat, L:nat, 1
[ t=E*L , K=i=1, E=\t 1
—_— S - —{t]
Shottom$
- - {(=3=1}%
t=K*L
FAN
E=h=1 /M K=h=t
=2» Sbottomb
---------------------- (R11-I)
All L
t=K*L

AN
E=%=1 /M, E=\=t
= Sbhottom$
——————— e e R -1
All E. all L.

t=%*L
A )
=-———{%) K=y=1 / Kei =t [Ax3] t
14t -* Sbottoms it 0 B B 5
——————————————————————————————————— e VA Y] 14t
16t Al K. All L.
All K. A1l L. t=E L
{ t=KE+*L FAY
Fal E=h=1 M K==t
K=h=1 /% K=\=f =¥ fbottom$ )

=% Sbottomb b

=3 sieve(t)
= - {=»=E)
sieve(t)

Az in the proof in 3.1, t must be a individual natural number. This proot
tree is basically the same as that given inm 3.2. The main difference is that
propositions such as 'sieve' and 'two_digit_nat' are inferred by the

{=¥=T} rule.



PROLOG system performs Gentzen style natural deduction avtomatically using
sprcification sentences as axioms. For inference of (W/-I) as in (1} and {2}

in the above proof tree, the system finds alternatives to the proofs

——=(*) ===
4] 49
—_— “1=)
0 =10 9 = 9%
R 1 e {MWF-1)
Q=0 Ny ., NS0=9 Gmll N .. NAO9=D
as
'-‘-!--P{“} —-—-—-t.".
nl na
——————— (=) Gt &
nl = nl nd = n3
———— e ———————— e (% S-T} and
nl=0 %/ ,, %/ nl = 3 na=0 %+ .. % nd = %

part subtree by backtracking as in sequential PROLOG, or concurrently as in
pasallel PROLOG. In any case, =mere than one proof will be obtained when the
specification is executed by the PROLOG system. What FROLOG programmers give
is, in a way, not a specification and its proof but a specification and the
gchema of its proofs., This allows the system to find as many proocis as

possible, and conseguently allows programmers to write the prime number

JERETATOr Program.

4. FParameterized Proof in Constructive Logle

1f incomplete constructive procf that shows the schema or ‘guideline’
to make complete procf is allowed in the restricted situations and
some modification iz given to the proof compllation procedure, it is
possible to extraeclt generator programs from the incomplete
constructive proocfs, This section gives a methed of parameterizing

proof trees and the modified proof compilation techhigue.

4.1 Proof Parameterization Method

This section describes the notion of proof parameter, parameterizaticon

by frees variashle and ewtended proof compilation algorithm.



4.1.1 Proof Farameter

aAssume there i an application af (%-I) rule of the follewing form in

the procf tree:

P |
-
¥l i
X = ti
-—- e AVES S
Xo= £l %/ L. 8N X o= el NS LW X = R
wheres X ig a variable of the natural number type, and tl, .. ,tn are nakural

numbers, Let all opourrences of ti above the (%/-I) rule application be
revritten by a variable $5. Then the proof tree will change as follows:

P
-

#[ 55 ]i#

X = 55
- e (V=13
Xoem £l % o0 % X o= Bl 0 N XK=t

Froof tree P' iz called a "parameterized version of procf tree, FP"., §5 can

take the value tl, ..., ©r In.

4.1.2 FParameterizaticn by Free Variables

Aesume some constructive proof is obrained by the application of the

{Exist-I) rule.

#1 & 1%
t:Type AlT)
B et ot S Ry s
Exist X:Type. A(X)
The method of parameterization by free variables is to replace all the teims
't' wecurring above the applicatien of (Ewiat-T) by a free variable, for
example N, and omit the application of {Exist-I). The above proof tree is

translated by this method as fellows:

¥l N 1A

h{N}

4.1.3 Extended Proof Compiletion



Extended proof compilation is almost the same as that given in 2, except
in the parameterized application of (%/-1) rule. To distinguish it from
ordinal (%/-T) rule, it will be written as (%/-I}" in the following
descripticon,
I Tl |
X = 55

e R AV 3

X=t1 % .. % X = tn
Exti¥=tl % .. % X = £n , [W-11% )

== if 55 = tl1 then Index of X = tl ip XE=t1yv/../X=tn else

if 55 = t2 then Index of X = £2 in X=tl14%W/ . .\ i=tn else

if 8% = £n then Index of X = tn in X=L1%/. . X=%in
else sbhottom$

i
Ext(X=5%, *)

Sometimes case-sentence will be used in the following dezcription instead of

if-then-else terma.
case(¥, A1;81, ... , RAn;Bn ) {1l=4n}

which has the same meaning as

if X = Rl then Bl else

if X = ARn then Bn else Shottom?

4.2 Operational Semantics

In [Sate B6)}, the operational semantics of Quty are given. QJQuty iz the typed
logical language which has both logic end functional programming features.
Outy is also designed $o &2 to contain realizer codes extracted from
constructive proofs written inm QF as ite subset.

This =mection outlines the operaticnal semantics of Quty following [Sate BE],
and gives its extension in ozder to explain the computaticnal meaning of

+he realizer code im the extended framework defined in 4.1.

4.2.1 outline of Operational Semantics of Quty

Proyram and texm are regarded as the same in OJ.



pefinition 1: | Program/Ters ]

1y (typed) variable
2} lambda expression
1y if-then—else term
4y T { Tep ). Sbottow§ ( bottom )
%) equality of terms
6} application of lambde expressicns to terms TERM1(TERM2)
7y eonjunction of Lerms : TERMI, TERMZ and TERM1 / TERMZ
By inl(TERM; and inr(TERM}
This terms are used to express natural numbers, list and =o on.
9} Ewist X:Type. TERM
103 9ther

The ewecution of programs is defined by the reduction model. Proegrams on which

reduction procedure can ne lenger be applied are called canonical programs.

pefinition 2: [Canonical Program]

Variable X is a canoniecal program.

, T [ top )} is a canonlizcal program.

Conjunction of terms: TERM1, TERM2 is a canoniecel program
where both TERM1 &nd TERM2 are canonical.

inl{TERM) and inr(TERM) are cancnical programs
where TERM is canonical.

lambda [X].A is & cancnical program

where A ig not always eanonical.

Dpefinition 3: [Envircnment])

1.

2.

T is an environment.
X /A E is an povironment
where E it an environment, and X iF a variable.

In thig case, variable X is called a ‘member of the environment’



. p=g /A E is an environment
where E i= an envirenment, both 'p' &nd 'q' are canonical programs,

and every free wvariable of 'p' and 'g' iz a member of E.

"Environment" means the execution environment of programs defined by variables
apd eguations, Correspondence between programs and their execution environment
iz given as the notion of ‘covering', and execution of program within the

environment 18 defiped by the rewrite rules of 'e-forms'.

pefinition 4: [Covering]

Let E be an environment, and p be a program (not necessarily canonicaly,

Then

E covers p {=[def]=* every free variable of p is & member of E

-

Definition 5: [ e—form |

Let E be an environment, and 'a' be a program coverad by E. Then

1) Environment E/Ma is ealled 'e-form' and dencted sz Efa)

2} 1f Elal iz an e-form, then Exist X1, .. %n. E[aj (n®=0) iz an e-form
3y If Exist X1, .. , Xn.E[a] iz an e-form, wvariahle ¥ is a memher of ©
and X is distinet from X1, .., Xn, than
Exist X, X1, .. ¥u. Ela] is an e-form,

Variables that are members of the environment must be existentially
guantified in the e-form if the varisbles are existentially guaptified in 'a’
The definiticon of rewrite rules of e-forms is omitted here. MNeote that

e~forms are pregram in the meaning of GJ.

4,2.2 Operatieonal Semantics of Realizer Code

There are three prablems in applying the operationsl zemanties of Quty

te that of the realizer code in the extended framoworlk,
(1} How or when iz the envirenmant of the realizer code made?

{2) How should the computational meaning of the realizer code extracted form

ig



{L11-I) rule applicatien, that i=, a universally quantified fumection
closure be explained? (fee 2}

{3} How should the computational meaning of the realizer code extracted from
the paranpeterized procf be explained?

The following subsections give sclutions to these problems.

4.2.2.1 HMaking the Environment

‘Environment' in the operational semantics of Qubty can be seen as the
congtraint &f all frees variables ooourring in programe Lo be executed.

The environment of the realizer code is built up during the pzoof
compilation procedure. At the initial stage, the environment is T, and
when the code containing free variables is generated, the environment

is updated, adding suitable terms into it. Free wvariables can be
introduced in the proof compilation procedure when it works on applications
of (All=E) and (Exist=1) and, in the axtanded framework of parametarizaed

proocfs, (N-I)%.

{1l) Applicatien of (All-E) and (Exist-I)

===i*]
t ALL X. R(X)
------------------------- (R11-E)
nit)
Ext({ A{t) , Al1-E ) == Ext({ ALl X.A{X) 3{ % <- & }
e R ()
t ALY
e ——{Exi5t-1)

Exist X. A(X)

Exi{ Exist X.A{X) , Exisl=I 3 == k., Ext{ A{t), # )

Free variables are contained in the realizer code if 't' has free variables.

1i &, add all the equations and inequations above

I S |

-
.

which contain 'L' =hould be added Lo the environment.



{2} Application of (MW-I7"

__————————“:
X = 58
= ={NW-I"
X=-as/X~=5b

Ext( Z=a\/X=b . [(WI}"
== if 5% = a then 'L°
else if 55 = b theo 'R’
elze 'Shettoms” , Ext{ X = 5% , ® )
The proof parameter $§5 is free in the realizer code, In this case,

all the eguations and inegquations above the node

"---------E - h

X = g8

cohtalning X - $% should be added into the environment.

{3) Proof parameterized by free variables
If the procf is parameterized by free wvariables, all the eguations and
ineguations containing the free variables securring in the proof tree sheould

be added to the environment.

{4} 'Colered' sub-environment

Dturing the procedure defined im (1), {2), &nd (3), eguations and inegquatiecns
te be added to the environmernt sheould ba ‘colored' if they ocour above the
appliecation of (-»-I) rules. Set of equations and inegquations with the same
color makes & sub—environment.

In general, if the evaluation of an environment derives 'SbhottomS', the
cemputation of the reslizer code should be regarded as 'fail'. NHowever, if
‘Sbottom$ ' comes from within one particular 'eoclered' sub-snvironment, +he
computation of the realizer code should be regarded as 'successful®, This
corresponds Lo the semanties of A = B formula in which A -» B is

interpreted as true if A is false.

4.2.2.2 Computatienal Meaning of Universzally Quantified Code

__']B_



All X:Type. Apply{ lambda |x]. Ext(aA{x}.,*) , X ) 1= extracted from

the application of the (All-I) rule:

- ~={Rl1l-1}
All X:Type. A{X}

The computational meaning of this code iz as follows;

1. &apply beta-reduction te Apply( lambda [x]. Ext{A(x).*) , X]
obtaining Ext{ A(x) , = 1 [ x ¢ X}

2. Generate an arbitrary element of type Type 't', and
evaluate Ext{ Afxd} , * 3} [ x &=t ]
1f this code is reduced to Sbottom®, the whole computation
ig regarded as failure.

3., HRepeat 2. for all the elements of Type.

4, If procedure 3, succeeds, the whole evaluarion of the above

code succeeds.

Kote that this code can also be seen as a generate and test type program.

4.2.2.3 Operational Semantics around Proof Parameters

Proof parameters are contalned both in the extended realizer cede
and its envircoment. In the environment, proof parameters are Iinterpreted
as existentially guantified.
{1y 1f the wvalues cf preoof p;;aneters are determined through the execution
af the environment, then the realizer code is ready to bhe executad.
{2y If both the code and its enviromment are not ready to be executed,
the proof paramerers will be 'forced to be instantiated' to possible
values to execute the environment., Alternative wvalues must be

generated until execution of the environment succeeds.

5. Prime ¥Number Generator in the Extended Framework

5.1 "sieve’



A8 stated im section 3.1, specification of the program which checks whether

2 given natural number is prime or not is as follows. HNotice that "N’ is a

free variable.

sieve(W) == 1 ¢ ¥ /M ALl K, L.{ N = KL -3 K = N Y/ K = 1}

Proof of the above specification can be written as follows,

——— l"
14 N

[ N =KeL, £, L]

i*) L]

K = H/L N/AL = 5§
s o e s o o o . -._______._.n.-\_m._-——{-}
E = &%
——— ={%/-I)
E=HYW E=1

m———— 3=}
¥ =F*L-»EKE=HWE®=1
o - - e e e e (Al1-T})
All L.{ N = E*L = K= N3 K =1}
mee S —— (All-I
211 ¥, L.{ H = E*L - K = N3/ K = 1}

- Rl AU S

sieve(H)

$% is a proof parameter that can be instantiated to 1 or N, and N is=

a free variable, so that this is a parameterized proof of the specification,

The extracted realizer code is

All E:mat. All L:nat.

Apply({ lambdm [K.L].
if 4% = N themn 'L"
else if $5 = 1 then "R" else Sbottom$ .,

Environment;

X, L] )
[ 1L 4N, .....
[ E=258 , F=HK/L , N/L = 5%, N=E*L, ... ] ]
where { K = 8, ..] iz a 'ecolored' sub-environment, N/L ie the
synbolic expression of guotient of natural number, and '...' denotes

other sguations and ineguations from inference steps ablbreviated to

(*h.

Cperational Semantics

* The above codes are axecuted as follows:



1) Let the value of N be the natural number 'n' to be checked
to gee whether it is prime or net.

2} Generate new natural numbers X ard 1, apd let them be the
values of K and L respectively. If there are no other
patural oumbers X, 1 to be newly generated, the whole computation
terminates.

1} Evaluate the realiczer pode in its environment.

3-1) The environment 1s now as follows:
[ 3 € By ovinaanonn-
[ k=55, X = n/l, o/l = $%, n = k*l,...]1 1]
1 ¢« nand kK = o/l can be evaluated at this stage, and
then
¢¢ Case 1 *y evaluation of 1 € n falls
The whole computetion fails, that is, ‘n' 1is proved to be
non=prime.
¢ Case 2 3% evaluation of 1 ¢ n succeeds
¢ case 2-1 » If the evaluation of
[ k=55, k=nsLl, nsi=55, n=k+1l, ..} fails,
computation succesds. Then Tetura to 2).
¢ case 2-2 » If the evaluation of
[ F=55, k=ns1, n/l=55, mn=k+*l, ..} succesds,
proceed to 3=2)
3-2) Bgain the enviromment is
[ L ¢ mn, ... &
[ = %5, k=mn/l, n/l = %5, n = k=1, .. 1]
and the realizer eode is reduced as follows:
if 55 = n then 'L' olse if $% = 1 then 'R' else Sbhottond
How, the if-parts of this code must be evaluated in the
environment.
¢ Case 1 ¥ BRAd '55 = n' to the epvircnment, and evaluate it.
1f mo eoptradiction occurs, then "$% = o' is txue and
the realizer code is rewritten to L, then return te 2).

2s L is the canonical form in O3, then the evaluation
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iz suecesaful, Otherwise, go to <4 Case 2 »»,

(¢ Came 2 »» Perform a similar procedure by adding "55 = 1' to
the envircnment. 1f no contradiction occecurs when the
envireonment iz evaluasted, and the evaluation is successful,
return to 2). Otherwise, the code is rewritten te
thottom$ and whole computation fails, that is, 'n' is proved

to be non-prime number,

ks determined from the operational semantics given abowve, the realizer code
extracted from the constructive proof of the 'sieve(N)' specification is
the term thgi, when it is= evaluated in the environment created through

the proof compilation, will be reduced to 'Shottom$ if 'n' Ls not prime,

wa Jihervise reduced to 'L® or 'R', or the evaluation of its eovironmant
will fail in a particular coclored sub-environment. The fact that 'n' is net

prime is proved alsoc when the environment evaluation fails.

5.2 Parallel Execution of Realizer Code of 'sieve'

The code given in 5.1 can also he ewxecuted in parallel naturally. Im this
case, a5 F and L are any two natural numbers, it is natural to explain the

operational semantics on the lattice as follows:

0 1 2 3 4 5 6
a B —— B e e W W e W e W i
| ! I | I I I
| | I | | | |
1 I s W] ] O e W
[ T N N
I | [ | I I I
2 Eemmn- Frmmme W eme e () ——R————————
|_ | '. ! ! | |
i | | | | t |
T e e e L e
I I I I i | I
I I I I I | |
4 W e B e W e B e e W e W
I I I | I i I
L
Each node (K,L) = (k:l} has its code and envirommenkt, which ¢an be



executed independently. For example, for node (4,3}, its code and

environment are as follows:

& Code 3

Apply({ lambda [¥,L], if 35 = N then 'L’

else if 5% = 1 then 'R' else fbottom: ,
(4,31 )

£ Envirunuent ¥

[ 1 ¢mn,.., [ 4 =%, 4 =n/3, n/d = 55, n =473, ..] }
{¢ Execution »3
In the following, execution is described with the pair

[[ Code, Environment ]] that has the same meaning as the e-form defined in

4.2.1 and all free variable are interpreted as existentially
quantified.

hssume here that N is 2, Then,

[I apply( lambda [K,L]. if 8§ = 2 then ‘L' else if 5% = 1 then 'R’
else Shottom$

f1¢« zr--;[ 4 = 58, 4 = 2;"3.- 2,;3 = 85, 2 = 4%3, L1 11

—

[l if §§ = 2 then 'L' else if $% = 1 then 'R' else fbottom§ .
(1 4 2,..,0 4 = 5%, 4 = 273, 2/3 = 56, 2 = 4#3, .. 11 ]}

-—3

[[——: {1 4 2, .. [ $botto=s }} ]]

Tn this case, the environment evalustion faile.  ience this
is & meaningleszs execution although the computation itself is regazded as

'successful’

Assume that a new N is instantiated ta 12, Then,

Il apply({ lambda [E,L]. if $% = 2 then 'L' else if 5% = 1 then 'R’
else Sbottom$ ,

[ 1 ¢« 2,..,[ 4 =85, 4 =273, 273 = 88, 2 = 4=3, .71 1} 11

-3

[[ if £8 = 12 then 'L° else if 55 = 1 then 'R' else Sbottomd
I 1 € 12;...,0 4 = S5, 4 = 1273, 12/3 = 5%, 12 = 4=3, ,.] } 1]

—

[[ 4f 2% = 12 then 'L' else if $% = 1 then '"R' else Shottoms .
[ 2 <12, .. { 4 =565, 4 = 4, 4 = %5, 12 =12, ..1 } 1]

Akt this stage, 5% is determiped as 4, 50 procesd to the computation



ocf code part.
-3

[[ $bottom$ .
[ 1 412, .. [ 4 = 535, 4 = 4, 4 = §§, 12 = 12, ..} ] 1]

In this case, executlion succeeds in Shottom$, so that 12 is proved to be

non~prime.,

The figures shown below are sasple results of parallel execution.

In the following figures, each node is marked as R, L, $botf or §.

They indicate the results of local executicon at esch (k.l) node,

fbots means that execution of the eode ended in Shottom$; # means that

evaluation of the epnvironment ended in "S$bottomd'.

¢ Case 1 »» n is &

o 1 2 © 3 4 3 &
0 fmmm——fmmm e e L L K
I I I | I I t
I | I | | I i
O B R B
I I I f I I !
I I I | I | |
R [— T ¥ ] f f frm=en, ...
| | | I I | |
| | I I I I I
I S B T e e
I | | I I I I
| I | I I | |
4 fe-—— P ¢ i fmmm e
I ! | I I I I
| | I I I I I
5§ f-mmm=Reee——§ -8 # e
I | I I I I I
I | | | I I I
6 f—m—mm ey # # o o=
L

AS every execution on local nodes ends in L, R or €, it is

proved that § is a prime number.

(¢ Cage 2 > N is instantiated to 4§

o 1 2 3 4 5 3
I e T B B T B O K
l I | I | I I
I I ! | i I I
R L R R Sl et
i I { I I | I
| I | I { ! I
2 #————dm==-SbotS-—fmmmmmf e e



I | | I | I I
I | | I I | I
I T B e B At
I I I I I | |
| | I I I I I

P T e e I it Il ST
I I | I | | I
| ! I | ! | |

5 g--— By St B Bt S BT e
| I | I I | I
| | I I ! I I

6 H-————fem——mfemmmm oo e

L

Ehots iz copntained in the results, so a check is made, showing that 4 iz not

a prime number.

Caution:

The exesution given so far will not =rop. FPractically, K and

L should be restricted as K =¢ N and L =¢( N . This restriction can be
written in the specification of 'sieve', and with a minor change

sf the cperational semanties it can be manipulated in the environment.

This alss indicates that the operaticnal semanties given in 4.2.2.2 are not

practical unless types of universally guantified variables are finita.

5.3 'two_digit_nat’

The definition of tweo digit nartural number is as follows:

two_digit_nat(N) == Exist W1, K2, digit(Nl) /A, digir(Wz} A N = 1g=H1 + B2

The paramcterized proef of two_digqit_nas(W)} is shown below:

“““ ("} e
51 £2
mmmmmm———( w{mraf] ——s===m==={a{=ref)
51 = 51 52 = 532
—————————— (W/=I) === {N=1] ——=sssssssme==(T)
digit(sly digie(52) W o= 10#51 + 52
------------------ e it A Sl B Bl
digie(sl) /M digit($2) M W = L0w5l + 32 §2
------------------------------------- (Exit—-1I) —(™)
Exist #2. ¢ digit{§l) / digit(nd) N N = 104§l + N2 71
--------------------- ——— - —r e —emmm——= [ By i 5E=1)

two_digit_nat(H)

The extended realizer code extracted from the proof tree is

£1, $2, case($l, 0:;I_1, ... , 9;I_ %), case{$2, 0;I_1, ... , 9;I_39)



where I_1, .. , I_9 are indices,
Environment: :
{ $1 = £1, £2 = $2, N = 10=31 + $2, ...}

Note that in this case Lhere is no colored sub-environment .,

gperaticnal Semantics:
* The realizer code and the environment given above have the
operational semantiecs both as 'twe digit natural number generator’

and 'two digit natural number type checker'.

¢¢ Qperational semantics a&as generator program »?

1} “§ri&bl€5 both in the code and the environment are not
instantiated. In this case, the proof parameters are allowed
to be instnntiatnﬂ: In this wase, as there are
case(%l, 0;I_1, ... , 9;I_9) and case($2, 0,I_1, ... , 9,;I_%)
in the code, $1 and $2 can be instantiated to natural numbers
o, 1, 2, .., 9,

2} Choose any natural numbere, nl and n2, from the finite =met

[ o, 1, 2, ..., 9), and instantiate 21 amd 52 with them.
Then
Code:
nl, n2,
case(nl, 0,1 3, .. , 9:1_9},
casa{nz, 0:I_1, .. , %:T_ 0}

Environment:

{nl =nl, n2 =n2, ¥=10"nl + n2, ,,, }

case(...) codes can be reduced to one of indices I 1., .. ,1I_%.
For the envirenment the value of N can be obtained by evaluating
10#*nl + n2

3} Choose ancther pair of patural number between ¢ and 9, then

do the operation qiven in 2).

In this case, the output value must be that of N, which does not occour

in the code part. Some kind of output mechanism is also naeded.
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¢{ Qperational semantics BE tYpe checker program »?

1) First, variable W is instaptiated toc a individual patural

pumber ‘'t' . Then,
Codea:
€1, 52, case(si, 0;I_1, .. ,9:1_9), case($2, 0;L_1, .. , 5;I_3}
Environment:
[ 51 = $1, 52 = 2, t = 107§l +$2, ... ]

2y Choose any natural numbers nl and n2 from the finite set

{ 6, 1, 2, ..., 8}, and instantiate 51 and 52 with them.
Then
Code:
nl, nZ,
case(nl, 0;1T 1, .. , 9:I_%) .
case(nd, 0:1 1, .. , 2:I1_9)
Environment:
{ nl = nl, n2 = n?, © = 1lB#*nl % o2, ... ]
case(,.,} codes can be evaluated to ore of indices I 1. .. ,I_9,

that is, reduced to canonical texrms.
For the environment, first avaluate 10+*nl + n2 , and check the
eguality £ = wvalue of 10%nl + n2.
1f this check is successful, the whole execution is successful.
Otharwisze g0 to 1)

3] Choose ancther pair of natural numbers betweesn 0 and 9, then
do the operation given in 2}.

If there is no other choice of pairs, whole execution fails.

5.4 Prime Mumber Generator

A twe digit prime number generator program can be extracted from the proof

that iz a combination of the proots in 5.1 ané 5.3.

The specification of two digit prime number is the same as that given in 3.1,
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However, the proof is different in the meaning that it is parameterized by

ceveral proof parameters introduced in 4. In the proof tree shown below,

'M" iz a free variable as in "parameterization by free wvariable', (1) and (2}
are the procf trees given in 5.3 and 5.1 respectively;
i1 (23
two_digit_nat(M) sieve (M)
————#) e —————— _[f\_I]
™ two_digit_nat(M)MsieveiM)
e T ———— T = % T
Exist W. two_digit_prime{H)
The extracted realizer code i3z
M, —== {a)
%1, 53, case(S1, 0;I_1, .. ,9:I_%), case($2, 0;I_1, .. ,9:1_9), ———— (b)

ALl K:mat, ALL L:mat.
Apply( lambda [K,L]. Lif %5 = M then 'L’
eizse if %% = 1 then 'R’
eise Sbottom$ e [ Ry ] ) === {2}
{b) and (¢} are the same as those extracted im 5.3 apd 5.1.

%1, $2, and 5% are proof parsmeters. (a) is the code extracted by

combining (1) and (2} by {/~I) and {(Exist-I) rules.

The epvironment of the extracted code i=s
{ 81 = 51, 22 = 52, M = 10%51 + 52, ...

1 €M, [ K=o 55, E= MJL, ML = 55, M = E*L, .. }

This iz a concatenation of the environments given in 5.1 and 5.3,

The operaticnal semantics of the extracted code is:

{a} and {c} cannot be evaluated unless M is instantiated. Conseguently

(b} is evaluated first, and 51; 52, and M are instantiated.

Rfter that the enviromment, {a) and (b} are evaluated, The whole code

execution iz successful if the evaluation of (o} is successful.

The prime number generated from this code is the value of M.

6. BSubseguent Research




This paper investigated a program which generates a finite number of
prime numbers for bath classical and constructive logic. Teo allew the
axhaustive search routine to be written easily, the proof
parameterization methed was introduced into constructive logic. If
the stream structure [Goto #85] i introduced inta this framewcrk, this
can be extended enough to manipulate the yeneral prime number
generator program. At the same time, several more experimental ease
gtudies are necessary to prove the power of the technigues introduced

in this papezr. These subjecis will Be the base of further research.
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