ICOT Technical Report: TR-241

TR-241

Parallel Programming with Layered Streams

by
A Okumura and U, Matsumaoto

March, 1987

Ce87, 1ICOT

Mita kokusal Bldg, 21F (031 45R-1191 = 5

ICO)] 1-28 Mita 1-Chome Telex 1COT 132064
Ainato=ku Tokvo HIH Japan

Institute for New Generation Computer Technology

Talg

PARALLEL PROGRAMMING WITH LAYERED STREAMS

Akira Okumura and Yuji Matsumoto

1COT Research Center
Institute for New Generation Computer Technelogy
1-4.28, Mita, Minato-ku, Tokye 108 Japan

Abstraet

We propose a paralle]l programming paradipm for
solving search problems in committed-choice
languages, and introduce a layered stream, which iz a
recursively defined data structure with a similar
property to a stream. An element in & layered stream
may include other lavered streamis). The mzin
advantage of the data structure is that each laver is
independently accessible from different processes. A
stream is regarded as & set of data in the sense that a
date structure that includes streams is interpreted as a
set of data that can be obtained when all the elements
in the streams are expanded. This representation
enables different processes Lo access any part in the
data structure, o the potential of parallelism becomes
inherently high. Another advantage is that the process
for each layer is programmed independently. If the
problem has a recursive definition, asz most of the
search problems have, & clear and declarative way of
writing parallel programs is possible.

1. Introduclion

It iz said that it is difficult to write search
programs in cemmitied-choice languages, which do not
support the backtracking mechanism, Toohtain all the
solutions, users must write a program which gathers all
the soluticns as & set. This paper proposes a
straightforward way of writing such & program. In this
framework, we are not connected with how & solution is
constructed but with what eonditions each elementin g
solution must satisfy, Thisenables a declarative way of
writing parallel programs.

Ancther way of solving search problems in
pacallel is to compile restricted Prolog programs into a
committed-choice language. Approaches ol Lhis sort
have already been introduced by some researchers.

Uedz's approach is the continuatien-based method
[1]. After the transzlation of 8 Frolog program into a
commitied-choice language, conjunctive goals are
processed from left to right although alternatives for a

goal in the original program are searched for in
pargllel. This is because a goal that follows another is
passed as o continuation, and when the execution of the
preceding goal is completed, the cantinuation invekes
the execution of the next goal. In this approsch,
conjunctive goals are executed sequentially, making it
diffienlt to extract enough parallelism.

Tamaki's approach is the stream-based method
[2]. Conjunctive goals which share common variables
are expressed ag processes connected by & stream to
pass solutions of one goal to moother. Since all
conjunctive goals ere expanded, numerous stream
interface processes such 65 composers, decomposers,
and multipliers are penerated. Processes eorresponding
to the original goals communicate through these
interface processez. Since 2 goal sends its complete
solutions to its sutpus stream, the goal that receives the
stream s suspended until its preceding goal prodoces at
feast one solution. These facts reduce the degree of
parallelism.

The epproach in this paper is similar to the
stream-based method, but is more efficient. We vze a
gpecial stream, ealled a lavered stream, instead of a
regular strears, Elements in ¢ lavered stream are not
necessarily complete solutions of & goal, but can be
partially determined solutions. They are constructed
from their top elements, and can be referred to by other
processes while their remaining parts are still under
construction, Therefore, the parallelism as a2 whaole
inereases.

This paper shows that most search problems are
easily programmed in a uniform style that utilizes
layered streams. This propramming style is calied
layered strearn propramming. Several examples are
given, and the performance of the programs compared
with other styles of programs is illustrated. Although
programs are written in GHC [3] throaghout this
paper, the mothed is applicable to any cther.committed-
choice lanpuages, such as PARLOG [4) and Concurrent
Pralog [5].

20l9

2. Basic Concept of Lavered Streams

A Prolog program often produces its solution as s
list, Cenerally, the producer of a solution first
delermines the head of the list, then invokes another
producer which generates the tail. This process runs
recursively, A solution is formed from a head and o
tail. However, since there can be more than one
possible tail for one head, the Prolog program selects
the lails one by one using 8 backtracking mechanism.

T'his paper proposes that such a list can be
expressed by & pair consisting of & head and a set ol all
possible tails, such as

H*Ts

where H is the head, and Ts is a set of tails paired with
H. The normal list expression is used to represent the
et of tails. Such a list must be regarded as & set, and is
treated ms & stream in the paraliel programs. The
operator * represents the constructor to make up the
solution of the problem. Lists may be used to express
hoth. However, these two kinds of data structure were
chosen to avoid confusion. Ts can be a null list {i.e. an
empty set), When there is more than one possible hesd,
the whole set of possible candidates of the solution is
represented as the following lisk:

[H1*Ts1,H2*Ts2,...]

where H-1 is the i-th possible head and Ts-1 is & list of
tails to be paired with H-1. This type of structure is
called a layered stream. Ts-1 also has the same
structure. More generally, both sides of ® may be
layered streams. For example, the set of permutstions
of list[1,2,3] can be expressed as

[1*[2*[3*begin] 3*[2*begin]].
z*[1*[3*begin],3*[1*begin]],
3*[1*[2*beg in}.2*[1*begin]]]

where "begin’ marks the deepest end of each selution.
As stated sbove, an element in a Iayered stream also
ineludes other layered streams. This is the reason it is
ralled layered, A layered stream represents a tree-like
structure and 'begin’, denoting the deepest layer,
specifies a leaf of the tree.

There are several advantages of layered streams
in parzlle! programs. A set of structures that have the
same heads shares the head. This saves memory and
reduces execution time. An element in 2 lavered
sirearn represents a set of data that share the same
property (i.e., have the same head). This means thata
set of data can be produced or tested in a singie process.
Most impertantly, the tail of an element in a layered
stream is again a layered stream. As will be seen in the
sample programs shown in the next section, & process
can generate and send an element through a layered

stream while another process is still constructing the
tail of the element. This is the key feature in increasing
parallelism.

In the continuation-based methed, invoking a
consumer is signaled by the continuation when the
producer completes a structure, giving a lower degree of
paralielism. In the stream-based method, the producer
gnd consumer are invoked simultaneously, but the
stream transfers only the completed golution from the
producer. The consumer is suspended until it receives
at least one solution, causing & loss of parallelism.

3. Layered Stream Programming

This section shows how Lo obtain practicel paraliel
programs using layered streams. First, a programming
stvie based on this method is proposed, then exatmples
are given. A brief discussion on selution forms follows.

3.1 Style of Lavered stream Programming for
Search lems

Generally, & search problem is to build some
structure of elements satisfying certain constraints.
We pay attention to esch element in the solution.
Roughly epeaking, & process is allocated to esch
position which might take part in & solution. The
process generates the possible elements as the heads of
lists, and also produces filtering processes which
eliminate all the contradicting elements from the tail
represented as & layered stream.

Programs are divided into three parts. The first
part describes the configuration of the problem
representing how the processes are connected, It
designates the structure of solutions. The second part
defines the processes used in the first part. A process
generates all the possible elements for a certain
position in & solution and makes each of them the head
of the operator *. Their tails are created by other
processes and are represented as layered streams. A
filter is created for each layered stream and eliminates
every element in it that cannot be the tail of the head
element. Head elements can be passed to other
processes even when their tails are not yet completed.
The third part defines the filters. A filter describes the
constraints that the head element of the operator *
gives to the elements in its tail. Tails that are
incompatible with the head are discarded from the
layered stream.

3.2 N Queens Problem

The N queens probler is one of the most popular
search problems. Nermally it is galved by placing
gueens one by one so that the latest placed queen does
not attack any gueens that are already on the board.
Sequentiality is unaveidable in this part when it is
implemented by the continuation-based or stream-’
based method, In the layered stream method, any

gueen may be placed even il the preceding queens have
not passed any information.

Figure 1 shows the GHO program for solving the 4
gueens problem using layered streams.

fourQueens{(4) :- trua |
g{bagin.Ql},
q[':lllqzl‘
g{02.03}),
q(Q3.04}.

gq(In,Out) = true |
filter{In,1,1.0uil},
filter{In.2,1,0ut2),
filter{In,3,1.0ut3),
filter(ln,4,1,0utd),
Out = [1*0utl,2*0uwt? 3*0utd, a*0utd].

filter(begin,_,_.Dut) :- true |
Out = tegin.
filter([7._ . .Out) :- true | Out = [].
filter{{I*_iIns],L.D.0ut) := true |
filter{Ins,1.0,0ut).
filter([J*_|ine}.L.0.0ut} - D =:= §-J |
filter{lns, 1,0, 0ut]).
filter{[J* |Ins}.1,D,0ut) :- D =:= J-1 |
filter(ing,1,0,0ut).
filter([J*In1|Ins].I.D.Out) =
Jhe I, 0 =\= I-J, D =\= J-1 |
01 := 0+1, filter{Inl, I 01.0utl).
filter{Ins 1,0,0uts]),
Qut = [J*0utl|Outs].

A queen is allocated to each column on the 434
chess board, Queens are deflined as processes and are
connected by streams in & row. This is the
configuration of the preblem, and corresponds to the
first part of the program. This part is defined by
fourQueens/1l. fourQueens/1 preduces four of g/2
processes, each of which corresponds to a queen, The
zecond part of the program generates the possible
positions of each gueen and produces filters. g/2
corresponds to this part and generates the output
bindings for four positions. (Note: this program is
easily extended to N gqueens hy redefining
tourjueens/1 and g/2 appropriately.) The tail of the
pperater * produced by o/2 is the output of Tilters/d
and might not have been determined when the data was
passed. filter/4 discards all the elements in the input
stream that are ineompatible with the head element, [
The definition of fi1ter/4 is now easy to understand.
The third clause of the definition discards the partizl
solulion that puts 2 queen on the same row as the
process that produced the filter, The fourth and fifth
clanees discard the solutions that put gueens in

dofg

Fipure I Four queens problem using layered streams

diagonal positions. The first clouse is for the cose
where all the preceding gqueens nre checked, that is, the
filter comes at the deepest layver, The second clause i=
for the ease where all Lhe elements in the layered
stream are checked., The last clause delines the
suceessful case, In this case, the remaining elements in
the layered stream must continue to be fltered, and
ancther [ilter is produced to check the deeper lnyers,

The clause of §/2 and the last clavee of Tilter/4
produce output bindings containing variables such as
(utl, which is determined by other processes. Thus,
the output is prepared before the internal stream is
completed, Even when Outl isstill uninstantiated, the
receiver of the stream becomes active and starts
examining the layered stream,

3.3 Goud Path Problem

The good path problem is te find acyclic paths
between two specified nodes in & given graph. Consider
the follewing greph. Ares are sssumed to be

bidirectional.
A B E H— 1
D G
c F

The first part of the program generates a process
for each node in the graph. Layered streams are set up
along the arcs. Because arcs are bidirectional, streams
are also provided in both directions. The second part
produces the primary output bindings for each node.
Sinee the only possible element for a node is its nome,
the second part anly puts the node name in the output
strenm. The third part filters out anything from the
input stream that includes the specified node name to
eliminate loops. Figure 2 shows the program.

goodPath/3 forms the first part and defines the
configuration of the graph. The second part deflines
node/E. The first and second arguments of node/8
specify the starting and goal noedes of the path. The
third argument is the name of the node. The fourth
argument shows the set of paths that come Lo the pode.
This set forms s layered stream. The fifth argument is
eventually instantiated to the set of good paths
terminating at the node. The last argument is for
chtaining the solutions, and is instantiated by the goal
noge.

The first clause of node /6 is for the starting node.
It specifies that there is no node preeeding the starting
node by putting the special symbol beoin. The second
and third clauses put the node name on top of the
layered strepm which is the output of the filter for that

goodPath(Start, Goal, Path) :- true |
node{5tart, Goal, a.[B.C].A, Path),
node{Start, Goal,b,[A.E,D].B,Path},
node(Start,Goal . c, [A.F],C,Path],
node{ Start, Goal.o,[B.G].0,Path},
node{Start.Goal, e, [B,G,H].E Path},
node(Start Goal f [C,0].F,Path),
nodefStart.Goal.g.[D.E].G.Fath]),
node(Start,Geal, h,[E.1.J].H,Path},
node{Start Goal,i,[H],.1 Path},
node(Start,Goal, j,[F.H].J,Path}.

node(s, .3, _,0ut,_)
Cut = S*begin.
pode{ ,G.6.In,0ut,Path) :- true |
Qut = nil, Path = G*In.
node(5,6,M.In,0ut,_} 1= S A= N, GA\=HN |
Out = #*Ini, filter{In N,Ini}).

filter{begin,_,0ut} :- true |
Out = begin.
filter{[],_.0ut) := true | ut = [].
filter{[n§1]In].Node,Out} :- true |
filter{In, Kode,Out).
filter([Node*_|In] Node ,Out) := true
filter{In, Node, Out).
fitter([N*Ns|In].Node, Out) :- Node ‘= N
Qut = [N*Nsl|Outl],
filter{Ms Node, Nsl),
filter{In, Node,Outl).

1= true |

Figure £ Good path problem using layered streams

node name. The only difference between these clanses
is that the second clause is for the goal node, It
determines the value of the variable, Path, which is the
snswer of the problem. The definition of the filter 15
quite simple. 1t receives & layered stream and a node
name, and flters out anvihing from the input iayered
stream that ineludes the node name.

1.4 Colored Cubes problemn

Ceonsider [our cubes whose six sides are colored
red, green, white or blue, as fallows,

CTEl 2 el s [e [E]
[wie|c| lwls|s] [wla|s|{w]c]s
w G | G R
" X Y
FE = Red G = Green
W= White BE= Blue

4afd

The problem is to find possible settings of the four
cubes into & column o that each of the four sides of the
column has all of the four colors. A cube ean rotate in
three dimensions, and has 24 possible placements, A
program for this problem must genernte every possible
placement, and is rather long compared with the
previous examples. Figure 3 gshows the program of the
layered stream method.

The program is sgain divided into three parts.
The first part provides the sequence of four cubes, and
invokes four processes of the second part. These
processes re connected by layered streams, and give s
configuration that each solution of this problem should
take, Each cube is expressed by & triple of pairs of
opposite gides.

The second part generates every possible
placement of a cube. The four sides of the column can
be considered as two pair of opposite sides, such as left
and right, and front and back. set/3 generates three
possibilities, in which two pairs of & cube serve as the
gides of the column. rotatelsb decides which pairison
the left and the right, and which is at the front and the
back, rotzte?/bshows which side of the first pairison
the left and which is on the right, and rotate3/6 shows
which side of the second pair is at the front and which is
at the back.

The third part is the filter, which is quite similar
to the previous examples. This problem requires all
four eolors on each side of the column, so each coler
appears exactly once on a side, f11ter/E ensures that
no eube shares the same color as other cubes,

3.5 Soluli

The execution result of the program of Figure 1 (4
queens) is as follows,

ring

| ?- ghe fourQueens{Q}.
52 msec.

Q= 1*[3+[].a*[2*[]]].
2e[4*[1*[3*begin]]).
as[1*[2*[2*begin]]].

4*[1*[3*[]1].2*[]11]

. yes

L

Variable § is instantiated o a fayered stream,
which containg o set of solutions of the 4 gueens
problem. Every sequence leading from the surface of §
to the symbol begin represent 2 solulion. Some null
lists ([]) are found in Q. They sre generated when all
the elements in & layered stream are filtered out, and
do not contribute to a solution. Thus, § is eguivalent to
[[2.4.1.3].[3.1,4.2])inaregularsiream.

% opart 1%

cubes(54) - true |
cube(1.01), set{Q1 begin 51},
cube{Z,07), set{Q2,.51,52).
cube(3.03), set(Q3,52,53),
cube{4.Q4), sel(Q4,53,54).

cube(l.0ut) := true |

Dut = qip{w.g).plr.w).plb.r}}.
cube{2,0ut) - true |

Out = gipiw.b).plg.gh.plo.r}).
cube{3.0ut} :- true |

Out = g{p(w.b}.p(r.g).p{g.%)].
cube(d,0ut) - true |

Qut = g(p{w.b).p(r.rl.plg.r)).

% opart 2 %

set{g{Pi.PE,P3),In Out) = true |
rotatel(PLl,PZ.0n.0ut, Qutl),
rotatel{P1,P3, In, Outl,Outl).
rotatel(P2,P3.In,0ut2,[]).

rotetel{P1. P2, In .5, T) - true |
rotates(P1,F2,In,2,535),
rotate?{PZ,P1,In,55,T).

rotate?(p{Ci1,C2).F2,In.5,T) :- true |
retated(C1,C2 P2, 1In,5,55),
rotate3(C2,C1,P2,In 55.7).

rotated(C1,C2 p(C3,C4),In,0uL,T) :-
true |
filter(C1,C2,C3,84,In,dutl),
filter{C1,C02.C4,C3,In,0ut2),
Uut=[q(C1.CZ,.C3,C4)*0utl,
q(C1.C2,C04,C3)*0ut2|T].

% opart 3%

fitter(_, ,_._.[71.0} :- true | 0« [].
filter{_,_,_._,begin @) :- true |
0 = begin.
F4lter(C1,02,02,C4 [q(X, ._._)*_[7]}.0):
C1 =%] f4lter(C1,C2,C3,C4,1,0).
filter(C1,C2,C3.C4,[q{_.%, _._)"_|17.0}:
€2 =% | filter{C1.,C2,C2.04.1,0).
fitter{C1,02,03,C4,[a(_._.X,_}*_|1].0):
C3=X | filter{C1,C2.C3.C4,1,0).
filter(C1,02.03,C4, [gf _._._.%0*_|1].0) :
€4 =x | filter(C1.C2,C3,C4.1,0).
filter{C1.C2,C3,04,[q(P.Q.R.5)*J]1].0} :-
Ci1v=P, C24%=0, C3\-H, C4%=5
filter(C1,02,03.C4,0,01),
filter(C1,C2,C3.C4,1.0s).
0=[Q*01|0s].
Figure 3 Colored cubes problem using layered
streams

Bald

Of course, there can be a situaiion where solutions
in the form of & regular stream are required. Although
the transformation program from layered stream
expression to normal stresm expression is easy to
construct, the program musl retrieve solutions from a
layered stresm, and is a search program.

lastQ(In, Qut) :- true |
lastfilter([1}.In,1,1.0ut,Qutl),
tastFilter([2].1n,2,1,0utl, OutZ),
lastFilter([3].In, 3.1, 0vut2, Dutd},
lastFitter([4].In. 4.1, 00t3.[])

jastFilter{Stack, begin,_,_.5.T} :- true |
5 = [Stack|T].
lastFilter{Stack,[]._._.5. 1) :- true |
5 =T,
lastFiltes{Stack,[I*_|Ins].1.0.5. T} -
true |
lastFilter(Stack,lns,1,0,3,T).
lastFilter{5tack,[J*_|Ins].1.D,5,7) -
Oo=:= 1-0 |
lastFilter{Stack,Ins, 1,0.5.T7).
lastFitter{Stack,[J*_|Ins].I,0,5.7) :-
b os:= J- |
lastFilter(Stack,.Ins,1,0,5,T).
lastFilter(Stack,[d*InjIns],1.0,5,7) ==
Jwe I, D =he 120, O =\e J-T |
D1 := D41,
TastFilter([J|Steck].in, 1,01, 5 55},
lastFilter|5tack,Ins,I.0,55,7}.

Figure 4 Specialized filter

Such & search program is not required if a special
definition of the filter is provided, the input of which is
a layered stream and the output of which is & reguler
stream. Figure 4 shows the specialized filter and the
defimition of the furlh gueen that utilizes it 1f
Tast(/2 is vgedin plave of the last g/ of TourQueenss1
in Figure 1, & set of solutions in the form of & regular
stream can be sbtained,

The new predicate, 1astFilter/8, has the last
two arguments for outpul working as difference lists. It
iz the same as Titters/q except that the first argument
keeps the elements of a solution. Therefore, little extra
computation i required.

4. Experiments

This section shows the statistical simuolakion
regults of N gueens, good path, and colored cobes
simuletion. Table 1 shows the statistiez of the
execution of layered stream programs and those of the
continuation-hased and stream-based programs, A
breadth first execution model of programs, where all
reducible goals are reduced simultaneously, is

Golg

pssumed. Simultaneous reduction of goals is counted as
pne cycle, InTable 1, reductions and suspensions stand
for the total number of goals reduced and suspended
during the computation. A suspension of & goal is
counted az one even if it continues o be suspended
during two or more cycles. The number of cycles more
or less indicates the time complexity in the ideal
parallel environment where reducible goals are reduced
within & certain amount of time.

As shown in the table, continuation-based
programs make no process suspension, because they are
executed completely deterministically., Since
conjunctive goals are executed sequentially, and all
processes are invoked with the necessary data, no
process need wait for binding by other processes.
However, this method does not extract AND
parallelism.

Stream-based programs are, in most cases, less
efficient than esptinustion-based programs. The total
number of suspensions is the largest. Conjunctive goals
ere expended to parallel processes. Streams are set up
according to the input-output causal relation.
However, the producer of a stream never makes output
bindinpg until the first solution is found, and the
consumer of the stream suspends during that period of
time.

Layered stream programs are the most efficient.
The total nember of reductions for N queens is less than
half of that of continvation-based programs and one
third of that of streamn-based programs, Although the
good path does not show apparent differences in the

Tahle 1 Exeecution analysis of each method

Reductions Suspensions Cycles
=<fgueens> =
Continuation 2932 0 20
Stream 3161 1566 68
Layered Stream 1340 124 25
= <fgueens>=
Continuation 48543 0 133
Stream 53824 25033 112
Layered Stream 19418 2470 3R
= < Good path> =
Continuation 205] 48
Stream alz oz 62
Layered Stream 181 26 13
=< Colured cubes> =
Continuation 47383 Q a3
Stream 62601 158140 121
Lavered Stream BOAS 2033 44

number of reduetions, the colored cubes gives
differences of six to eight times. Thisis because layered
streams rellect Lhe form of solutions and no processes
are required to eonstruet solutions.

Layered stream programs alse have the least
number of cyeles except that of colored cubes. A gtream
translers the output binding even when some of the
stream elements are under construction. In the second
part of layered stream programs, processes generate
the output binding at the same time that they create
the filters, Therefore, most of the filters are active,
since output bindings and filters are created
simultaneonsly,

As to colored cubes, the ayered stream method
gives a larger number of cycles than the continuation-
based. This is because each cube in this problem has a
large number of possible placements. The possibility is
reflected by the size of each leyer of the leyered
streams. Each layer is currently implemented by o list
structure and its elements are handled in sequence
This makes the number of cycles higher. However, in
substance, the contents of a layer can be examined
simultansously. Therefore, more efficient implemen-
tation will be possible,

5, Detailed Comparison with Other
Approaches

The preceding gection compared our method with
the continustion-hased method end the stream-based
method by simulating examples. This section compares
these methods in more detail,

b.]l Comparison with Continuation-based Method

The eontinoation-based method is intended to
implement & deterministic search, A Proleg program
transformed according to this methoed is almost as
efficient as the criginal program, since the criginal
Prolog program’s backtracking search is implemented
as a continuation and the amount of computstion is
almost the same. A transformed program runs in
Frolog slmost es fast as its source program which
makes a backtracking search without eollecting
solutions,

It has some disadvantages in paralle! execution
becpuse of its inherent sequentiality. Since conjunctive
relations are executed sequentially, the total number of
eycles iz relatively large. Consider the following Prolog
clause.

p{In.[X]Y]) == g{ln, Inl X}, p{Int. ¥}, (1)

Suppose that the first arguments of both of p/2 and /3
are input, and the other arguments are putpul. Clanses
of this type often appear in practieal programs. To
translate this cleuwse into 8 continuation-bused
progeam, the oulputhinding of the second argument of

Tolg

the head goal muosl be done after the termination of the
body. Therelore, the clause must be understood as:

p(In,Out) :- g{In.Inl X} p(Inl.¥},
Out = [X]Y]. 12)

Sueh output bindings are stacked as an argument of
continuation in the transformed program, end ore not
pxecuted until the execution of the original hody goale
finishes. ‘This increases the sequentinlity and the total
number of cycles.

I the layered stream method, the processes
corresponding to the body goals of A clause are invoked
simultanesusly, The stream that connects these
processes transfers partial solutions immediately after
the processes are created, increasing the potential of
parallel execution. The difference of the two methods
sppears 82 the difference of the numbers of cycles in
Table 1. _

5.2 Comparison with Stream-based Method

The layered stream method is basically a stream-
based method. However, the stream contents are
different. While a regular stream transfers complete
solutions of & goal in 2 conjunetive relation. 2 layered
gtrearn transfers structures which are not necessarily
completed at the time of sending. This difference is
refllected in the difference of efficiency.

The stream-based method requires extra
processes that have no equivalents in the original
Prolog program. Decause processes in & conjunctive
relalion corumunicate through streams. the two kinds
of extra computation, decomposition and compesition of
streams, are necessary., Consider clause (1) in Section
5.1. In the program trenslated by this method, the
solutions of the first goal in the body of the clause are
translerred to the second goal through a stream. In the
second goal, the stream is decomposed and its solutions
are computed for each element. Then & new stream is
composed for transferring the total solutions. These
decornposition and composilion processes are reguired
inevery stepin lhe recursion.

There {& another disadvantage in the stream-
based method, Although the processes corresponding to
conjunctive goals are invoked simultanecusly, the
streams among them transfer only completed solutions
of the goale. Goale are suspended until the first
snintion of their input stream is received, For this
reason, not only the number of cycles but also the total
number of suspensions is large.

Tn the layered stream method, there iz no
pverhead of decompesition and composition of streams.
Te implement the output binding corresponding to (2},
a single unification is enough:

Dut = &"Ys

Y5 is & layered stream including the solutions of p/2 in
the body. Since this pnification can he executed n
parallel with other goals, the processes which reguire
output binding can sceess this structure eagerly. Thus,
the degree of parallelism is higher.

fi. Evaluation of Layvered Stream Meihod

This section evaluates the layered stream methed
in four aspects: overhead, parallelism, space elficiency,
and ease of programming.

6.1 Overhead

In the second part of the layered stream programs,
a process generates the head of 2 layered stream
element regardless of the value of the tail. In some
cases, the tall might be an empty stream. This means
that there is no tail that can be paired with the head,
and having sent the head is useless. This is where the
layered stream method may have its disadvantage
eompared with other methods. The overhead caused by
uselese generation of the partial data is probably not
serious. The program for the N queens problem s quite
efficient even when it iz ezecuted sequentialiv,

A simple, but effective countermeasure is what we
call & non-nil cheek. In the second part of the program,
the process is redefined so a5 to output an element into
& stream after conflirming it tall is not empty. it is
empty, no output is produced. Thus, no redundant
computation is made, although sequentiality increases
beceuse the non-nil check delays the output until that
confirmation. We consider that this modification is
useful when the search space is extremely large.

6.2 Parallelism

The layersd stream method provides a large
degres of paralielism. All the processes corresponding
to possible elements in the problem domain become
sctive almost simultanecusly., This is the great
edvantage of the layered stream methed sinee the other
two methods cannot extract such parallelism. This
style of programming is enabled hy the layered dats
structure. This programming style is quite suitable for
committed-choice parallel programming languages
sines the only control mechanism is the suspension.

£.2 Space Efficiency

The lavered stream method alse provides goad
space efficiency. The contents of a layered stream
pomsist of shared structures. For example, the set of all
sequences of length two consisting of U and 1 is
expressed by a regular stream:

[{0.0].[0.1].[1.0].[1.1]]

Twelve eells pre used in thie structure. The same
set iz expressed by o layered stream:

Bolg

[o*[0*begin, 1*begin], 1*[(*begin, 1*begin]]

‘The internal stream can be shared, so it reguires
only eight cells. In general, a set of sequences of length
L consisting of N distinet elements is expressed by a
regular stream with (L+ 1) N L eells, The same set is
expressed by a layered stream with only 2% N x L cells,
Although the shared structures are copied according o
the computation in a layered stream program, it never
requires more memaory space than stream-based
Programs.

6.4 Declaralive Uescription

Az mentioned in the section on programming
style, a layered stremm program refllects the nature of
the source problem. The first part of the program
represents the structure of the solutions, the seeond
parl deseribes the possible elements that construct
solutions, and the third part deflines the constraints
that an element must satisfy with other elements in the
same solution. The concept of lavered stream
programming offers g fairly declarative wav of writing
paralle! programs for search problems.

Onee the progremmer notices what the primary
elements of solutions are, it is straightforward to write
the layered stream program.

7. Future research

This paper introduced & parallel programming
paradigm using layered streams. A layered stream
provides a high degree of paralielism and a declarative
way of writing parallel programs. Most search
problems can be easily and directly programmed in this
paradigm. Current research aims to clarify the class of
problems for which the layered stream method is
effective.

Anocther issue is to define a description lanpuage
for the layered stream programming., Prolog is
probably not the answer,

The examples shown in this paper represent their
solutions in & linear structure. The ferm of the solution
is essentially either a sequence of elements or a set of
elements, It is not vet understood what consideration is
necessary when the form of the solution is more
complex. Taking these problems into consideration will
help to design & good description language.

Acknowledgment

We would like to thank Hoichi Furukswa, the
deputy director of ICOT Research Center for his
comments and discussion. Thanks are also due to our
colleagues inm 1COT, especially Kazunor: Ueda and
Toshihikeo Mivezaki, for their comments and
suggeslions,

References

{1] Ueda, K.: "Making Exhaustive Search Programs
Deterministic”, Proc, Third International Conference
on Logic Programming, {Lecture Notes in Computer
Science, Vol.225), Springer-Verlag, pp.270-282, 1985,

[Z2] Tamaki, H.: "Stream-based Compilation of Ground
I'0 Prolog into Committed-choice Languages”, Proc,
the Fourth International Conference on Logic

Programming, J-L. Lassez {(ed.), The MIT Press, pp.376-
393, 1987,

(3] Ueda, E.: "Guarded Horn Clauses”, in Proc. Logic
Programming '85, E. Wads (ed.), Lecture Notes in
Computer Science, 221, Springer-Verlag, pp.168-179,
18886,

[4] Clark, K. and Gregory, 8., "PARLOG: Parelle]
FProgramming in Logic," Research Heport DOC 84/4,
Dept. of Computing, Imperial College of Science and
Technology, London, 1984,

5] Shapire, E., "A Subset of Concurrent Prolog and its
Interpreter,” ICOT Technical Report TR-003, Institute
for New Generation Computer Technology, Tokyo,
1983.

Appendix 1 Four gueens program by
conunuation-based compilation
g(B} - true |
'swaaperiﬂl'[[1.2.3.“1.[],‘L1‘,H,L]}.

"sweeper$ql ([H{T].R.Cont Rs0,Rsl) :-
true |
‘eweepertsel’ ([H]T].'LZ'(Cont.R}.
‘L2’ Rs0.Rsl]).
‘sweeper3gql' ([].F.Cont Rs0l Rsl) - true i
Rs0 = [R{Rst].

‘sweeperisel ' (HT, Cont.Conts RsD Rs2j .-
true |
‘sel/3#1’ (HT.Cont,Conts RsO.Rsl),
*sel/3427 (1T, Cont,Conts Rsl RsZ).

‘el /a#1 ([A|L].'L2"(Cont R) Conts,
Fsl Rst) :- true |
‘swaupnrishenkl'LR,A,l.
'LEb'{Eunt.R.A.L.Eunts}.ﬁsb.ﬂsl}.
‘se1/3#1' ([].Cont,Conts Rs0,Rs1) :- true |
FsO=Rsl.

*sel1/3¥2' ([H|T].Cont Conts Rs0.Asl) := -
true |
‘gweeperisel’ (T,Cont, 'L8" (Conts M),
Rs0,Bsi).
'551!3#2':[].Cunt.Cunts,Hsﬂ.Rsl} i irue
fie0=Rsl.

‘sweeperScheckl’ ([H|T].U,N Cont.Rsl,
Rs1) :- He\=D+N, H=\=U=N, N1:=R+1 |
'sveeper$check1‘tT,U.Hl,Cnnt.Hsu.Rsl}.
‘gweeperdcheckl ([H|T].UN Cont.Rs,
Rel) :- H =:= U+N |
Rs0=Rsl.
"sweeperdcheckl” ([H|T] . U.N, Cont . RsD,
Rs1) = H =:= U-N |
RsU=Rsl.
‘gweepesrScheckl ([, U.N,
‘L?b' (Cent,R, A, L, Conts) RsO, Rel} :-
true |
n(Conts,.’'L3"{Cont.R,A),L RsO,Rsl).

h('L5'[Cun15.ﬂ].tunt,1,HSU.HSIJ r= true |
b{Conts,Cont [A|T],RsO Rs1].

b('l2','13'(Cont,R,A),L RSO Rs1) :- true |
‘sweeperigl (L, [A|R].Cont RsC Rel},

Gofd

Appendix 2 Four queens program by
stream-based compilation

queens{Q) - true |
Qo' ([1.2.3.4].[).0.[1)-
'Qq’ ([1.Y.20.71) :- true | 20 = [YfZi].
Qg (XY, 20.21) - X h= [T)
‘Osel” (X, UVs,[]). 'Ig21' (Y, Vs, 20,71).

'Qeel"([1.20,21) == true | 10 = I1.
‘Qsel ' ([X]¥],20,22) :- true |
70 = [{X.¥}]21].
sl (Y, s [0,
Isel?1° (%, UVs Z1,12).

‘1g21°(¥,[(U,V}|Uvs],20,22) == true |
"Oocheck (Y., U,1,YY),
‘Ig2zt(V.[UyYg. Yy, 20,210,
"lgEltiY.Us. L1.22).

"Igz1t{_.[],20,%1) - true | 20 = I1.

*I1g22°(V.List,ok 70,211} - true
'Qq'(v.List,20,21).
*1g22'{_,_.np. 20,21} := true | 0 = 21.

‘Isel2lT{X.[(U.V)]Uvs],20,22) - true |
20 = [(U.[X]V])]21],
‘Isel?l'(X.UVs,I1,22).

‘Isel21'({_.[].70,21) :- true | I0 = I1.

‘Qeheck” ([Q|R].P.N, Res) i -
0 =\= P#N, () =\= P-N |
M o= N+1,
*Orheck” (R.F,M, Res).
"Qeheck ([Q)R).P.H.Res} - Q = P+N |
Fes = ng.
‘gcheck” ([Q|R].P.N, Res) :- @ == F-N |
Res = ng.
‘Qeheck ' ([1._,_.Reg} :- irue | Res = ok.

