ICOT Technical Report: TR-230

TR-230

A Distributed Implementation
of Flat GHC on the Multi-PSI1
by
N. Ichivoshi, T. Miyazaki and K. Taki

March, 1987

CN987, 1COT

Mita Kekuz=al Bide. 21F (N3} 456-3181 -5

IGDT 4-28 Mita 1 Chome Telex ICOT 132964

Minato ku Tokve 198 Japan

Institute for New Generation Computer Technology

A Distributed Implementation
of Flat GHC on the Multi-PSI

N. Ichiyoshi, T. Miyazali and K. Taki

ICOT
21F. Mita Kokusai bldg., 4-28, Mita 1, Minato-ku,
Tokyo 108, Japan

Abstract

We have implemented the parallel logic programming language Flat Guarded
Horn Clanses (FGIC) on the Multi-PSI machine, which is a collection of
Personal Sequential Inference Machines (P5Is) interconnected by a fast com-
munication network. FGHC goals are distributed among the PSI machines
to be executed in parallel. The key to our implementation are the intro-
duction of the "proxy and foster-parent™ scheme and the development of an
inter-processor communication protocol to avoid racing between simultane-
ous operations on the distributed AND-tree. The ohjective of our current

project is to test a parallel implementation of FGHC and to develop basic
and application software,

1 Introduction

The Multi-PSI [6] is a collection of Personal Sequential Inference Ma-
chines [10] (PSls) interconnected by a fast communication network
with a two-dimensional mesh topology. It is intended to serve as a
workbench for research in parallel logic programming before a full-
fledged parallel inference machine (PIM) comes into being. Major
projects concerning the Multi-PSI are:

» Design of a parallel logic programming language that will serve
as the kernel of the Fifth Generation Computer System and its
implementation on a parallel machine,

¢ Development of a prototype operating system for a parallel ma-
chine,

s Development of parallel application programs.

2 Flat GHC

The evaluation of the Multi-PSI and parallel software on it is expected
to influence the design of the PIM.

The contents of the paper are as follows.

Section 2 is an introduction to Flat GHC. It gives a rather informal
semantics of the execution of Flat GHC goals.

Section 3 is on the abstract machine architecture that we assume in
our distributed implementation of Flat GHC. The current Multi-P5I
is a small-scale model of the architecture.

Section 4 contains the execution mechanism of Flat GHC goal on a
single processor. We extend it to the multi-processor system in Section
5. The proxy-and-foster-parent scheme is central to our AND-tree
handling operations in a distributed environment.

Our distributed unification algorithms are explained in Section 6 with
several examples.

Finally the current status of our implementation and the future direc-
tions are discussed in Section 7.,

Brief descriptions of the types of cells (terms) will be found in Ap-
pendix A. In the subsequent sections, when we say a cell X is of an
undef cell, this means the cell X is of type undef, and sc on.

We list the inter-PE messages and brief explanations in Appendix B.

2 Flat GHC

Guarded Horn Clauses (GHC) [7,8] is a parallel logic programming
language similar to Concurrent Prolog [5] and PARLOG [3].

A GHC procedure consists of a set of clauses of the form:

H:— G,,“.,Gm’|ﬁ],...,ﬂﬂ;[m >0, n>0)
gu'ard hc;dy

where H, Gy, and B; are atomic formulas. H is called the head, ;
the guard goals, B; the body goals. The vertical bar (|) is called a
commitment operator.

The execution of a GHC procedure can be intuitively explained as fol-
lows. When a procedure is called, all clauses defining the procedure
can run in parallel. If some of the clauses succeed in the execution
of the guard part, one and only one of them is (nondeterministically)
selected and execution of its body part begins (the execution of the

other clauses is discarded). This is called a reduction of a goal into
body goals. The unification in the guard part cannot instantiate vari-
ables in the caller's environment — instead the unification is suspended
until the variables become instantiated. This is the basic mechanism
of synchronization in GHC.

Flat GHC (FGHC) is a subset of GHC where the guard part of the
clauses contains unifications and calls to system predicates but no calls
to user-defined predicates. (The repertoire of the system predicates
is implementation dependent.) This restriction makes FGHC free of
nested guards and allows an efficient implementation.

We extend the original FGHC to include the metacall mechanism (3]
and the pragmas [4,1]. The former is included for ease of writing
system Programs.

The pragmas are designed to allow the programmer explicitly to spec-
ify how the goals should be assigned to the processors. We allow body
goals to have pragmas specifying on which processing element the goal
should be executed when the parent goal is reduced to the body. Syn-
tactically a goal G with 2 pragma P is denoted by

PRaG,

Currently in our system a pragma is just an integer that directly spec-
ifies the processor number. In the following example, the invocation
of translate{1) will result in the first body goal to he executed on the
processor PEF£1L, the second on PE#2, and the third on PE#3.

translate(PEL) :-

PEZ := PE1+1,

PEZ := PE1+2 |
PEi¢linstream(I),
PE2@%translate(I,0),
PE3QCoutstream(0).

3 The Abstract Machine Architecture

The architecture of the underlying machine that we assume is a col-
lection of processing elements (PEs) interconnected by a fast network.
Moze specifically, we assume the following:

1. PEs are assigned unique identification numbers (PE#1, ... to be
used in inter-PE communication and inter-FPE data references.

4 Intra-PE Processing

» Metacall
Record
—+| Goal p—-—+ Goal p——r ——| Metacall |+
Hecord ERecord Record |«
+| Metacall ja—-—s{ Goal
Record Record

Figure 1: AND-tree

2. Each PE has a tagged architecture and is capable of executing
FGHC goals by itself.

3. PEs have separate local memory spaces, but each PE can access
external data by the inter-PE reference mechanism.

4. PEs communicate with each other by message passing via the net-
work.

The reason for choosing the non-shared memory architecture is to
allow a large-scale system where processors cannot be tightly coupled.
Also the separation of intra- and inter-PE addressing systems has two
advantages over the simple linear global address space. One is that
local and global garbage collections can be separated. The other is that
the size of the global address space will not be restricted by the internal
addressing mechanism of the constituent PEs. Although the Multi-PSI
— collection of PSIs, which are full workstations themselves — is not
expected to become such a large-scale system, we have employed the
above architecture to study load sharing mechanisms, etc., that will
be used in a future highly parallel inference machine.

4 Intra-PE Processing
4.1 The AND-tree

The AND-tree (Figure 1) maintains all goals under execution. The
roots of the subtrees are metacalls, and the leaf nodes are FGHC

& —

4.2 Execution of goals

goals other than the metacalls. (Probably the root metacall will be
the one invoking the operating system.)

A metacall is of the form

call (Goal,Result,Contrel),

where Goal is the goal to be executed under it, Result is the result of
the call {one of success, fuilure, stop), and Control is an input stream
through which control messages (sequence of suspend, resume, stop)
pass.

The leaf goals are direct or indirect descendant goals of the metacall
just above them in the AND-tree. Note that if Goal fails, the metacall
does not fail but instantiate Result to failure L.

We employed the metacall mechanism for the following reasons:

1. We intend to write an operating system in FGHC where user pro-
grams can fail but the system as a whole must not fall. We are

not taking the approach of the metainterpreter or source-to-source
transformation right now.,

b2

. Also in system programs, resource management will require the
concept of a "job” or a "task™ which the metacall mechanism can
naturally introduce.

The metacalls and the goals are represented by the metacall records
and the goal records, respectively., A metacall record has fields for
the metacall identification number, the links to the descendant goal
records, the status of execution, a pointer to the code, allocation in-
formation, etc. A goal record’s fields are thaose for the links to sibling
goal records, the arguments, the status of execution, a pointer to the
code, ete.

4.2 Execution of goals

The PE has prioritized queues of executable goals (ready goal quenes).
At the beginning of & processing cycle (called a reduction cycle) the
scheduler serves the first goal in the queue with the highest priority.
At the beginning of each reduction cycle the scheduler also attends to
the messages that have arrived during the previous cycle.

When a goal is scheduled, its arguments in the goal record are moved
to the argument registers, and the control transfers to the code for the
procedure. The code is a modified Warren Abstract Machine code[9]

4 Intra-PE Processing

with extensions of guard part unification and body reduction instruc-
tions. The clauses for the procedure are tried sequentially in the tex-
tual order (top to bottom) until

1. the guard of some clause has succeeded, in which case the clause
1s selected and the body is expanded, or

2. all clauses have failed or have been suspended.

The body is expanded in the following manner. Unifications if any
in the body are not put into the ready goal queues but executed in
line. How body part unification is done is described in Section 6. If
the unification succeeds, the body expansion continues as follows, If
the body contains no goals other than unifications, the parent goal 1s
just removed from the AND-tree (successful termination of the parent
goal). Otherwise all the goals except one are enqueued at the ready
goal queue with the appropriate priority, and after setting the argu-
ment registers, control transfers to the goal that was not enqueued.
Thus the next reduction cycle omits the dequeueing of a goal. This
optimization which corresponds to tail recursion optimization (TRO)
in Prolog reduces the number of expensive context switches.

When, during the trial of guards, some passive part unification leads
to suspension, a pointer to the variable responsible for the suspension
is pushed onto a special stack called the trail stack, and control moves
on to the next clause. (The trail stack is set to empty at the beginning
of every reduction cycle.)

If the clauses have been exhausted witheut suceess of any of the guards,
there are two possibilities:

Case-1: the trail stack is empty, or

Case-2: there are pointers to variables responsible for suspen-
sion of clauses.

Case-1 means that all guards have failed, which means the goal has
failed. This causes the parent metacall to terminate with the result of
failure.

In Case-2 the goal is entered into the suspension queues (described
later) of the variables. When one of those variables becomes instanti-
ated, the goal is enqueued at the tail of a ready goal queue. The trail
stack is ignored when one of the guards has succeeded, thus eliminat-
ing unnecessary handling of suspension queues. This is exactly why
the trail stack is introduced.

4.3 Suspension and resumption

Suspension
Variable Cell Record
o]} e
—_—
| _\ T
! S
T Goal
Flag RecD:rd
[hook [—7— . —

/

Figurc 2: Suspension Queﬁe

4.3 Suspension and resumption

Every uninstantiated variable causing suspension of clauses keeps a list
of zoals that invoked those clauses. This list is called the suspension
queue of that variable. A goal in a suspension quene of a variable is said
to be hooked to the variable, and the variable is called a hook variable.
The hook variable is a data type distinct from that of uninstantiated
variable in the implementation, though they are logically eguivalent.
(An uninstantiated variable can be thought of as a hook variable with
an empty suspension queue,) Actuelly a suspension queue is a chain
of suspension records (Figure 2), whose fields are:

next record: points to the next suspension record (or nil).
goal record pointer: points to the suspended record.

flag pointer: points to a flag record shared by those vanables
whose instantiation the suspended record is awaiting,

Generally more than one clause called by a goal may be suspended on
different variables. In this case, one suspension record is created for
each variable. These suspension records share one flag record which
is initially off The goal is resumed when one of those variables get
instantiated. When this happens, the flag record is set to on to prevent
the variables instantiated later from waking up the goal more than
once.

¢ Inter-PE Processing

5 Inter-PE Processing

5.1 Memory manageiment

Each PE has its own local memory space. In one PE, there are two
kinds of references: internal and external. An internal reference is a
simple reference to (represented by logical address of) a cell in the
local memory. An external reference consists of a triple of a read
flag, the processor number and the cell identification number. The
processor number together with the cell identification number uniquely
determines the referenced cell. The read flag is used for queuneing read
requests for the referenced cell. A cell in a PE which is referenced
from outside the PE is said to be ezported.

Each PE maintains an ezport table to retrieve exported cells when their
cell identifition numbers are given as the key. We employ this indirect
addressing mechanism in favor of the representation of external refer-
ence by a pair of the PE number and the internal address to make local
garbage collection in a PE possible without pointer updates outside of
it — only the export table must be updated when the cells have been
moved.

5.2 Inter-processor handling of goals

In a multiprocessor system the logical AND-tree crosses PE bound-
aries. If we simply represented it using external reference links, the
rate of inter-processor tree operations could be very high and the syn-
chronization would be very complicated. We devised a prozy-and-
foster-parent scheme to avoid this (Figure 3). The idea is to separate
tree operation from the the execution of goals.

In the proxy-and-foster-parent scheme, descendant goals of a meta-
call can be executed in any PE. In one PE, all goals with the same
parent metacall are maintained under a metacall record or a foster-
parent record. A metacall record resides in the PE, say PE#1 where
the metacall was issued, while foster-parents reside in PEs other than
PE#i. They are given the same metacall identification number as the
metacall record. (Metacalls are distinguished by their metacall identi-
fication numbers.) A foster-parent communicates with a prozy record
under a metacall record or a foster-parent record in another PE, as
described later.

The physical tree structure with the metacall record as its root is

5.2 Inter-processor handling of goals

Metacnll-Id Table

k4
Metacall |+
Reeord
Proxy ja—-—~ Goal #—.—at Proxy
— Record Record Record S
—— e
e)
Metacallld Table Buie NI © Metacall-Id Table
: i :
id1 | ; ! | id1
: I :
L] * ! * ¥
Foster ! Foster
Parent l Parent
HRecord ! Record
!
!
Goal h—-s] Goal ! Goal |e—p] Coal
Heeord Reeord ! Reeord Heeord
!
i
PE#j H PE#k
i

: = External Reference Pointers

Figure 3: Distributed AND-tree

5 Inter-PE Processing

distributed among the PEs. The life time of a proxy record covers
that of the corresponding foster-parent record to guarantee that this
dynamic tree structure be always well-formed. A foster-parent serves
as the cache of the metacall record, while a proxy record represents
those goals under the foster-parent with which it communicates. AND-
tree operations are propagated upward and downward through the
proxy to foster-parent links.

Each PE has a Mefacall-Id table with which to retrieve metacall
records and foster-parent records from the metacall identification num-
bers.

We will describe the operations on the AND-tree at various events.

s Throwing of a goal

When the body of a clause is expanded, the PE executing the goal
can request other PEs of the execution of some of the body goals.
This is called throwing of goals. The throwing of goals is specified
by the programmer by attaching pragmas. Goal throwing is done
in the following manner.

A PE (PE#1) can request another PE (PE#]) of the execution of
a goal by sending a throw_goal message to that PE. When PE#I
does this, it first creates a proxy record for the goal and send a
throw_goal message carrying the goal, the external reference to
the proxy record, and the metacall identification number. It does
not matter whether the parent goal was runming under a metacall
record or under a foster-parent record.

On receiving the message, PE#]j searches the Metacall-Id table
to see if there is already a metacall record or foster-parent record
having the same metacall identification number as the one in the
message. If there is one, PE#] puts the goal under it and sends
back a cancel message to PE#. If there is none, it creates a
foster-parent record with the given metacall identification number
and enters it in the Metacall-Id table. PE#j then puts the thrown
goal under the foster-parent record, and sends back to the PE#i
a ready message bearing the external reference to the foster-parent
record.

In either case PE#j accepts the execution of the goal. The dif-
ference is that PE#i will erase the proxy record when it receives
a cancel message whereas it will not when it receives a ready mes-
sages. In this way, no PE will have more than one metacall or

foster-parent record for a given metacall number, and the foster-
parent to proxy record links will not contain a cyclic chain.

e Successful termination of a goal

When a goal succeeeds, the goal record for it is removed from the
physical subtree whose root is either a metacall record or a foster-
parent record. If only the root is left after the removal,

— if the root s & metacall record, it instantiates the result to success
and terminates.

— if the root is a foster-parent record, it sends a ferminate message
to the corresponding proxy record, which in turn succeeds just
like & normal goal (propagation of success upward).

o Failure of a gosl

If a goal fails, it causes the subtree containing it to fail. All goals

under the root record are killed. If there are proxy records, kill

messages are sent to the corresponding foster-parent records, prop-
agating failure downward. Metacalls under the root are also killed.

If the root i1s a metacall record, the result is instantiated to failure.

If the root is a foster-parent record, a fail message is sent to the

corresponding proxy record causing it to fail with the same effect

as the failure of a goal record { propagation of failure upward).

¢ Spawning of child goals
When a goal is reduced to its child goals upon reduction, the parent

goal record is replaced by the child goal records in the subtree.
Some of the goals can be thrown outside of the PE.

6 Unification

In FGHC there are two kinds of unification. One is unification in the
guard part (passive part unification) and the other is unification in
the bnd}' part (active part 1.1r1iﬁ{'..=!.t"mn].

We will sketeh our algorithms for passive and active part unifications,
focusing on how inter-PE unification is realized.

6.1 Passive part unification

Table 1 summarizes the actions taken in the passive part unification
of X and Y for all combinations of ccll types of X and Y.

Suspend is suspending the unification and pushing a pointer to the
uninstantiated variable responsible for suspension onto the trail stack.

& Unification

Table 1: Passive Part Unification

Xx\VY undef exref constant structure

undef | suspend | suspend suspend suspend

exref | suspend | read_valuet | read_value read._value
constant | suspend | read_value ==Y fail
structure | suspend | read_value fail unify struct{ X,Y)]

t A read_value message is sent to obtain the value of one of the
external references. When the goal 15 resumed by the return
of the value, another read_value message is sent for the value
of the other external reference.

1 Unification of two structures X and Y consists of checking
the equality of the principal functors and recursively unifying
all elements of X and Y.

Read_value is the case where the value of externally referenced cell
needs to be obtained. This is treated like suspension, because in either
case unification cannot continue until the needed value is obtained. A
pointer to the exref cell is pushed onto the trail stack and the PE, say
PE#i, sends a read_value message to the PE, say PE#], housing the
externally referenced cell. On receiving the message, PE#] checks if
the referenced cell is already instantiated. Ifit is, PE#£] will return the
value by sending a return_value message back to PE#Ii. If the value
of the referenced cell is an external reference, PE#£] simply passes a
read_value message to the referenced PE. Otherwise, it is an undef or
hook cell, and a special goal for returning the value is hooked onto the
referenced cell. This goal will be woken up when the cell is instantiated
and return the value to PE#i.

In returning a nested structure, PE#]j can be either eager (return-
ing the whole structure), lazy (returning only the surface level with
embedded external references to the substructures) or in between (re-
turning a partial structure with a certain level of nesting). Which of
the above is more efficient depends on how the returned value is to be
used. Though a lazy returning (or returning up to the second level)
seems to be a safe bet, we may have to give the programer control over
eagerness/laziness.

6.2 Active part umfication

6.2 Active part unification

In a distributed environment a number of processors can work on the
same structure at the same time. Racing will happen if more than
one processor tries to write into one uninstantiated variable simul-
taneously. Locking of variables could solve this problem, but would
introduce a new problem of deadlock avoidance. We have solved this
problem by prohibiting the PE from explicitly writing (instantiating)
variables in another PE. Suppose for example PE#1 has an external
reference to a variable X' in PE#] and wants to unify it with an atom
ok in the body. Instead of first checking if X is uninstantiated and
then asking PE#] to instantiate X to ok, PEZi simply sends a unify
message to PE#] asking to unify X with ok and PE#j will answer
whether the unification has succeeded or failed. The unify message can
be considered as a special case optimization of the throw goal message.
We have also introduced an ordering of PEs to avoid loops in external
reference chains. Specifically, in unifying two uninstantiated variable
cells in two distinct PEs, the external reference must always be made

from the cell in a PE with a smaller PE number to the cell in a PE
with a larger PE number.

The following simple examples illustrate how unification inveolving ex-
ternal references is done. Let PE#i be the processor where the unifi-
cations are initiated. Superscripts over the variables represent the cell
types.

Example 1. X"/ = f(Aundef)

Suppose the PE number field of X is PE#], and the cell identification
number field is ¢idz. First, a proxy record is created for the unification.
Second, a unification message is sent to PE#) with cidz, f{A), and
other necessary data.

The representation of f{4) needs some explanation. Since export-
ing fiA) involves exporting the undef cell 4, A is entered into the
export table as the entry number eida {which becomes A's cell identi-
fication number). The structure f{A) is represeted in the message as
fexref(PE#i,cida)). In the cuse of a nested structure, the data is
copied in the return_value message up to a predetermined copy level
and the deeper substructures are represented by external references to
them.

6 Unification

PEF#i
x PETETEEE [T ST STy
> Suspension
¥ L Queve
l exrel 1 —j—" undel
int | PE#]
int idl
(a) Before unification
PE#i
X

pointerfrom LT 1]

the exporttable

&p‘ exref l '—|—“' hook —
int | PE#]
int idl

PE#]

(b} After unification (FE#1 < PE#])

peinter from .
the expart table FE#i _I
(id2) X F——
Y qu‘“ r u:;ify i —
i idl : FL#)
Le:muf | -"—]—" undef : id2 ':"‘-"I"
exreflproxy) i
int | PE#) | Metacall-1d |
brmmmm i e

int idl J

{c) After unification (PE#1 = FPE#])

Figure 4: Active Part Unification

6.2 Active part unification

On receiving the unify message, the PE#] tries to execute the goal
X=f{A) without bothering to create a goal record and to enqueue it
to a ready goal queue, since unification is often very simple. If X isan
undef or hook, it is instantiated to f{4) and a cancel message is sent
back to the original PE to erase the proxy record. If it is an exref
to a cell in PE#k, the unify message is simply passed on to PE#k.
Otherwise, the requested unification is treated as a thrown goal.

Example 2. Xhook = Yesref

Figure 4a shows the states of X and Y before unification. Suppose ¥
refers to a cell £ in PE#]). If 1 is smaller than 5, X can become an
external reference to Z by the ordering rule. But because X is a hook
cell, a measure has to be taken so that the instantiation of 2 may
be propagated to X for the goals awaiting the instantiation of X to
resume. Thus a read request of the value of ¥ is made in the same way
as in passive part unification, the suspension queue of X is appended
to that of ¥ 's read flag, and the cell X becomes (is overwritten by)
an internal reference to Y. When the value of Z is returned, the goals
awaiting for X to be instantiated as well as the goals having requested
the value of ¥ are resumed. Figure 4b shows the situation just after
the read_value message has been sent.

If + is larger than j, X must not become a reference to ¥ by the
PE ordering rule. A proxy record for the unification is created and
a message is sent to PE#] requesting umfication of X {an external
reference to X') and Z. PE#] will treat the unify message in a similar
way as Example 1. The situation just after the unify message has been
sent is shown in Figure 4de.

One major difference between passive and active part unifications in
our scheme is:

« In passive part unification, unfication procedure itself s exclusively
done on the PE initiating the unification. Other PEs just return
values of external references upon request.

» In active part unification, unification procedure can become really
distributed: unification between two structured terms can trigger
unify messapges to be sent to a number of PEs for substructure
unification.

¥ Current Status and Future Directions

7 Current Status and Future Directions

Our FGHC system runs on a 6-processor configuration Multi-PSI. Cur-
rently all constituent machines must have a FGHC compiler on them.
To run a FGHC program, one has to distribute the source code to all
PEs to be compiled on each of them. FGHC clauses are compiled into
the abstract machine instructions each of which is actually a method
call in an emulator program written in ESP [2]. Before starting the
program, the atom table (table of atom names appearing in the pro-
gram and thier identification numbers) is distributed to all PEs. This
is because atoms are represented by commeon identification numbers
in inter-PE messages. After the above has been done, execution can
be initiated at any PE.

We have tested a number of sample programs including gsort, the
N-queens problem and the knapsack problem, and started to gather
statistics on the numbers of reductions, messages sent, suspensions,
etc. Global garbage collection is not yet implemented. (Local garbage
collection is simply garbage collection on each constitutent PSI.) We
plan to implement it when the Multi-PSI verson II is delivered. It will
be based on PSI-1I, a smaller, faster version of the current PSI. FGHC
abstract machine code will be directly supported by the fErmware of
the Multi-P5I version II.

Software issues we will coneern ourselves will be:

1. Development of a rudimentary user environment.

We have to write system service programs including input/output,
code management (such as dynamic code loading).

2. Load balancing

We are considering two ways of doing this:

¢ pragmas
This is to let the user specify how the goal should be assigned
to the PEs. Currently, the pragmas specify physical PE iden-
tification numbers on which the goal should be executed. In
the future we will let the user specify load distribution at some
logical level without considering physical configurations. (6] pro-
poses one such mechanism.

s automatic load balancing
This is to have the system dynamically detect load imbalance
and correct it, although simple averaging of computational load

- 16—

References

can lead to lower performance due to increased inter-processor
comrmunication. Perhaps localization of inter-PE communication
should be controlled by user-specified pragmas and the logical-
to-physical mapping should be managed by the system through
dynamic load balancing.

3. Deadlock detection

In a programming language like FGHC where one can easily write
programs that will be suspended forever (e.g. a spelling mistake of
a variable In a producer process can make a consumer process wait
for the instantiation of a variable that will never be instantiated),
deadlock detection is almost vital to program debugging. Efficient
deadlock detection mechanism must be implemented.

Acknowledgements

We thank the members of the FGHC implementation group at ICOT
1st and 4th Laboratories and collaborating companies, and Dr. K.
Furukawa and Dr. S. Uchida, heads of ICOT 1st and 4th Laboratories
for valuable discussions and encouragement.

Notes

1 A metacall can fail if the instantiation of Rasult fails because of
earlier instantiation by some other goal of that same variable to
something else. But in practice this should not happen.

References

[1] T. Chikayama. Load balancing in a very large scale multi-processor
system. In Proceedings of Fourth Japanese-Swedish Workshop on Fifth
Generation Computer Systems, SICS, 1986.

[2] T. Chikayama. Unigue features of ESP. In Proceedings of FGCS'8],
ICOT, 1984,

[3] K. L. Clark and S. Gregory. PARLOG: parallel programming in logic.
ACM Transactions on Programming Languages and Systems, 8(1):1-49,
1986,

4] E. Shapiro. Systolic programming: a paradigm of parallel program-
ming. In Proceedings of The International Conference on New Genera-
lion Computer Systems 19584, pazes 458-470, 1984.

[5] E.Y.Shapiro. 4 Subsel of Coneurrent Prolog and Ite Interpreter, ICOT
Technical Report TR-003, ICOT, Tokyo, Japan, January 1983.

B Inter-PE messages

[6] K. Taki. The parallel software research and development tool: Multi-
PSI system. In Proceedings of France-Japan Artificial Intelligence and
Computer Science Symposium 86, pages 365-381, 1986.

[7] K. Ueda. Guarded Horn Clauses. Technical Report TR-103, ICOT,
1985.

[8] K. Ueda. Guarded Horn Clauses: A Parallel Logic Programming Lan-
guage with the Concept of a Guard. Technical Report TR-208, ICOT,
1986.

[9] D. H. D. Warren. An Abstruct Prolog Instruction Set. Techinical
Note 309, SRI International, Oct. 1983,

[10] M. Yokota, A. Yamamoto, K. Taki, H. Nishikawa, and 5. Uchida. The
Design and Implementation of a Personal Sequential Inference Machine:
FSI ICOT Technical Report TR-045, ICOT, 1984. Also in New Gen-
eration Computing, Vol.1 No.2, 1984.

Appendices

A Data types
The data types of the cells include the following:
constant: an atomic constant. There can be interger, atom, string,

and other data types.

structure: a structured termm. Lists and streams can be distinet data
types.

undef: an uninstantiated (unbound) variable.
hook: a hook variable. It has a pointer to the suspension queue.
ref: an internal reference (internal pointer).

exref: an external reference. Points to a record consisting of the read
flag, the PE number and the cell identification number. The last
two uniquely locate the referenced cell in the machine. In the text,
we refer to the read flag of the record pointed to by the exref cell
X, ete. as the read flag field of X, etc.

B Inter-PE messages

In the following we list the kinds of messages passed between the PEs.
A message packet contains the message plus the identification numbers
of the sender and receiver PEs, PE#x and PE#y respectively.

read_value(Cid, Xref): requests PE#y to return the value of the
exported cell with cell identification number Cid when or if it is
instantiated. The value is to be returned to Xref in PE#x. There
will be at most one return_value message in reply for this message.

return_value(Xref): returns the value of an exported cell. Xref is
the external reference to the exref cell whose value had been re-
quested.

throw.goal(Goal, Metacall-Id, Proxy): requests PE#y to exe-
cute the goal Geal under a metacall identification number of
Metacall-Id. Prozy is the identification number of the proxy record
in the export table of the sender PE.

unify(Cid, ¥, Metacall-Id, Proxy): requests PE#y to unily
the exported cell with cell identification number Cid with ¥ as
a goal with Metacall-Id. Prozy is the external reference to the
proxy record created in PE#xX to to represent this unification.

ready(Proxy, FosterParent): notifies Prozy in PE#y in acknowl-
edgement to a throw or unify message that a new foster-parent
record has been created with the given metacall identification num-
ber and its external reference is FosterParend.

cancel(Proxy): notifies Prozy in PE#y in acknowledgement to a
throw or unify message that no new foster-parent record has been
created because there had already been a metacall record or a
foster-parent record with the given metacall identification number.

terminate(Proxy): notifies Prozy in PE#ty that all the goals it rep-
resents have successfully terminated.

fail(Proxy): notifies Prozy in PE#y that one of the goals or uni-
fications it represents has failed.

kill (FosterParent): orders PE#y to kill the foster-parent whaose
external reference is FosterParent and all the goals being executed
under it. The foster-parent is erased from the Metacall-Id table.

dead (Proxy): notifies Prozy in PE#y in acknowledgement to a kill
message that the kill operation has been completed. When this
message is received, Prozy is erased.

