ICOT Technical Report: TR-229

TR-229

A Deseription Language with AND/OR
Parallelism for Concurrent Systems
and Its Stream-Bused Realization

b
A, TAKEUCHI, K. TAKAITIASHI
and H. SHIMIZL

(Mitsubishi Electric Corp.)

February, 1987

LHBET 1ICOoT

Mita Kokosai Bidg. 21F W41 456-3141 ~ 3

CcCOT Tk ke, 108 Jans Telex ICOT 32064
Institute for New Generation Computer Technology

AND/OR EF|tx v i 1 £3|Ep 4 4 E

BLILEES &

tn ALY -a1td bR

A DNescription Laoguage with AND/OR Parallelism for Concurrent Systems

and Tta Stream-DBased Realization

il B T

Akikazu TAKEUCHI

= FF IR

Kazuko TAKAHASHI
R A Y

mE A i

K
Hiroyuki SHIMIZU

Central Research Laboratory, Mitsubishi Electric Corporation

Abstract

This paper describes the des:r]plic:u iauguage ANDOR-IT {for concurrent system and its real-

ization by strenm. Our purpose is an amalgamalion of committed choice language with OHR-parallelism, and
giving = full AND/OR process medel of logic programs. ANDOR-IT s designed for modeling and simulating

the nondeterministic system.

Our compiler trapslates the pregram written in ANDOR-IT into the one in

FGHC so that both AND- and OR-parallelism are realized. In the transfermed program, OR-parallel pro-
cesses are executed in the independent worlds from cne ancther. Their solutions are sent as a data to other
Frocesses in & stream form, and each salution is associated with it own color. Fault {!IEILE“QEIW of & simple
circuit is shown as an example. Although the overbead of the color check is burdensome now, we can make it

smaller by optimization.

1. INTRODUCTION

Recently, a lot of researches have been done both
on parallel logie programming and on parallel problem
SU]\'EI:IR. Hﬂﬂ.!" Pﬂl’ﬂ.l]ﬂl lUBIIE PI"DETBI'HEI'LEDE]aﬂ“uaﬁﬂa
such as GP|Shapive 83}, PARLOG|Clark and Gregory
84| and FGHC[Ueda 5] kave been designed and devel-
oped. From the viewpoinl of parallel problem solving,
description and reasoning aboul concurrent systems is
one of interesting subjects.

Geperally speaking, the system with noendetermin-
istic behaviors has many possibilities depending on the
action, Vor example, if a circuit has a faulty component
which behaves indefinitely, then the bebavior of the eir-
cuit has many possibilities, Apd il the eircuit bas some
faully components, the possibility of the bebavior of the
circuit is productively inecreased. Therefore, when we
deal with such a nondeterministic system, we have lo
search all Lhe possible worlds. We usually want to per-
form multt-simulation or all solution search. Several re-
searches are underfaken as a main area of qualilalive
reasoning. [deKleer and Brown 83||Kuipers 86)

On the treatment of a lot of worlds simultanecusly,
the realizalion of OR-parallelism is needed as well as
AND-parallelism. On the other band, committed choice
languages such as FGHC do not realize OR-parallelism.

That is, every conjunctive goala are executed in par-
allet, but if 2 clause iz once selected, alternative res-
olutions are abolished. It followe that it is difficult
to express all solution search problem in FGHOC. Cur-
rently some interesting researches are done on this top-
ics., Ueda has proposed the transfornation method from
exhaustive gearch program in Prolog inte determinijs-
tic FGHC/Proleg program by using continuation.[Ueda
BGa|[Ueda B6b] Tamaki presented alternative method
based on stream execution model. [Tamaki 86] Tt trans-
forms the program written io the language with AND/OR
parallelism into the one in committed choice language.
However, their methad is not sufficient enough for the
treatment of nondeterministic systems. Therefore, it is
necessary Lo present a method in which behavisrs of such
syetema can be described naturally and several reasoning
can be deone.

In this paper, we propose a language ANDOR-IT
for modeling and simulatiog such systems and present
the compilation method from the ANDOR-IT program
to the FGHO program. It is ao amalgamation of com-
mitted choice language with OR-parallelism, and give
a full AND/OR parallel execution model of lagic pro-
grams.|Takeuchi 84]|Conery 85

For example, consider the following program of sim-
ple arithmetic in Prolog.

compute(X,Z) - pickup(X.T).
doeble(Y,DY), triple(Y,TY), 2dd(DY.TY.I).

= T=X,
:= plckup(L,¥).

pickap(IXIL].Y)
pickup([_IL],¥]

double(X, ¥) := Y:=)=X,
triple(¥. Y} = Y:=XeX=X.
add{X,Y,Z) := ZLi=X+¥.

When a list X is given, the definition compute(X, Z)
picks up an arbibriry element ¥ from the list X and com-
putes ¥? + Y. But there are several solutions for this
computation because of the nondeterminacy of pickup.
Although the primitive ‘sefof' or ‘bagef' provides all
solutions, isn’t there any other ways to process several
cases in parallel and generates answers ai the same time
7 ANDOR-II gives one solution. See the following pro-
gram in ANDOR-II,

:- mode compute(+,=), pickup(+.-),
doublel+,=}, triple(+,=), add(+.+.-).

;- and_relation compute/2.
compute(X.2Z) - true | piekuplX,¥},
double(Y,DY), triple(Y,TY), 2dd(DY,TV.2).

;- or_relation pickup/2.
plekupl{XILI YD = Y=X.
plekup([_ILY .Y} := pickup(L.Y).

:= and_relation double/2.
double(X,¥Y) :- true | Y:=)+X.

:= and_relation triple/2.
triple(X,¥) :- true | ¥T:=XsXsX.

;= and_relation add/3.

add (X.Y,2) :- true | I:=X+Y.
by
j—-—""! double 1"“*-1
et pichkup 1 add =
A — triple ['._,-r"". Z
¥ _ 7Y
Fig 1. Dots Flow Graph of Compute

lo the program, the definition of the mode dec-
laration is based on that in Proleg (see section 2, in
detail.) Iotuitively, OR-refation clause corresponds to
Prolog clause and AND-relation clause corresponds to
FGHC clause. "OR-relation® indicates that the predi-
cate pickup is nondeterministic, and the world branches
depending on the selected clause. The worlds are in-
dependent {rom one another, This program is traos-
formed into the FGIC program through the compiler.
Assume that we call the goal compute([l,2,3],4). In

this case, the call of pickup{[1,2,3],Y) causes Lhe case
split, since elther clause can be selected, three worlds
are created depending on whether 1, 2, or 3 is picked
up. Every sclution is associated with its own color as
an identifier. All the sclutions are folded in 2 stream
form and propagated to the conjunctive goals double
sod triple. They are processed in parallel, produciog
the streams as solutions {v{1,cl],v(4, 2}, v(8,c3]} and
{vl1,el),v(8, c2), v[27,¢3)}, respectively, And add is in-
voked by receiving these values. However, if the values
are associated with completely different color, then they
cannot be computable. As the order of the elements in
a siream is nondeterministic, we find a computable pair
by checking these colors. We can add the values 1 aod
I, since they are associated with the same color, We can
also add the vaiues 4 and 8, but we cannot add 1 and 4,
since they are associated with completely different colors.
Finally we get a st of the sclutions |2,12,36].

In this case, the process which causes the warld
aplit is only pickup. However, if there are many such
processes, then we bave to treat all the split world and
check the computability of data. Therefore, we need the
mechanism which multi-simulation can be treated in a
simple way. ANDOR-II supports such function.

This paper is organized as follows. We give a speci-
fication and computation mede of ANDOR-II in section
2, and describe the compiler in section 3. In section 4,
we apply the method to fault dlagnosls of a simple cir-
cuit, and io section 5, we compare the method with olher
works and also discuzs the prablem to he salved.

2. ANDOR-II Language

2.1. Syntax
Firstly, we describe the syntax of ANDOR-IT .

Sentence ;i= Hode-Declaration |
Reletion-Declaration |
Clause

Hode=Declaration ::= {(:- mode FModes)

PModen 1:= (PModes, FHodea) | PMode

Flode 1= Functor(Modes)

Modes ::= (Wodes.Modes) | Mode

Mode HEE R A B

Relation-Declaration ::=
- {:- and_relation FunctorfArity) |
{:- or_relation Functer/Arity)
Clause srm (Head :- Goala "|" Goals) |
(Head :- Gozls)
As for Head, Goal, Arity and Functor are defined sim-
ilarly with the definitions in Prelog. As for Funclor,
we shouid not use the capital letter immediately after
‘_'{underbar).

Defnition] AND-clause,OR-clause)
A clauze io a form
H :=- El,...,Bm.

iz called an OR-clause, and a clause in a form
H :- G1,....Gn | Bt,....BEm.
is called an AND-clause,

In an AND-clause, H is called a head goal, GGy
are called guard goals, and B,,..., B are called body
goals. The part before the commit cperator 4’ is called
passive pari of the clause and the part after the operalor,
active part. We extend this definition to OR-clauses,
regarding it as 3 clause without gnard goals.

Definition{ AND-predicate OR-predicate)

If a predicate has an AND-relation declaration, then
it is called an AND.predicate, and i a predicate has
an OR-relation declaration, then it is called an OR-
predicate,

An ANDOR-IT program is a finite set of santences

which satisfics the following conditiona:

(1) Mode-Declaration is put at ihe top of the program.

(2) Relation-Declaration of a predicate is put before the
clauses defining the predicate.

{3) Each predicate has a corresponding mode declaration
and refation declaration.

{(4) Ounly the built-in predicates are allowed as guard
goals.

(5) An AND-predicate is defined only by AND-clauses,
and an OR-predicate is defined only by OR-clauses.

Note that a elavse ean contain as the bedy goals
both of AND-predicate and OR-predicate.

Since an automatic mode analysis is oot performed
in the compilation, mode should be deciared by the user.

Besides, we impese some restrictions on the program
which we deal with.
|Restrictions|
(1) decidable mode

For every predicate, the mode of every argument
can be decidable. That is, the input argument must be
ground when the predicate is called. And only variable
is permitted as an oulput argument of 2 head goal.
(2) prohibition of multiple writers

Mere than two body goals cannot share a variable
in the sutput meode in the same clause.

(1) is introduced to elarily the direction of data Aow. It
requires that all variables should be bound at the end
of the computation. and prevents the use of partially
instantinted data structure such as d4-list. (2] is Intro-
duced to decreaze the cverhead in the execution of the
transformed program.

Example.
i= mode permute{+,-), delete(+, - -},

i= and_relation permute/2.
permute([]1.¥} := true | Y=[7.

permute(X.¥Y} :- true |
delete(X,E.R),
permute (R, Y1}, Y={E|¥1].

1= pr_relation delete/3.
delete{[XIXLt] .E.R) :-
E=X, R=X1.
delete{[X|{X1] ,E,R) :-
delete{X1,E.R1), R-[X|H1].

2.2. Computation Model

Next, we consider the computation model of AN-
DOR -If program. An AND-clause, is executed similarly
in FGHC. Namely, it is suspended until the guard goals
succeed on the condition that the variables in the caller
are nol bound fo terms other than variables. And onee
a clause is committed, possibilities of trying the sther
clauses are abandoned. However, as for an OR-clause, it
searches all solutions in paralle] after the commitmeni of
a clause. We realize the execution by stream model.

If an AND-predicate is called, then head unifications
of the AND-clauses are tried, and if a clause iz commit-
ted, then its bedy goals are invoked in parailel. [AND-
parallelism) On the other hand, if an OR-predicate is
called, all the clavses defining the predicate are commit-
ted if the bead unification succeeds. As a result, the ex-
ecution world branches.(OR-parallelism) Worlds are in-
dependent from one another,

Here, we introduce a basic concept color. Color is
an identifier of these worlds. A variable iz bound to a
atream of solutions, each of which is associated with its
own color. We do not know which data arrives first, orln
which world deadlock appeared. And if there are several
sireams, we have to pick up the data belongiog to the
same world from every stream.

For example, pick up the permutation program in
the above example and examine bow the operation pro-
ceeds. Assume that we want to compute
permute(|1, 2], P).

(0) A goal permute(]1, 2], P) is cailed.

(1) The second clause of permute is invoked.

(2] The geals delete([1,2], E, R), permute(R, ¥1) and
cons(£, Y1, Y] are invoked.

{3) As delete ia an OR-predicate, the execution world of
the goal delzfe([1, 2], E, R) branches.

(3a) In the first world, the answer E=1, R=[2] assaci-
ated with a color [cl] is returned.

(3b-1) Tn the second world, goals delete([2], E, R1) and
cons(l, B1, R} are inveked with a color [c2].

(3b-2) The execution goal of the goal delefe([2], E, R1)
branches again,

(3b-3) In the first world the answer E=2, R=] | is re-
turned associated with a color [¢2,c3] And in the sec-
vud one the goals delete([], E, R1) and cons{2, B1, R)
are iovoked with the color [¢2,24]. Tn this case, the

call of delete([|, E, B1) fails, since there are no unifi-
able head.

{3b-4) Oniy the answer fram the first world is sent to
the goal cons(l, K1, R).

(3b-5) Cons(1,] |, R) returns the value R=[1] associ-
ated with the color [c2,e3].

(4} The output stream E and R is composed, and
the goal delete(|1,2], £, R) returns the slreams E={
Vel c2ed)) b R=(v(izhev(llezes) b
which are sent to permute(R, Y1].

(58) The stream R is decomposed into the worlds.

{6} The goal permute{[2],¥) is called in the world with
a color [c1]-

(6a-1) Permute(|2],Y) returns the answer Y = |2
with a coler fe1].

(6a-2) The goals delete([2], E, R), permute(R, ¥1) and
cons(£, Y1, Y) are invaked.

(62-3) Delete([2], E, R) returns the answer E=2, R =

(0a-4) Permute(| |, Y 1) returns the answer ¥l = | |-
{6a-5) Cons{2,]],Y) returns the apswer ¥ = [2].
(6a-6) Finally, permute(|2}, Y] returns the answer Y =
[2] with the color [c1}.
{6b) By the similar discussion, permute([1}, V) is called
and returns the answer ¥ = [1] with a color [e2,c3}.
(7) The output streamn Y1 of delete([1, 2], E, R} is com-
posed. And permute(R, Y1) returns the answer Yi={
v(|2].le1]),v{11],|c2,3]) }, which is sent to cons(E,¥1,Y).
{8} The streams E={ vi1,[el]),v(2,[c2,c3]) } and Y1={
wi[2], |t} w(1],[e2,cal} } are decomposed.
{0} Cons is called on only pairs of computable colored
values,
(9a) Cons(1,[2},A1) is called and returns the answer
Al=]1,2} associated with the calor [cl].
(9b) Cons(2,]1],A2) is called and returns the answer
A2=[2,1] associaled with the color [c2,c3].

(10} The output stream ¥ is composed. And cons(E, ¥1,Y)

returne the answer Y={ v(|1,2L.c1]), v([2,1},]c2.3]) }.
Finally, we get a set of all solutions { [1,2],2,1]).

Computation tres model can be constructed dynamically
according to the compuiation.

Op 2 computation tree model, we can find three

types of nodes.

fork: If P is an OR-predicate, then the execution world
branches. And for each case, a mew primilive color is
added. {delete)

merge: If P has mere than two input streams, then
pick up the values whose colors are consistent with one
another. (cons)

pass: Otherwise, execute the goal with the received color
in AND-paraliel. (permute)

Now, we will give a formal definition of color and
colored value.

Definition (primitive-color,color,colored-value)

primitive coler i:= (1d,claupe-number)

tim (31
[primitive-coloricoler]
1:= yi{value,color)

coler

colored-value

where id is the counter that is characteristic to each
call of OR-predicate, and clause-number is the ordinal
pumber of definition clauses of that predicate. Variables
appeared in the original program are bound to a stream
of colored values, denated by { v(V1,C1)»(V2,C2), ..,
v(Vao,Co) }. Each id corresponds to each fork point and
clause-number corresponda to to the branches from that
fork point in the computation tree model.

In the above example, ¢l is {#1,1} which denctes
that the first clause of delete is selected on the call of
number £1. And <2 is {#1,2), which denotes that the
second clause of delete is selected on the call of number
#1. #1 is an id-number given by the system. [¢2,c3]
is [(#1,2),(#2,1)| which shows that the second clause
is selected at the first fork poiot and the first clause is
selected at the second fork peint. Color is an incremental
get, indicating the history of which clause is selected at
each fork point.

We mentioned before that computability is checked
by examining colors. In the followings, we show how
to check copsistency between colors. For any pair of
colors C1 and C2, their relation is defined either as same,
orthogonal or productive.

Definition (same,orthogonal productive]

Let C1 and C2 be colors. Then the relation between

1 and C2 are defined as follows.

(1} If there exists such color (id,clause-numnber) that is
included both in C1 and in C2, then C1 and C2 are said
to be same,

(1) If there exists an id such that (id,nl) is included in
C1 and {id, n2) is inciuded in C2 where nl # nl, then
C1 and €2 are said to be arthogonal,

(8) Otherwise, C1 and C2 are aaid ko be productive.

Intuitively, values with the same color have the com-
mon braoch at some fork poiot and values will the or-
thogonal color have the different branch at the same fork
point, and values with product colors have no commaon
fork point in the computation tree model.

Definition(consistency)

For colored values w(V1,C1) and v(V2,C2), if C1
and C2 are either same or productive, then Cl and C2
are said to be consistent. For colored values w(V1,C1),
v[V2,C2), .., v(Va,Ca), if any 4, 5(1 # 7}, €I and Cj are
consistent, then C1,C2...,Co are consistent.

When a goal receives the set of values v{V1,C1),
v(V2,C2), ..., ¥(V¥0,Cn), each of which ia received from
the different streams, if ©1,02, ...,Co are consistent, then
the goal is computable with the values V1,Ve,..., Vo, Let
R be the resuit. Then, the color associated with R is
defined as the unicn of C1,02,...,Cu. [t is called joint

calor.

3. Compilation

When ANDOR-II program is given, our compiler
translates it inte FGHC program. The compiler consists
of twa main modules : DFA module and TRA module.

DFA is an analyzing part, In this procedure, the
compiler reads Lhe basic program, and makes a graph
for each clause which shows the data flows in the clavse.
Regarding this graph, it analyses the data types and gen-
erates a pre-transformed codes with the requisile infor
mation, TRA is a translation part, It translates the
pre-transformed code inte FGHC program using these

informations,

Data flew analysis{DFA)} means the examination of
data flows for each clause using a data flew graph(DFG).
It picks up such variables [channel) that possibly have a
stream How.

In this procedure, we have the following subproce-
dures:

(1) making a basic DFG

{2} pil:ir. up OR-nades

(3) finding 2 shell-covered geals .
{4) judgment of output variable types
(5} making pre-transformed code

First of all, we make a basic DFG of each clause
which shows the data flow in the clause. Secondly, we
have to pickup OR-nodes which may produce a stream,
Next, we find a shell covered goals and judge the types of
output variables for each predicate. And lastly, we make
the output information. Described later, we will make a
transformed program using these informations.

3.1.1. "3

We must grasp the data fiows ameong goals through
shared variables and the lowing data types. A data flow
graph is introduced sc as to support the analysis.

Drefinition {Data Flow Graph of a c]anﬁn:l
Let © be a clause whose head goal is H and whose

bady geoals are By, ..., B, For a clause O, Data Flow
Graph (DFG) of 35 2 minimal graph which satisfies
the following conditions:

(1) Each node has a different label.

{2) Each nede is labeled with By, ..., By, respectively.
(3) Each edge is labeled with a variable or a consiant
appearing in the bady goals. (Strictly speaking, there
alzo exist some supplement variables, explained later)

{4} For goals By and By (¢ # 7}, il & variable X appears
both in an output arguiment of the goal B; and an input
argument of By, then there is an edge labeled with X
from the node labeled with B, to the node 8.

(5) There is a special edge that lacks either a starting
node or an ending node and wiose label is the variable

or consiant appearing in the head goal H.

Definition [global input, global eutput)

In the above (5}, the label put on the edge that lacks
a startiog node is called a global input and the label put
on the edge that lacks an ending node is called a global
autput,

DFG is constructed statistically for a given source

program, and it has the following properties,

{1} It is acyclic.

(2] There are no edges with the same label whose starting
nodes are different.

The property (1) is because of the determinacy of
modes, and the property (2) is based on the prohibition
of multiple writers. On the other hand, there exists
edges with the same label whose starting nodes are same.
(Fig.2a) And we sometime reduce the graph to the form
shown in Fig.2h.

¥ ¥
X 7 7
Pig 2a. DFC Fig 2b. Reduced DFG

Example.
Fig.3 shows the DFG of the clause:

permute(X,¥Y) := true |
delete (X,E. R}, permute(R,Y1), Y=[E|Y1].

H._.__,' permute ,‘3:1

— ol delete -| coms
x E Y
Fig 3. DFG of permute

Definition{DFG's of a predicate)

If & predicate P is defined by a sst of clunses
Ty On, then a set of DFG's of Cy, ..., Oy is 82id to be
DFG's af P,

[Netation]
We sometimes say ‘node’ instead of ‘goal® and vice
versa. And we use ‘channel’ instead of *edge’,

Definition(Pseudo OR-predicaite)

An AND-predicate P is said to be pseuds OR-
predicate if there exists such clause in the definition of
P that includes, as & body goal, either an OR-predicate
or a psepco OR-predicate,

Definition{ AND-node, OR-node)

For a DFG, if a pode corresponds either ts an OR-
predicate or to a pseudo OR-predicate, then it is said to
be an OR-pode. Otherwise, it is said to be an AND-node.

Examiple.

In Fig.3, delele and perrmule OR-nodes and cons is
an AN[-node.

As a clause in a source program has the one-to-one
relation with DFG, we will proceed our discussion on
DFG's instead of the source program, hereafler,

3.1.2. Shell

After IFG's are constructed by statistical analysis
of Lhe source program, we do dynamical aralysis on the
data flewing on the execution.

We have to examine data types flowing channels
(edges) in DFQ%, and il a node has a stream input, add

ashell onto that node which deals with the stream i:l.pul‘.a

properly.

Definition (channel types)

If the channel alwaye has single data flow, then it
is called a scalar type. 17 it possibly has a stream data
fiow, then it 13 called a vector type.

Exampfe.
In the Fig.3, the channel X is a scalar type, and the
channel B, F,Y1, and ¥ are vector types.

Dcﬁniliun{descendani] .

For a DFG, if there exists an EI‘IEF! from a node NI
to a node W2, then it is said that N2 fs an immediale
descendant of NI, The node N2 that satisfies either of
the following condition is called a descendant of N1,

(1) N2 is an immediate descendant of Ni

(2} There exisla & node N such that N is an immedi.

ate descendant of N1 and that N2 is a descendant
of M.

We judge the channel types in a DFQ according to
the following rules:
[Hules] .
{17 A channel whose starting node i3 OR-pode is the
vecbar Ly jie.
{2) A channel whese starting node is the descendant of
an OH-node s the veclor type.
{3) The rest of channels are Lhe scalar Lypes,

The most important case is that more than two in-
put vector type channels flow into one node, since we
can compute only on the data whose eolors are consis-
tenk, Shell is introduced in order to deal with vector type
channels,

Shell has the following functions:
(1) decompasition

It dispatches the element from the stream.
[2) consiztency check

After the decoinposition, if there are more thae twe
input streams, then check the consistency of the colors
of the eolored valuwes. If they are consistent, then pass
When b Lhe eare process with the joist color. 1f they are

not consistent, then abolish the computation for those
in'[mts.
{3) compesition

Put the sclutions in each world together into the
stream form again.

Core process executes the eriginal computation in an
execution waorld.

We judge which node needs a shell, according to the
following rules:

[Rule

If the goal bas an input channel of vector lype, then
the node needs a shell, We call the node a shell-covered
node,

Mote Lthatl shell-covered nede is a descendant of an OR-
naode,

We also examine Lhe shell type, since different shell
is created depending on which channel is vector type.
Shell type is represented in 2 set of channel types. For
example, the shell type vector scalar,vector| denotes the
ghell whose first and third arguments are vector, and the
gecond is scalar.

We also have to judge the global output data type of
vach predicate . In general, there are mulliple DFG's
of a predicate P. Therefore, it may happen that in
goine DFG' of P, the channels of the global output are
scalar type, while in other DFG's of P, the corresponding
chanpels are vector type. Un this case, we take safer
judgment, namely, judge the global output data as a
stream type,

Example.

There are two DFG's of delate {Fig.4) As for the sec-
ond argument, according to the first graph, the channel
is the scalar type, and to the second graph, it ia the vec-
tor type. We judge the second argument ns the stream
type.

E

Xi R

—eunify | —

X = J—
2]aerete |1 R
D

X

Fig 4. DFGE's of delete

3.1.3. Treatment of Term

— 5 —

In order to lessen the overliead of the transformed
program, we deal with a term in somewhat tricky way
when constructing a DFG. That is, if a compound term
{i.e. terms other than constants, variables) appears as
the argument of a body goal, then we rewrite the goal so
that the compound Lerm is not used as labels of edges.
We will give ar inforinal explanation of the procedure.

{1} o compound term appears in Lhe input argument

Assuine that a goal P(¢{X,Y), Z) appears as a body
goal of some clause where the mode is P{+,-). And
assume that X has a vector type flow, while ¥ has a
scalar type. Then, we rewrite the goal to P*(X,Y, 2}
where the mode iz P*{+,+,—). At the same time, we
adld the new clanse

P+(X,¥,2} - true | P{x{X.,Y),Z).

{11} a compound term appears in bhe output argument

Assume that & geal P{X Y, 2)) appears as a body
goal of some clawse where the mode 13 P{+,-}. In
this case, we rewrile Lhe goal to two goals P{X, NV)
and oul_Term® (NVY, 2] where NV i3 a new variable
that does not appear in the clause and the mode i3
out_Term*(+,—,~). At the same time, add the new
claize

cut_Term(NV.Y.Z) :- true | (¥, Z)=NV.

After rewriting, for all elauses other than the newly
generabed clanses in reading lhe scurce program, ihe
wumbrer of argumients of ench goal is equal te the pumber
afl channels of the corresponding node. Note that these
newly generated clauses have only one body goal. It
means that the body goal never has a ehell.

3.1.4. Ouiput Pre-Transfermed Code

Finaliy in the DFA procedure, pre-transformed code
i penerated. [Pre-transformed code consists of three
parts : predicate list part, information part and defi-
nition part. Predicate list part is the list of predicates
appeared in the original program and newly generated
predicates. Information part represents the information
for each predicate, such as arily, relation, global cutputs
type and ghell type. Definition part is alinost as same as
the criginal program, only the inforimation about shell ia
associated.

13 TRA

TRA[TRAnslormation) is the procedure which trans-

forms the pre-transformed code into PGHC program, It
consisls of the following four subprocedures:

{1} shell creation

(2] check creation

{3) OR-AND transformation

(4) predicale tramsfonmalion

3.2,), _Shell Creating

Firstly, we make shells according to the information,
Fur vach shell eovered node, ereate the corresponding
shell_creation clauses. Note that all the oulput channels

of shell covered nodes are always vector. Shell_crealion
clanses decompose the inpub stream inlo a single inpuk
value with its own color, pass them to the core process,
and put the output values for each color together into
the stream again. Core process for each data is executed
independently. We do aol know whether each core pro-
cess succeeds, fails or deadlocks. Neither do we know the
order of solution we can get. If a core process succeeds,
theo the answer ig added to the tail of the cutput siream.
If it fails or deadlocks, no answers are added. Therefore,
we can gel all the solutions without being disturbed by
failure or deadlock. It is implemented by the fair merge
technique. We will illustrate the procedure by the per-
mutation example,

Example,

According to the information in the pre-transformed
cade, two types of shells for cons are ereated:
[scalar,vector,vector] and |veclor vector veetar],

(1) First type : jscalar,vector,vector]|
In this case, since only one input channel is a vector
type, shell decomposes the second argument and passes
each value to the core with its own color. And output
values are put into one stream by fair merge. Therefare,
the following clauses are created:
cons_Shell_i_1(X,[v(Y.Cy}|¥sl.Z) :- true |
cone _Cere(X,¥,20,w(Cy)),
Zi=[v(20,Cy1],
cons_Shell_1_i{X ¥e, Z2},
out _Merge(Z1,22,7).

cone_Shell_i_1{_,[],2) z=[].

i= true |

{1} Second type [vector,vector,vector]

lu this case, we decompose the firsl argument first,
then second argument. Moreover, we check the cousis-
tency of colors before passing the data to the core pro-
cess, Therefore, Lhe follewing elauses are created:

cons_Shell _2_1([v(X,Cx)|Xel.¥,2} :-
true |
cons_Shell_2_2{v{X,Cx),Y,Z1),
cons _Shell _2_1(¥s,Y, 622},
cut_Herge{Z1,23,2}.

cong_Shell_2_1([],_.2) :- true | 2Z=[].

cons_Shell_2_3{v(X,cx), [v(¥,Cy}i¥al,Z) :-
true |
cons_Check_2_1(v(X.Cx) . v{Y.Cy) 21},
cone_Shell _3_2(v(X,Cx).Ys.Z3).
cut_Merge(Z1,23.2).

cone_Shell _2_2{(_,(}.Z) :- true | Z=[].

3.2.2. Cleck Creation

As stated Lefore, we have to check the consistency

among colers in Lhe shell. I the colors are consistent,
then the values are passed to the core process and the

joint color is created. Otherwise, do nothing. This pro-
cess is called from shell_creation clause.

Example.

cons_Check_2_1{v{X.Cx),v(Y,Cy),Z) :- true |
same_Coler([Cx.Cyl.R).
cons_Check_2_2(R.X.Y.2).

cong_Cheek_2_2(suceess(C) . X,¥,2) :- true |
cons_Core(X,Y,Z0,w(C)),
I=[vi(Z0,C0)].

eens_Checl_2_2{fail,_,_,2} :- true | Z=[].

In the above program, seme_Color is the system pred-
icate which elhecks the consistency among colors. If
they are consistent, then it returns the value suecess(C)
where € is 2 joint color, If they are not consistent, then
it returns the value jatl. Note that cons_Check_2_1
never fails.

323 OR—AND Transformation

In this step, we transform npondeterministic OR-
relation clauses into the deterministic cnes. OR-relation
in the source program is realized by AND-parallelism.
And their solutions are collected by u;ing a fair merge
again.

Example.
delete_Corel(X,Y,Z,w{C))
get_Counter(Ct),
delete_Core_t0(X, 71,71, w{C),CL),
delete_Core_20X,¥2.22 w(C}.Ct),

unt_l-[erge {¥1,Y2,¥},
out _Merge{Z1,22,2}.

i= true |

In the above program, gef_Counier is the system predi-
cate which gives some 1D-number to identify the call.

324 Predicate Transformation

Finally, we transform all predicates. Tt is performed
on the types of clauses according to the following rules.
Newly generated clauses other than out_Term are re-
garded as AND-clauses,

(I} AND-clauses

{1} Change the predicate name p to p_Core.

{2) Add an argument to receive the information of the
current color,

{3) If it includes shell covered node as a body goal, then
rewrite the goal to the corresponding shell ereation
goal, and make the sutput of the other bedy goals in
the stream form of ['l'.lll{lpl"r CH where ¥V is the ﬂﬁgﬁl‘l:ﬂ
output variable aud O is the current colar.

I:d} Rewrite the goal other than shell covered node to
the corresponding goal of «_Core. (5} I the lead
upification might fail when the predicate is called,
then add an extra clause for failure.

Example.

permute_Core([] .Y, w(C))
vy=[1,
Y=[w(VY,W)].

permute_Core([X|Xs]l, ¥, w(C)) :- true |

delete_Core([X|Xs] .E.R.w{C)),
perzute_Bhell(R,I),
cons_Shell 2 I{E.Z.Y).

= true |

(IT) OR-clauses

(1} Change the predicate name p to p_Core.

(2)-(4) As same as the above statement.

(5) Add an argument to receive the information of the
ID-number of the current call.

{6) *true’ ia added as a guard goal.

(7) The body goal which updates the eolor information
is added.

EKBmPJE.
delete_Core_1([X|Xa] E, ¥, w(C), Ct) :-
true |
append (W, [{c1,Ct)] ,NewC),
VE = X,
E=[v(VE,HewC}],
YT = Xa,
Y=[w (VY HewC)].
delete Core_1(_.E.Y.w(_)..) :- true |
E=[1, v=[].

(11T} Clawses in the form of out_Term®,
We do not have to transform the clauses except for

adding an argument for receiving the information of the
current color.

The iransformed program is shown in Appendix A,

4. APPLICATION

In this section, we will give more sophisticated ex-
ample of fault diagnoesis of a simple circuit. Our purpose
is the following two hold : to describe dyoamical behav-
jors of such a system that has a lot of behavioral pessi-
bilities in a simple way, and to gain a set of solutions via
paraile]l search mechanism.

Fig.5 shows a hall adder. It adds two binary digits,
but it cannot take care of carries which might be origi-
nated in lower order positions when numbers with more
thao ooe digital position are added. 5 i3 the sum of A
and B, and O is the carrier. The outputs & and D are
observable, but inputs A and I cannot always be ob-
gerved. For simplicity, we assume that two ioverters and
an OH-gote are koown to be fault-free, and input A is
ahacrvable, The system i3 represented in ANDOR-IT as
follows:

B o—

e EE L e LR

P e]

Half Adder

Fig 5.

:= and_relation circuit/2.
cirewit([I1,I3],0utput) :- true |

element (inv_1,inverter,cerrect,[T1].01._),
eiement (inv_2, inverter, correct, [12],02,_),
element (and_1,and2 ,doubt, [I1,02] ,.03,58¢61),
element (and_2,and? deubt, [01,12],04.5t2),
e¢lement (end_3,and2,doubt, [I1,In2],05,5t3),
element (or_1,8r2,correct, [03,04] ,08,_),
Output=[[06,05], [5t1,5¢2,8831].

ct)]

In element(Name, Type, State, In, Out, State_1), Name

denotes the name of component and Type shows its type.
Siate is the given state of the component. If State is
doubi, we do not know the component behaves correctly
ar not, Therefore, the behavior is represented by OR-
relation. In and Ouf show the set of inputs and outputs
of the component, respectively. State_1 is the detected
state of the component, which is either correct or error.
In the last goai of circutt, the variable COutput is bound
Lo a sel of observed cutput variables and a set of detected
states of the components which might behave lneorrectly.
The rest of the programA complete program is shown
in Appendix B. In the program, the two OR-predicate
sel_nurm and elerneni_d represent the nondeterminacy,
Set_nurn cauzes the execution warld split depending on
the input 8. And element_d couses the world split de-
pending on the behavior of that component.

Our purpose is to detect a faulty compeonent and
determine the unknown inputs. Fault diagoosis is dooe
by generate-and-test strategy in the following manpen
Circuit is the generator and check_output shown below
is the tester. Geuerator performs the multi-simulation
with the assumption of faulty component and the inpui
B. And tester picks up the cases the generated outputs
are equivalent to the observed qutputs,

:= and_releation test/2.

test([Data_in, Data_out] , Ang)
set_input(Data_in,Input),
circult (Input, Output),
check_output (Input,Output,Data_out,4nal.

- true |

1= and_relation check_cutput/4.
check_output(In, [Dut,State] ,Data_out,Ans) :-
Data_cut = Qut |

Ang=[In,Out,State].

Example.

C =0and D = 1 are ohserved as outputs, and
A =1 i3 observed as an input. lo this case, it is invoked
by the call of the gaal.

test([[1,7],00,1]] . Anawer}

As the resull of the execution of the transformed
program, two possible cases are detected,

[[A.B].[C.D), [compl,comp2,compd]] =

[[1,0],[0,1],
[{and_i,error),{and_2,correct),(and_3,.errar)]
1.
[[1.1].]0,1],
[(and_1.eerrect), (and_2,correct), (and_3,corre

]

The first case denotes that the components 1 and 3 be-
haves incorrectly, for the input B = 0, and the second
case depotes that all the component behave correctly for
the input 8 =1,

5. DISCUSSION

5.1. Comparison with Otlier Works

The problem of all solution search and trassforma-
tion method from nondeterministic program into the de-
terministic one seem to be sighificant and fruitful,

Ueda has proposed the transformation methed from
exbaustive search program in Prolog into deterministic
FGHC/Prolog program by using continuation. [Ueda
86aj|Ueda 86b| OR-parallelismi in the original program
is realized by AND-parallelism in the transformed pro-
gram, while the intrinsic AND-paralieiism is realized by
sequential AND clauses. His paper reports that trans-
formed program have much more efficiency for some class
of programs, and thai they do not lose 30 much efficiency
for others, Since the computation model has a statistic
scheduling, it is possible to encode coroutine. However,
it is not always possible to schedule statistically on the
gimulation of nondeterministic systems, since the num-
ber of aplit cases depends on the input data.

Tamaki presented alternative method based va stream
execution model.[Tamaki 8G] He adopts a stream-based
compilation with the constraint of ground I/O. It trans-
forms the program written in the language with AND/OR
parallelism into the one in committed choice language.
In his system, data from alternative worlds are propa-
gated to several AND processes in a siream form Al-
though runtime overhicad is high, the use of stream en-
ables dynamic acheduling and the transformed program
has more parallelism, since it reflects both the AND- and
OR-parallelism in the source program, And the execution
of the AN[}-processes in the sgame ‘block’ are synchro-
nized for each data. However, there is a restriction that

—_— e

if some proceszes in the same block have a shared vari-
able, then it appears coly in input argoments of the pro-
ceseez, That is, we cannot simulate such a phenomenon
in that consumer and producer can executed in parallel.
It ziways happen to the real system.

Although both methods have advantages, they are
pet sufficient Lo treat a nondeterministic system. Our
systeny designed so that it can suffice the basic require-
ments for the treatment of nondelerministic system by
the introduction of coler.

(1) Dynamic scheduling is realized in the execution by
the utilization of stream.

{2) Simulation of the basic behavior such as the parallel
execulion af consumer and producer is possible.

We avoid using d-list on collecting the soluticns, since
we hope the system to support case of ‘bad’ caszes. Il a
process deadlocks, or goes into the infinite loop, then we
cannet get another solution Hence, although we lose the
efficiency by using d-list, we can get all the solutions in
spite of *bad’ cases using fair merge.

5.2, Future Works

There are soime rem:ﬁning prublﬂms for future works.

One is the optimization of transformed program.
The most important point is the overhead of g:lar con-
sistency check in the execution of the transformed pro-
gram. Two ways can be considered for the sclutions of
this problem. The one is the cholce of the necessary
information and restriction of color additicn. In current
eyetem, primitive color information is added at every fork
point, But detail information is not always required for
the identification of the world. We select only the essen-
tial ones so that the system can check less data. The
ather solution is the choice of the necessary consistency
check. For example, we do not have ko check consistency
of productive colors, It is because that since they do not
have common ferk point, we can define the join coler
only by appending the color informaticn withoub check-
ing their consistency. Automatic mode analysis is alse in
consideration so that it can decrease the users’ burden.

Suppression of irrelevant computations s alse an
important problem to increase efficlency, U a process
fail, then the conjunctive goals need not to be computed
any more. Howewver, the current system which does not
have such a mechanism completes all the computations.
In order to realize such a mechanism, for instance, we
make the system so that il an element of conjunctive
goals tails, ihen an agent is sent to abort the other goals,

Ancther problem i to share the result of compu-
tation in the different world. Logically, computation in
different worlds are independent. But from the prag-
matic point of view, the knowledge discovered in a world
Zan benefits other worlds. It is desirable to utilize such
cross information flow over worlds.

An enlargement of applicaticn domain is For exam-
ple, elimination of the prohibition of multiple writers can
enlarge the class of programs to be hapdled. Moreover,

since an actual system often has a eyelic data flow, it is
required to simulate such systems,

6. CONCLUDING REMARKS

We have proposed a parallel logic programming
language ANDOR-II for modeling and simulating the
system with the pondeterministic behavior. We have
presented the compilation methed fram ANDOR-IT to
FGHC. Both AND- and OR-parallelism are realized
based on the stream. The compiler is developed by
DECI10-Prelog on DEC-2060, The transformation pro-
gram of the half adder example shown in the section 3
bakes about 3500 msec by FGHO compiler on DEC10-
Prolog. Although the overhiead of color check is burden-

SOITLE DOW, We can mBII'IH i.t &IHHJIEI’ h}' upﬁmizal'{nn.

ACKNOWLEDGMENTS

‘This research was done as one of the subprojects of
the Fifth Generation Computer Systems (FGCS) project.
We would like to thaopk Dr.K.Fuchi, Director of ICOT,
for the opportunity of doing this research and Dr. K.
Furukawa, Chief of the 1st Labaratory of ICOT, for his
adwvice and encouragement.

REFERENCES

[Conery and Kibler 85] Conery,5 and F.Kibler, “AND
Parallelism and Neadeterminism in Logic Programs.®
New Geperation Computing, ¥ol.3, Neo.l, pp.43-70,
1985,

[Clark and Gregory 84] Clark K.L. and 5.Gregory, “PAR-
LOG: Parallel Programming io Logic,® Ressarch Re
port DOC 81716, Imperial College of Science and Teck-
nology, 1984,

[deKleer and Brown &3] deKleer,J. and J.5.Brown, “The
Origin, Form, and Logic of Qualitative Physical Laws,”
Proc.of 13CAL-83, pp.1158- 11464,

[Huipers 86] Kuipers,B.1., “Qualitative Simulation,” Ar-
tificial Inteiligence, Vol.29, No.d, pp.2H0-338, 1986,
|Shapire 83 Shapire,E Y., “A Subset of Concurrent Pro-

leg and Its Interpreter,” JCOT TR-003,1983,

[Shapire 84| Shapire,E.Y., “SBystems Programmiog in
Copeurrent Proleg,” Prec.l1lth Annual ACM Sympe-
sium on Principles of Programming Languages, pp.33-
105,1984,

[Takeuchi 84| TakeuchiA., “On An Extension of Stream-
Based AND-Parailel Logic Programming Languages,”
Proc.of 1st Conf, of Japan Society of Software Science
and Technology, pp.201-284, 1984 (in Japanese),

[Tamaki 86] Tamaki,H., “Stream-Based Compilation of
Ground [/O Prelog into Committed Chaoice Languages,
Technical Report Ne.8G6-5, Dept. of Information Sci-
ence, lbaraki University, 198G,

[Ueda 85| Ueda K., *Guarded Horn Clauses,” Proc.of
Logic Programming 85, LNCS 221, Springer pp.168-

— lﬂ ——

179, 1086. delete_Core 2([X1Xs] E,¥,w(C),Ct) :- true |

|[Ueda 86a] Ueda,K., “Makiog Exhaustive Search Pro- sppend(C, [(n2,C0)], HewC),
grams Deterministic,” Proc.of 3rd Int. Cond. on Logic delete_Core(Xs,E,R.v(HevC)),
Programming, LNCS 225, Springer, pp.270-282, 1980. cong_Shell_1_t{X.R.Y).

[Ueda #6h| Ueda, K., “Making Exhaustive Search Pro- delete_Cere_20_,E.Y,w(_),_) :- true | E=[], Y=[].
grams Deterministic(11)," Proc.of 3rd Conl. of Japan
Society of Software Science and Technology, pp.1-8, cons_Shell 1_1(X, [«{Y,CY)|Yal I} := true |
1086 (in Japanese), eons_Core{X,¥,20,w(CYI),

21=[v(Z0,Cy3]1.

Appendix A “Transformed program of permuation. cons_Shell_1_1(X,¥s, 22),

permute_Shell{[]1.¥) :- tzue | ¥=[). eut_Merge(Z1,22,1).
pernutu-ﬁhtllflv{x,cﬁ|1|],T] c= true | ceme_Bhell_1_1{_,[1,2) :- true | Z=[].
Peruutq_ﬂﬁft{l.fi.!{c}).
persute_Shell (Xs,Y2), conam_Shell_2_10[v(X.C)|Xs].¥.Z) := true |
eus_Merge{¥1,¥2,¥). cone_Shell Z_Z0v(X.C).Y.I1),

cons_Shell_2_1{¥s ¥, Z3},

permite_Core((1.Y,w(C)} :- true | out_Merge(21,22,7).

=[], cona_Shell_2_t([},_,Z% :- true | Z=[].
¥=[v{¥¥,C01.
pzruutl_ﬂartf[xlll],Yiuﬁﬂi} r= true | esna_Shell 2 _2(«(X,CH), [v(¥,CY}{Y¥e].2) :- true |
delete_Core([XIXs] E.R,w(C]], cona_Shell_2_3(v{X,CX).v{¥.CY).Z1).
permute_Shell(k 1}, eore_Shell_2_2(v(X,CX),Ya ZI}.
cona_Shell_2_1{E,Z,¥). out_Merge(Z1.22,1).

cons_Shell 2 2(_,[1,2) :- wrue | Z=[].
delete_Core(X, ¥, Z,w(C)) :- true |

get_Counter(Ct), cens_Shell 2 _3(w(X,CX),v(Y.0Y),Z) := trus |
dq];ig_ﬂnre_lix.fl.Ii.itﬂi.51}. saze_Coler({ [CX,CY].R),
delete Core 2(X.Y2.22.w(C),Ct), cons_Ehell_2_4(R . X.Y,I).
out_Merge{¥Y1.Y2.Y).
cut Merge(21,22,2). cons_Shell_2_4{success(C) . X.¥.Z) :- true |
- :nnu_CﬂrE{xlT,Iﬂ,I{ﬂ}}.
delete_Care_1([X|%e],E,¥,e(C}.C) :- true | z=[za].
append(C. {(nl.0)] NewC). cone_Shell 2 _4(feil,_,.,T) i- traa | I=[].
VYE = X,
E=[w{VE, liewC}],
VY = Xs,
Y={w{V¥ HeuC)]j.

delete_Core_L{_ B, ¥,w{_),.) := trua | E=[], ¥=[}.

Appendix B Half Adder Program in ANDOR-II

- mode teatl+,-), cireuit(+,=), element(+, 4, 4,0 = -], get_inputl+, =),
element_L{+,+, +,+, = =}, element_d{+,+,+,-,-}, elemenz_20(+,+,+,-},
inverter(+,+, -3, and2{+,+, -}, ari(+,+,-), set_input(+ -],
set_in{+, =), set_num{-}, check autput{+,+,+ -].

:= pnd_relation teaz/2.

test([Data_in,Deta_out] Ansl :- wrue |
set_input{Data_in, Input), _ % make s set of inputs
circuit{Inpus, Qutput), % Eenerater
chg:k_nutput[lnput.Dutput.Ultl_but.ﬂhi}n % tester

* half_adder circuit definitien

:= and_relation eireuit/2.

gircuit{[Inl,In2], Output) - true |
elezent{inv_!, inverter,correct, Inl], Dutl, 3,
elezentiinv_Z,inverter, correct, [In2], Our2,),
elepent{and_I,andZ, deubt, [Inl, Out2],Dutd, Statelld,
elemenc{and_3,and?, doubt, [Jutl,In2], Outd, Seatel),
element(end 3, and? doukt, [Inl, In2) , Outk, Stated],
elopent(or_1.or2,correct, [Outd, Outd]. Outh. _J.
Output=f[Out6,Duth], [Stetel,StateZ, Svaved]].

— 11

‘= and_relation element/6.

elementilame, Type,State, Input,Output,State_1) :- true |
get_input{Input, Input_1),
element_i{la=e, Type, State,Input_l,Dutput,State_1).

;= and_relation get_imput/2.
get_input{ [Inpusi_1|Inputi], Inpus} :- Inpatl 1h=(_,)}
lnpus2 = [Iapusi_1lInpuz2_1],
get_input(Inputl, Inpue2_1}.
Ett_inputf[Inputl_!IThputl].InputE} ;= Inputl_t=(Inputl_ 2.} |
Input2 = [Iaputl_2{Input2_11,
get_input{Inputl, Inputd_1}.
get_input([], InputZ) :- true | Inpatl=[]

r- gnd_rninalnn elemﬁnt_]fﬁ.
glgmgnt_i{H;ne,jypn,daubz,Input.ﬂutput.ﬁtlt-] o= Ltrue |

elesens d(lame,Type, Input Output, State).
element_1{lame, Type, State, Input,ODutput,State 1) - State’=doubt |

element_2(Type,State, Input, OJutput]),

State_l1=(liame, State).

P nr‘rzlatxun Eluhent_dfﬁ.

element_d(lame, Type. Input, Output, State) :- true |
element_l{lame, Type,correct, Input, Dutput, State}.

element_d(lame, Type, Input, Dutput, State) ;- true |
element_1(lame, Type,error, Input,Dutput, State).

e

% element definition

:- pnd_relation element_2/4.
element_Z({inverter,State, Input,Qutput) :- true |
inverter(State, Input, Dutput).
elament_2(and2, State, Input, Output] = true |
andZ{State, Input, Dutput).
element_2(er? State, Imput, Output) - true |
er2(State, Input, Output).

« inverter, andld, and erl are defined in tha lower lavel.

L e

:- and_relation eet_inpat/d.

set_input{[Data_iniData_ins].Input) :- true |
set_iniData_in,In),
aet_input(Data_ins, Input_1J,
Input=[In|Input_1].

set_input{[],Input) :- true | Input=[].

= and_relation set_in/2.
eer_in(Data_in, In) :=- Data_in="?" | set_num(In).
set_in(Data_in,In) := Data_in\="'7' | In := Data_imn.

= er_relation set_num/1.
get_num{llum} :- truoe | Num:=0.
set_nuz{llum) :- true | Hea:=1,

Y e s s e e e e e et e S m e A S S S LSS S e ——————

:= and _relazion check _sutput/d.
check_output{Input, [Dutput, State] Data_cut, Ans) :-
Data_out = Jutput |
Ans=[Input, Jucput, Stace].

— 12 o

