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Abstlract

A mechanism for dealing with uncertainties plays a central role in knowledge
systems like expert systems. Especially, incorporating uncertainties into logic
programs is a current study. On the other hand, there are few semantical
considerations for it. In this paper, we will first attempt to give a semantics for
logic programs with uncertainties. This is a further work of Shapiro’s "Logic
Programs with Uncertainties” which is the only paper so far, dealing with a
semantics of logic programs with uncertainties. Our basic definitions of logic
programs with uncertainties follow it. Secondly, we will define a proof procedure
for logic programs with uncertainties which corresponds to an interpreter for it and
present a sufficient condition for certainty functions of clauses to achieve the
completeness of the proof procedure. Further, we study the finite-failure set with
certainty threshold which is actually the implementation used to infer the
negation as failure in logic programs with uncertainties. Then we will give an

interesting characterization of it.



1. Introduction

A mechanism for dealing with uncertainties plays a central role in knowledge
systems like expert systems. Various methods or theories of representing
uncertainties have been discussed in literatures. Those approaches include methods
of extending classical binary logic to many valued logics such as probability logic,
fuzzy logic or infinite valued logic. Especially, a method of incorporaling
uncertainties into logic programs (e.g. Fuzzy-Prolog [1], [5], [6], [9] } 15 a current

study. On the other hand, there are few semantical considerations for it.

In this paper, we will first attempt to give a semantics for logic programs with
uncertainties. We choose Shapiro's approach to logic programs with uncertainties
[9], because Shapiro’s approach gives a general method for computing uncertainties.
Because of this generality, all results concluded within this framework are proved
for a whole class of quantitative schemes. This is a further work of Shapiro’s
approach in the sense that we will show several semantical results in a logic program
with uncertainties P, while Shapiro’s only semantical result is the model
intersection property for P. QOur basic definitions of logic programs with
uncertainties follow it, where the certainty function is defined to compute the
certainty of the conclusion of a clause from the multiset of certainties of solutions to
goals in the condition of the clause. Secondly, we will define a prool procedure for
logic programs with uncertainties which corresponds to an interpreter for it and
present a sufficient condition for certainty functions of eclauses to achieve the

completeness of the proof procedure.

Further, we study the finite-failure set with certainty threshold which is actually
tiie implementation used to infer the negation as failure in logic programs with
uncertainties. The negation as failure rule introduced into logic programs with
uncertainties in the natural way is the rule that if all derivations of «A cannot be

successful with any certainty greater than or equal to certainty threshold ¢, then
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infer that — A is successful with certainty 1—c¢. Then we will give an interesting
characterization of it. This is the first attempt to consider the negation as failure in

logic programs with uncertainties from the semantical point of view.

This paper is organized as follows : Basic definitions of a logic program with
uncertainties are given in Section 2. Section 3 defines an interpretation for logic
programs with uncertainties and then gives a model semantics and a fixpoint
semantics for it. In Section 4, a proof procedure for logic programs with uncertainties
is defined and a sufficient condition for certainty functions of clauses to achieve the
completeness of the proof procedure is presented. In Section 5, the negation as
failure in logic programs with uncertainties is discussed from the semantical point of
view. In Section 8, control strategies using certainties in logic programs with

uncertainties are briefly mentioned, and followed by conclusions in Section 7.

2. Logic programs with uncertainties

Definition A definite clause is a clause of the form A«B, where A is an atom and B
is a conjunction of zero or more atoms. A certainty factor ¢ is a real number greater
than 0 and less than or equal to 1. A certainty function { is a function from multisets
of certainty factors to certainty factors. A logic program with uncertainties P is a
[inite set of pairs <A«B, f>, where A<B is a definite clause and f is & certainty
function. (Especially in the case of <A<, f>>, we assume that f(&J) is defined and isa

certainty factor,)

The certainty funetion computes the certainty of the conclusion of a clause from
the multiset of certainties of solutions to goals in the condition of the clause. Two
requirements of a certainty funetion f in [9] are that for every multisets S, fiSul{1h
={(8), and that f be monotonic increasing, which means that 3=5" implies fS)=fS",

where = is the partial order over multisets, defined as follows. Let S and
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X ={x1,....xn} (n20) be two multisets. Then X =8 iff there is a multiset Y ={y¥1,..¥n}
such that SCY and x; =y for 0=i=n. Notice thatin this order the empty set @ (={})
is the largest element. Thus this treatment is independent of particular certainty

functions chosen, as long as they satisfy these two requirements,

3. Semantics for logic programs with uncertainties

Definition An interpretation | of a logic program with uncertainties P is a set of
pairs <A, ¢>, wherc A is a ground atom and ¢ is a certainty factor. Anl contains at
most one pair <A, ¢> for any atom A. A ground atom A is frue in 1 with certainty ¢
iff there is a pair <A, ¢’> in I such thate=c’. An atom A is true in I with certainty ¢
iff for every ground instance A’ of A, A’ is true in T with certainty c. Let A<-By,....By
(n=0) be a ground definite clause, { be a certainty function and S be the multiset of
certainties {c1,...,cn} such that <Bj, ¢;> isin I for 1=i=n (if no such pair exists for
some atom B; then S is considered undefined). Then A<«Bj,....By is true in I with
respect to f iff either 8 is undefined or A is true in I with certainty f{S). A definite
clause A<D is true in T with respect to fiff any ground instance A’«B’ of it is true in
I with respect to I, A logic program with uncertainties P is true in M iff for any pair
< A«B, > in P, A«<B is true in M with respect to f. Such an interpretation M is
called a model for P.

According to fuzzy set theory in the sense of Zadeh, we may regard such
interpretations as fuzzy subsets which are collections of objects together with an
indication of their grade of membership. In the theory of fuzzy sets, set inclusion,
union and intersection operations are defined by using an order over grades of

membership, a minimum function of them and a maximum function of them.

Now a partial order =, intersection n and union v on interpretations are defined

in the natural way as follows.
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Definition LetI and I' be interpretations. Then I=I' iff for any pair <A, c¢> inl

there is a pair <A, ¢'> in1' such thatc=¢'.

Definition LetIandI' be interpretations. Then <A, c¢i> in Inl'iff <A, c¢> inland

<A, ¢'>inT and ci=minfe, ).

Definition LetIandI beinterpretations.
Then <A, cu> in Iul"iff
cu=maxlc,c)if <A,e¢> inland <A,¢'>inl
and cu=cif <A, c¢> inTand thereisnopair <A,¢'> inT for A

and cu=c'if <A, ¢'> inI and there is no pair <A, c> inlfor A,

Lemma 3.1 (model intersection property)
Let P be a logic program with uncertainties. Let M; and Mg be two models for P.
Then MinMs is also a model for P.

(Proof) Since M and Mg are models for P, for any ground instance A<By,....B; and
the certainty function f of a clause in P, fi{c!1,...,c's})=c¢! and f{{c?,...,c’n}) =<? where
<A, ¢l>, <By, cl1>,..., <Bp, ¢'a>¢My and <A, ¢?>, <Bj, ¢’1>,..., <Bj, ¢’y>
¢Mgz, From the definition of intersection, ci =min(c!, ¢?) and elj=min(c!j, ¢) (1=j=n)
for <A, ci>, <Bi, cij>,..., <Bg, cip=>eMinMsz. Since f is monotonic increasing,
fi{ciq,...,cin) smin( fife'y,....e'n}), fie?,....e?n}) ). Thus f({ciy,....,cin))=ci. Hence

MinM2 is a model for P. O

By the above lemma, the least model for P which is the intersection of all models

for P exists and we write nM(P).

We define a transformation Tcp associated with a logic program with

uncertainties P in the same way as standard logic programs.

Definition LetP be a logic program with uncertainties. LetIbe an interpretation.
<A, > € Tep(Diff



¢=sup{f(8)} | A<Bi,...,.Bn is a ground instance and fis the certainty function

of a clause in P such that <Bj, ¢;> € Ifor 1=i=n and S={c1,....tn}}.

Lemma 3.2 Let P be a logic program with uncertainties and I be an interpretation.
Then I is a model for P iff Tep(I) =1.

(Proof) Iis a model for P
iff for any ground instance A<By,... B, and the certainty function fof a
clause in P, A«B1,....Bp is true in I with respect to f.
il for <A, c¢>, <Bj,c1>,..., <Bp,en>cl, fiie1,....enp)=c.
iff Tep(T) =1, O

Lemma 3.3 Let P be a logic program with uncertainties. Tcp is a monotonic
increasing mapping in the sense that Ij=Ig implies that Tep(l1)=Tepllz), for any

interpretations Ij and Is.

(Proof) Suppose that I3 =Is for two interpretations I and Ta. Suppose also that for
any ground instance A<«Bjp,..,By and the certainty function f of a clause in P,
<B;, ¢!;>€l) and <Bj, %> ¢lg for 1=isn. Since1=1s, cli=c? for 1=i=n, and since
fis monotonic increasing, fiic'y,....c'n}) = fl{c%1,...,c’n}). Then by the definition of Tep,

for <A,cl> €Tepll1) and <A, c*>eTepllg), ¢! = ¢t Therefore Tcp{ll}sTcP(Iz}. O
Then we have the following theorem.

Theorem 3.4 Let P be a logic program with uncertainties. The least model nM(P)
for P is equal to the least fixpoint of Tep (1fp(Tep) for short).

(Proof) It is straightforward by lemma 3.1, 3.2, 3.3 and the Knaster-Tarski fixpoint

theorem [2]. =

We consider nM(P) and 1fp(Tcp) as the semantics for a logic program with

uncertainties P.



4. Proof procedure for logic programs with uncertainties

Definition Let P be a logic program with uncertainties and A be an atom. A (P, F)-
derivation of a goal <A is a sequence of quadruples <G;, C;, 8;, F;>,1=0,1,2,... such
that:
@ Gg= <A,
@ G;isof the form «(B1,...,.Bm) where m=0 and Bjis an atom (1=)=m),
@ Cjisa list of m clauses (AN <DV, DYy, f9),., (A<D, DM £,
(@ 8; is a most general unifier of (By,...,By) and (A, ,A"™), and
E Gi4pis «(DW,.DP DL Dy 05
and Fj is [(f({X1,...,. Xa Do ™0 X 1 X DI

A (P, F)-derivation is successful if it is finite and its last goal (some Gy) is empty.
Next we define a computed certainty of a successful (P, F)-derivation.

Definition Let <G;, C;, 0; F;> (i=0,1,2,...) be a (P, F)-derivation. Let F; be
(104X 1, Xy Dreeoofin (X100 X, D] a0d Fig 1 be [T11,0,T1 e T, 100 Tmym, 1. The
application of Fy 4.1 to 'y, denoted by Fi(Fi+1), is
[F1UT1,15000T1, 0, D5 sfnl{Lm, 100 Tmyn D1

Definition Let <G;, C;, 05, Fi= (1=0,1,2,...,n) be a successful (P, F)-derivation,
Then the computed certainty of itis Fo(F1(.(Fr_1)..)).
We say a (P, F)-derivation is successful with certainty c if it is successful and the

computed certainty is greater than or equal to c.

In preparation for following discussions, we define a power of Tcp, as Tep2(@)=@
and Tey™*3(@) =Tep(Tep™(@)), and use U, Tep(@) to denote the infinite union of
Tep'(@) for all natural numbers i. Then we have the following theorem which means

the soundness of a successful (P, F)-derivation.



Theorem 4.1 Let P be a logic program with uncertainties. For a ground atom A, if
M has a successful (P, F)-derivation with certainty ¢, then A is true in nM(P) with

C.

(Proof) Suppose that, for a ground atom A, <A has a successlul (P, F)-derivation of
length n with certainty ¢ : <Gg=<A, Cy, 60, Fo>, <Gy, C1, 81, F1=,..., =<Gn_1,
Cne1, 80—y, Fno1>, <Gp=<,,, > and Fo(F1(..(Fy_1)..))zc. Then we prove by
induction on natural number n that { <A, ¢>}=Tep™(@).

Suppose first that n=1. This means that Cg is a unit clause of the form
< Ay, > and A= A;8p. By the above definition, the computed certainty Fg is {{2),
and by the definition of Tep, {<A, e>}={<A, {(@)>}sTcy'(@). Next suppose that
the result holds for n — 1. Suppose that Cgis a clause of the form <Bp«B1,....Bm, g>
in P such that A=Bgbp, and Fy(..{Fy_1)..} is [e1,eem). Let 8 be any ground
substitution. Then <« B;8;..0,-16 has a successful (P, F}—derivgtion of the same
length of «Bifg’s one such that the computed certainty is ¢ (1=i=m). By the
induction hypothesis, { < B16g...8n =15, c1>,..., <B8g..0n 15, em>t=Tep” (@), By
the definition of Tep, {< A, c>}={<A, glc1,...,tm) >} =Tep"(@).

So A is true in Tcp™(@) with ¢. On the other hand, Tep™(@) = v, Tep'(@) =
1fp(Tep) because Tep is monotonic increasing. Thus A is true in Up(Tep) with ¢

Henee A is true in nM{(P) with c. -

In a standard logic program P, the least model for P, the least fixpoint of Tp, and
the infinite union of the increasing sequence of sets @cTy(@)cTpH@)c... are the
same where T}, is a transformation associated with P. Then as stated in [3], for an
atom A in the least model for P, it follows immediately that there exists a natural
number N such that A¢Tp™(@). Because Ty can be regarded as an operator adding
one-step modus pones conseguences to its argument set, we can show that a finite
proof of A exists according to a given proof procedure and establish a completeness
result for a proof procedure., However we do not generally have the completeness of a

successful (P, F)-derivation in logic programs with uncertainties. For <A, ¢> in



U; ., Tep(@), it does not follow that there is a natural number N such that <A, ¢> in

Te,M(@).

Example Consider the logic program with uncertainties
P = {<p«q(X),f1{{yh=y>,
<gla)e,2({y}}=02>,
<q(s(X))q(X), f3({yh) =(2 Xy —yh)H}.
Of course, f1, 2 and f3 are monotonic increasing. However, <p, 0.2> ¢Tcp*(@),
<p, 06> ETcp'aEE}., <p, 0.916 > ¢Tcp*(@), <p, 0.996> {Tcpﬁl:ﬂll,,,.. That is to say, the
bigger the power of Tcp is, the greater the certainty of p is. Thus <p, 1>

€u, . Tep'(@), however there is no natural number N such that <p, 1> ¢Te,™(@).

With the restriction on a certainty function f such that f{{c,....em})
=dXmin(ey,...,cm) for some certainty factor d (0 <d <1}, the completeness can now be

achieved.

Lemma 4.2 Let P be a logic program with uncertainties. Assume that for every
certainty function f, f{{cq,....em}}=d X min(ecy,...,c,) for some d (0<d<1). Then far
<A,c>1in uj{chp"{@}, there exists some natural number N such that <A, ¢> in
Te,¥(@).

{Proof) Because of the restriction on every certainty function fsuch that f{icy,....em})
=d>xmin(ey,...,cqm) for some d (0<<d<<1), the certainty ¢’ of any atom A’ such that
<A’, ¢'> in Tey"(@) is less than d", Then there exists some natural number N=m
such that <A, c> in TL'PNI[IE?} where m is the smallest natural number for which

de<c, U

Il.emma 4.3 Let P be a logic program with uncertainties. Assume that for every
certainty function f, fi{e},....e})=dXmin(e1,...,c;n) for some d (0<d<1). Then

Uli {NTCPiE'E}:I = 1fp{TCp].



(Proof) By the Knaster-Tarski fixpoint theorem, it is sufficient to show that

Teplu TcP‘[@})a'ul{mTc}."{El}. Suppose that, for a ground atom A, <A, ¢>

i<w
eTeplu, . Tep'(@)). By the definition of Tey, e=sup{fi{ci,....,cn}) | Ae<By,...B, is a
ground instance and f is the certainty function of & clause in P such that <Bj, ¢j>
eu, . Tep'(@) for L=j=n}. By lemma 4.2, e=supi{fi{c1,....cn}) | A«Bi,....B, iz a ground
instance and f is the certainty function of a clause in P such that <Bj, ¢j>€Tep"(@)
for 1=j=n} for some natural number N. Then <A, ¢>¢€Tey™*H@)=vu,, Tep(@).

Hence Teplu, . Tep(@N= 0, Tep (@) and so v, Tep(@)=1p(Tep). 0

Lemma 4.4 (lifting lemma)

Let P be a logic program with uncertainties, A be an atom and 8 be a substitution.
Suppose there exisis a successful (P, F)-derivation of «A8. Then there exists a
successful (P, F)-derivation of <A of the same length and the same computed

certainty.

(Proof) Let <Gy, Ci, 6;, F;> (i=0,1,2,...,n) be the successful (P, F)-derivation of «A.
We may assume 6 does not act on any variables of the first input clause Cp. Now 68
is a unifier of the head of Cg and the atom A, Then the result of deriving «<A and Cg
using A8 is exactly G1. Thus we obtain a successful (P, F)-derivation <<G', C}, €75,
Fi> (i=0,1,2,....n) of «AB such that G%, C’j, 8", and F’; are equal to Gy, Cy, 8, and F;
respectively for i=0,1,2,...n except that G'0=+«A8 and §p=60p. Clearly the
computed certainty Fo(F1(..(F'n_1)...)) is equal to the computed certaintly
FolF1{...(Fn-1)...)). a

Theorem 4.5 Let P he a logic program with uncertainties. Assume that for every
cerlainty function f, fi{c1,....6mp) =dXmin(ey,...,.c;y) for some d (0<<d<1). For a
ground atom A, if A is true in NM(P) with ¢, then <A has a successful (P, F)-

derivation with certainty c.

(Proof) Suppose that, for a ground atom A, A is true in NM(P) with c¢. By theorem

3.4, A is true in 1fp(Tep) with ¢ and, by lemma 4.3, A is true in U, Tep'(@) with c.



Then there is a <A, ¢’> in u;_ Tep(@) such that c=¢’. By lemma 4.2, for some
natural number N, <A, ¢'> in Tep™@)., Then we prove by induction on natural
number N that <A has a successful (P, F)-derivation whose length is at most N and
whose computed certainty is equal to ¢’

Suppose first that N=1. Since P is finite, Tep (@) is finite, and for <A, ¢'> in
Tep'(@), ¢ must be attained for some certainty function of a clause in P, say,
<Aj<,f> where A and Aj are unifiable and f{@)=¢", Then <A has a successful (P,
F)-derivation of length 1 and the computed certainty is ¢’ such that the first input
clause of it is <Aj«, f>. Next suppose that the result holds for N—1. Since P is
finite and by the definition of Tcp, there exists a ground instance of a clause
<Bg<B1,..Bm, g in P such that A=Bgf and {<B,0, ¢1>,.,<Bmf, ’m>}
cTep™-1(@) and ¢’ =gl{c'y,...,c'm}), for some ground substitution 8. By the induction
hypothesis, «-Bi8 has a successful (P, F)-derivation whose length is at most N —1 and
whose computed certainty is equal to ¢’; (1=i=m). Let 8p be the most general unifier
of A and By. Because 8=8¢5 for some substitution & and by the lifting lemma, «B;8,
has a successful (P, F)-derivation whose length and computed certainty are equal to
«Bif'sone (1=i=m), Then «A has a successful (P, F)-derivation whose length is at
most N and whose computed certainty is equal to g{{c'y,...,c’'m}), i.e. ¢, such that the
first input clause of it is <Bg«Bq,...,.By, g>.

Hence +A has a successful (P, F)-derivation with the certainty c. O

5. Negation as failure in logic programs with uncertainties

In standard logic programs, the negation as failure rule is used to deduce negative
information. This rule states that if all derivations of «A are finitely failed, then
infer =A. For a standard logic program P, the finite-failure set of P is the set of all
such ground atom A. Moreover the finite-failure set is the complement of

Ni<uTp(HB) where Ty is a transformation associated with a standard logic program
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P and HB stands for the Herbrand base for P which is the set of all ground atoms
which can be formed out of predicates, functions and constants in P (see [8] for

detail).

Now we define the finite-failure set FF(c¢) of a logic program with uncertainties P,
which is actually the implementation of finite failure and can be used to infer the

negation as failure. Later we will show other characterization of FF(c).

Before giving the definition of FF(c), we first defline a proof procedure with
certainty threshold ¢, augmented with a mechanism of pruning computations for

which it is evident that any prool found along them will not meet this threshold c.

Definition Let P be a logic program with uncertainties, A be an atom and ¢ be a
certainty lactor. A (P, F, C)-derivation with certainty threshold ¢ of a goal <A is a
sequence of quadruples <Gj, Cy, 8;, Fi>,1=0,1,2,... such that:
@D Go=«A,
@ G; is of the form «(Bq,...,Bm) where mz 0 and Bj is an atom (1=j=m),
@ C;isalist of m clauses (A<D, D, 1) (AWeDwy, D™y ),
@ ©; is a most general unifier of (B1,....Bm) and (A" A'™), and
® Gig1is (DU, DYy .. D, DI 0;
and Fj is [f({X1,.... X0 s, F ™ X1, X D]
and Fg(F1(...(Fi{@))...)zc where the value of F;(@) is defined as [f1{(@),...,[{@)].

In the above derivation, the condition of Fg(F1(...(Fi(@))...)=¢ is checked at each
level i of <@Gj, Ci, 8;, Fi= and is the only difference of (P, F, C)-derivation from (P, F)-
derivation. A successful (P, F,C)-derivation with certainty threshold ¢ is defined in
the same way as the (P, F)-derivation in section 4. The semantics of a successful (P,
F, C)-derivation with certainty threshold ¢ of a goal <A is "A is provable from P with

certainty ¢, and ¢’z ¢ 7, which is same as the semantics of "solve(A, ¢, ¢')"in [9].



Note that any (P, F, C)-derivation with certainty threshold ¢ always becomes
finite on the condition in section 4 that, for every certainty function f, f{{cq,...,cm})
=d X min(ct,...,.cm) for some d (0<d< 1), More precisely, as stated in [1] and [9], the
length of any (P, F, C)-derivation with certainty threshold ¢ would be no more than

the smallest natural number n for which d"<Z¢.

Definition Let P be a logic program with uncertainties, A be an atom and C be a
certainty factor, A (P, F, C)-derivation with certainty threshold ¢ of a goal «A is
said to be finitely failed if the derivation is finite and ends with a goal G; where the
condition Fo(F(...(Fi—1(@))...)=¢ cannot be satisfied or an atom in the goal does not

unify with the head of the clause of any pairin P,

The first part of the definition means that a goal <A cannot be provable from P
with any certainty greater than or equal to c. The second part is equal to the one of a

standard logic program.

Definition Letcbe a certainty factor, The finite-failure set FF(c) of a logic program
with uncertainties P is the set of all pair <A, 1—¢> of a ground atom A and a
certainty such that all (P, F, C)-derivations with certainty threshold ¢ of «A are
finitely failed.

Because of the monotonicity of a certainty function, if all (P, I, C)-derivations
with certainty threshold ¢ of <A are finitely failed, <A ncver has any successful (P,

F)-derivation with certainty e. Other form of this fact will be shown later.

As we stated before, in a standard logic program the finite-failure set is the
complement Dfﬁ[ﬁmTpl{HB}. We characterize FF(c) in the similar way. First of all,
we define the Universe of a logic program with uncertainties P which corresponds to
the Herbrand base of standard logic program, and define the complement of an

interpretation.
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Definition The Universe Uc of a logic program with uncertainties P is the set of all
pairs <A, 1> where A is a ground atom which can be formed out of predicates,

functions and constants in clauses of P.

Definition LetTandT be interpretations. T'is the complement in Uc of Tiff for each
pair <A, 1> in Ue, <A, l—c> inDifthere is a pair <A,c>inland <A,1>inT

otherwise. We write Uc—1 to denote the complement in Ucof L.

Now we come to the major result of this section, which characterizes the finite-
failure set FF(c). We define another power of Tey, as Tep®(Ue)=Uc and Tep™ 1 Ue)
="Tep(Tep"(Uc)), and use nj<Tep'(Uc) lo denote the infinite intersection of Tey(Uc)
for all natural numbers i. We will first prove the following lemma which is
concerned with the maximum of certainties of (P, F, C)-derivations. Then we give a

characterization of FF(c) as the main theorem.

Lemma 5.1 Let P be a logic program with uncertainties, A be a ground atom, cbe a
certainty factor and <Gy, Ci, 05, Fi= (i=0,12,...) be a (P, F, C)-derivation with
certainty threshold ¢ of <A. Then for a pair <A, d> in Tey'(Ue),
Fo(Fy(...(Fj—1(2))...) = d. Furthermore, the maximum of Fo(Fi(..(Fj-1(@)}.) of

those derivations of <A isequal tod.

(Proof) We prove it by induction on natural number .
Ifj=1, then Fo(@) = @) (where fis the certainty function of the input clause Co)
< sup{l{@) | A«<B,....Bn is a ground instance and fis the
certainty function of a clause in P}

— sup{f(@) | A«<B1,....Bn is a ground instance and {is the
certainty function of a clause in P such that <Bj, 1> ¢ Ue
for 1=i=n}

= sup{fiS)| A<B,...Bnis a ground instance and figthe
certainty funetion of a clause in P such that <B;, 1> ¢ Ue

for l1=isnand5={1,..,1}=2}
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= sup{f(S) | A«By,...,Bp is a ground instance and fis the
certainty funetion of a clause in P such that <Bj, ¢;> ¢ Uc
for1=i=nand S={ey,...,cn}}
=d.
Furthermore, since P is finile, the last set over which the supremum is taken is
finite. Therefore the supremum must be attained for some clause in P, say,
<A'eB",.. By, f>. Hence the maximum of Fg(@) of those derivations of «A is
equal to d where the maximum is attained for the derivation of «A such that its Cy
is the clause <A’'«B'(,...B'y, f>.

Now suppose that the result holds for j~ 1. Suppose that Cg is a clause of the form
<Bg¢Bi,....Bn, g= in P such that A=Bolg, and F1(...(Fj=1(@))...) is [c1,0icn]. Let §
be any ground substitution. Then «ByBg...8;_ 18 has a derivation <G, C*), g,
F*, > (i=0,1,2,...) such that F“"g{F”"l{...EF[k{i_Q{E}]...]}ch (1=k=n). Then by the
induction hypothesis, for <B18¢...8j-18, d1>,..., <Bnfp...8;_18, du> in Tey~1(Ue),
¢l is less than or equal todk (1=k=n). Then
(Fo(Fi(..AFj—1(@))...) of the derivation of «A)

= g({c1,....en})
= gi{dy,...,dn})
= sup{f(8) | A<Bj,...,.Bp is a ground instance and fis the
certainty function of a clause in P such that <Bj, ¢i> ¢
Tcp’" {Ue) for 1=i=n and S={cy,....cn}}
(by the induction hypothesis)
=d.
Furthermore, since di is the maximum of F'""g{F“‘H{H.IIF‘“"j —2(@))...) of derivations of
«Bk0p...0-18 (1=k=n) by the induction hypothesis and P is finite, it is clear that

the maximum of (Fg(F1(...(F; — 1(@))...) of those derivations of <A is equal to d. O
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Theorem 5.2 Let P be a logic program with uncertainties, A be a ground atom and ¢
be a certainty factor. If all (P, F, C)-derivations with certainty threshold ¢ of <A are
finitely failed, then A is truein Uc— Nj<elep(Uc) with certainty 1 —c.
(Proof) Letm be the length of any finitely failed (P, F, C)-derivaticns with certainty
threshold ¢ of «A. If the derivation ends with a goal Gy where the condition
Fo(F1{..(Fp-1(@))...)= c cannot be satisfied, then Fo(F1(..(Fn-1(2)...)<c, and then
the maximum of Fo(F1(...(Fm—1(@)...) of those derivations, say max Fp(F1(....(Fm_-1
(@))...), is less than ¢. On the other hand, by lemma 5.1, max Fo(Fi(...Fp_1(@))..} =
d where <A, d> in Tep®(Ue), and hence d<c. By the definition of complement, for
<A, d'> in Uc—njeele/(Ue), d'zl—d>1-c Therefore A is true in
Uce —nj<Tep/(Uc) with certainly 1 —c.

If the derivation ends with a goal where an atom in the goal does not unify with
the head of the clause of any pair in P, then there is no pair <A, ¢> in nj<wTep(Uc),
and by the definition of complement, <A, 1> in Uc=—nj<wTlep'(Uc). Thus A 1s true

in Uc— nj < Tep(Ue) with certainty 1 —c. O

Corollary 5.3 Let P be a logic program with uncertainties and c be a certainty
factor. Then FF(c) = Uc—nj<uTep'(Ueh.

By the above result, we can state that the negation as failure rule in logic
programs with uncertainties is the rule that if all derivations of «A cannot be
successful with any certainty greater than or equal to certainty threshold ¢, then

infer that —A is successful with certainty 1 —c.

Corollary 5.4 Let P be a logic program with uncertainties, A be a ground atom and ¢
be a certainty factor. If A is true in FF(c) with certainty ¢, then A is not true in

AM(P) with certainty 1 —c".

(Proof) 1t is straightforward by the fact that U < Tep(@)=1fp(Tep)y = ni<Tep(Uc)
and corollary 5.3 (see [8] for detail). d
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The above result shows a soundness of our negation as failure rule in logic

programs with uncertainties.

6. Certainties as Control

As Kowalski stated in [7], an algorithm can be regarded as consisting of a logic
component, which specifies the knowledge to be used in solving problems, and a
control component, which determines the problem-solving strategies by means of
which that knowledge is used. Then certainties can be used for a control component.
One of implementations for it is a best first search algorithm in logic programs with
uncertainties [1], which is the algorithm to find the successful derivation with the
best (largest) certainty. In standard PROLOG systems, the control is the top-down,
left-to-right search and it is fized so that we cannot change it. However, the
elficiency of an algorithm can often be improved by improving the control component
without changing the logic of the algorithm. Hence various search algorithms for a
logic program with uncertainties give us various control components and efficiencies

for it.

7. Conclusions

In this paper, we have first given model-theoretic semantics and fixpoint
semantics for a logic program with uncertainties, and secondly defined a proof
procedure for it and then presented a sufficient condition for certainty functions of
clauses to achieve the completeness of the proof procedure (Theorem 4.5). Previously
mentioned, all results concluded within the framework of Shapiro’s approach can be
proved for a whole class of quantitative schemes. Thus our results (except Theorem
4.5) in this paper can be proved for a whole class of quantitative schemes, (To prove

Theorem 4.5, an extra condition is needed), For example, when the Bayesian
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inference rule is taken for a certainty function, our results can be proved for
probabilistic reasoning, and when the fuzzy implication function is taken, our results
can be proved for fuzzy reasoning. For remarks on related work, another paper
dealing with a semantics is Emden’s work [3]. Emden shows various results guided
by a close analogy between the qualitative and the quantitative case of logic
programs. However Emden’s method for computing uncertainties is rather special
and based on fuzzy theory. Thus Emden’s results are proved only for one, but ours for

a whole class of quantitative schemes.

Now what does Theorem 4.5 show ? We think that Theorem 4,5 provides a
theoretical foundation to support the following Zadeh's argument in [4] : "Attempts
to model human reasoning by formal systems of increasing precision will lead to
decreasing validity and relevance. Most human reasoning is essentially shallow in
nature and does not rely upon long chains of inference unsupported by intermediate
data” In other words, this means that in human reasoning processes the lenger
chain of inferences decreases its certainty. The condition that f{e1,...,cm})
<dXminlcy,....em) for some d (0<<d<1) provides this assumption. However this
restriction seems too strong and therefore is clearly not the necessary condition to
conclude the result of Theorem 4.5. We are now investigating other weaker
conditions (like fl{c1,....c}) =min(ey,...,em) for every certainty function {) to achieve

Theorem 4.5,

Further, we have introduced the negation as failure into logic programs with
uncertainties, which is the rule that if all derivations of «A cannot be successful
with any certainty greater than or equal to certainty threshold ¢, then infer that ~A
i successful with certainty 1—c. Then we have given an interesting
characterization of it. This is the first attempt to consider the negation as failure

[rom the semantical point of view, while [3] only remarks it and does nol show any
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result. It is possible and interesting for us to investigate and characterize such

various kinds of derivations.
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