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Absiract

An expert system tool called PROTON (PROtotype of expert system building
TOol for the Next generation) ia described. PROTON realizes a hybrid knowledge
representation environment combining frames and rules and a metarule mech-
anism which controls multiple knowledge sources. Heuristic knowledge of the
problem domain is represenied in the rule system environment and static knowl-
edge about components and relationships among them is represented in the frame
gystem environment. PROTON"s implementation iz being carried out using the
advantages of the Extended Self-contained Prolog (ESP) language, which has the
features of logic and object-oriented programming and is running on the Personal
Sequential Inference (PSI) machine of our institute. This paper gives a descrip-
tion of features of PROTON, it's frame and rule system environment, and it's
user-interface environment.



1. Introduction

At present, expert systems constitute one of the mest promising application fields of
artificial intelligence. Their eficiency is recognized in some specific fields and extensions
of the application area are in demand. First generation tools such as OPS5 and EMYCIN
have many problems still to be solved, for example insufficient knowledge representation
environment because of a single knowledge representation and a single inference mecha-
nism and lack of the control mechanism for separating metakpowledge from the domain
knowledge, etc. We are developing an expert system building tool called PROTON, which
corresponds to the second generation tools such as ART, KEE and KC, on the personal
sequential inference (PSI) machine, as the first step for solving these problems.

It is posesible to carry cut the research on the fundamental technologies necessary for
knowledge information processing by implementing the application problems in various
fields on PROTON, and thereby analyzing the application areas. Thus, PROTON as a
tool is intended to be general purpose, to allow study of application problems in various
fields.

PROTON is also utilized as an experimental system for evaluation of appropriate
results of the Fifth Generation Computer System (FGCS) project in such areas as problem
golving and inference mechanism, knowledge acquisition, knowledge-base management,
intelligent user interface, and so on.

The design policy of PROTON is that it realizes a hybrid knowledge representation
environment and implementation of this tool will be attempted by using the advantages of
the Extended Self-contained Prolog (ESP) language, which has the features of logic and
object-oriented programming. As the result of this policy, PROTON provides several good
features, described in the next Section 1.1.

Overviews of PROTON are described in Section 1.2, , the frame gystem environment
is described in Section 2, the rule system environment in Section 3, and a user-interface
environment in Section 4.



1.1. Features of PROTON

Figure 1 shows a general configuration of PROTON. As a tool on the PSI machine,
it has the following features:

(1) Implemented using Extended Self-contained Prolog (ESP), it realizes rule
and frame system environments based on object-oriented and logie pro-
gramming.

(2) A comfortable user interface is provided by SIMPOS, PSI's Cperatiag
System.

(3) An open syetem is realised allowing users to add unser-definad funectional
descriptions in ESP easily.

(4) A statistical data collection facility is incorporated.

(1) means that PROTON realizes a hybrid knowledge representation enviroament
based on the framework of ESP's object oriented mechanism and logic programming.
Knowledge about components of problem domains is represented in the frame system
environment, while knowledge about heuristics of the problem domain is represented in
the rule system environment. Metaknowledge about the problem solving strategy can be
described in the form of metarules.

(2) means that it provides two user interfaces, one for the knowledge engineer and
one for the end user. The former provides a comiortable environment with the multiple
windows and menus. The latter provides primitives for the explanation facility, as seen in
an ordianry expert shell and user-ask facility.

(3) means that it can be easily customized by adopting new functions because of EEP's
object oriented mechaniam. In particular, the inference mechanism and user interface are
designed to be easily customized by the user.

(4) means that it provides a data collection facility during execution for statistics such
as the frequency of access to rules and frames, and system state transitions. The object
of the data collection faciiity is to evaluate the tool and machine environment znd also to
gtudy the characteristics of the application domain knowledge.



1.2. Overviews of PROTON

It should be noted that PROTON is a rule oriented sysiem. Jn PROTON, the ma-
nipulaiions of WM elements and relations in a frame sysiem environment ars initiated
by executing pattern matching for the WM element and their manipunlztion predicates in
the rule system environment, as shown in Figure 2. Rule system environment consists
of knowledge sources {KSs) and metaKS. K5 contains the specification of the rules and
inference control strategy , namely the control strategy for the rule application. MetaKS
contains the specification of the metarules and inference control strategy of metarules.
Working Memory (WM) consists of the WM for templates which corresponds to both
templates of elements and relations (TEs and TRs), and the WM for instance objects.
During the inference process, manipulations according to the requests from execution of
rules are executed on instance objects instantiated from templates of facts (TF}, composed
of templates of elements and relations . The result of the maxzipulations are stored inte
WM as instance objects, via the working memory management system ( WMMS) in a frame
gvstem environment. WMMS manages the above manipulations of WM and detsil of it is
shown in Figure 3. In this case, element plate, block, and corn are defined in the form of
TEs and relationship among them , on is defined in the form of TR.

2. Frame system environment

The definition of elements in the problem domain and the relationships among ele-
ments can be represented in the form of TEs and TRas.

The TEs are equipped with an ordinary inheritance mechanism, and a demon mech-
apism to perform manipulaiions of atiribute values. The system provides two built-in
facilities, one to ask the user when attribute values are undefined and one te provide to
explanation facilities (eg. WHY or HOW).

Definition of an user-defined relation among instances of elements can be given us-
ing the templates of user-defined relationships. A check of resiriction conditions by using
relations, can be represented by describing, to some degree semantically, an attached pro-
cedure. In the definition of relations, properties and restriction conditions can be inherited.
The external descriptions of TE and TR are shown in Figure 4 . In this case, element steei-
block-with-bar is represented in the form of TE and relationship on is represented in the
form of TR. TE steel-block-with-bar consisis of the super link name hlock, attributes
composed of material, grav, and weighi, and the has-part link name bar.

The frame system environment provides the description of inverse relations and the
mechanism to search WM for the combination of the relations equivalent to the corre-
sponding relation using the subséitution function. The substitution function is described
later. As the definiiion of a relation is represented in the form of TRe, relationships among
more than two elements can be easily represented.



2.1. Inheritance mechanism

The inheritance mechanism is a process by which atiributes of one instance object
are assumed to be atiributes of annther instance object according to inheritance links in
abetract hiararchies which consist of is-a hierarchy and has-part hierarchy. The mechanism
is related to the instantiations of TE and TR. During the building of an expert system,
the frequently unsed links, such as super and has-par! links are predefined in the frame
svstem envircnmexzt. In the case of atiribute value inheritance of TE’s, the inheritance
of attributes from templates specified in the super declaration is performed by checking
all facets. In the case of the inheritance of THs, the inheritance mechanisms check re-
strictions, and execute the substitution function. When the link information necessary
for inheritance mechanism is the form of explicitly specified subordinaie template objects,
instance objects containing the inherited informsticns are made vis the instantiation of the
template objects. If the template abject has multiple superordinate chjects. 5 depth-Grst
search for these superordinate objects iz executed in a predefined order over the templates.
Then, if the attribute values for the inheritance are specified explicitly in superordinate
template objects, the search is terminated.

The inclusion relation that means the whole-part relation, can be realized according
fo instance links based on the has-part definition. When the instantiation information
is specified in the has-part definition, the instances depending on this information are
attached to the instance objects instantiated from the TE specified in the has-part defi-
pition.

2.2. Instantiation of template objects

The instance ohjects are instantiated from the definition tempiates of alement and
templates of relation and stored into WM. The identifier for instance objects, called time-
tag , which shows the time when an cbject iz instantiated in WM, is automatically added
to each instantiated instance. The time-tags are also set to the latest value when they are
modified. This identifier is used for confiict resclution of firabie rules. On the instantiation
of template objecis, eacnh attribute value is instantiated to a defauit value specified oy the
templates. If there exists no default value in the specification of the tempiates, the atiribute
value is et to null and variables for pattern matching are set to unbound when refering
it.

During the inference process, the changes made to instance objects are executed in
terms of manipulations of the atiribule information of element insiances and relation
instances among them, such as addition, modification, and deletion,



2.3. Attached procedure

In template objects, a specific procedure cslled she attached procedure can be defined
for any given attributes. The attached procedure is invoked at the time the access to the
corresponding attribute value or instantiation of template objects is performed. It verifies,
sels, or modifies the attribule values by executing a sequence of procedures or by makiag
any possible queries to the user. These procedures are classified into the following three
cases:

a. Attribute values have some restricticons.
b. An attribute valne ia bonnd to some other att=ibute valne.

c. Attribute values can not be predefined.

Attribute values are checked at the same time as the modification of atiribute values
of instance objects. When errors occur due to this check, if an exception handling is
described in the attached procedure form, this procedure is executed. Invocation priority
of the attached procedure is higher than that of procedures used ordinarily in $he sysiem.
When there exist inheritance relations, the attached procedure most adiacent to the current
TE is executed. If the result of this procedure succeeds, the rest of the procedure is
abandoned. The specification of attribute values of the TEs and TRs defined in ‘he
form of the attached procedures can be easily described by embedding the corresponding
attribute names directly.

2.4. Definition of relations among instances

The manipulation of relations among instance objects are represented in ierms of
the creation, modification, and deletion of templates of relations. The number of objects
involved as argumentis of some relation instances can be more than two.,

On the instantiation of relation instances by TRs, the element instance name is set
to the argument specified in that TR, and, in the case of a rule matching patiern, the
element instances of relation insiances can be identified by the position of the argument
in the argument lisi.

Moreover, a mechanism for the substitution is specified in the TR. When there
are no relation instances requested for search among any of the element instances, the
corresponding template of relation requests the search for combinations of relations. and
equivalent relations based on the relations for the substitution represented in TR. When
there exist no instance objects corresponding to the TR, the substitution function searches
WM for the combinations of instance objects equivalent to the combinations of the relations
for the substitution . Thus, the search mechanism for relation instances is performed by
expanding relation instances until the equivalent relation instances can be fouand using the
relations for the substitution .



3. Rule system environment

In the rule system environment, the rules can be grouped and moduralized in the
form of multiple knowledge sources (KSs), as shown in Figure 2 . Thus, arrangement of
knowledge is easy and inference can be performed efficiently by reducing the search space.

The access functions to element objects on working memory (WM) are initiated in the
frame system environment by invocation from the rule system environments. They consist
of manipulations such as creation, deletion, modification, search for ar instance element
having a ceriain pattern, and so on. ESP codes including methods and predicate defined
in the user-defined class can be embedded into rules.

Inference type, inference control sirategy, exit condition and goal to be verified for
backward chaining reasoning can be specified in the KSs.

Metalevel knowledge is the knowledge about control of the KSs. It specifies the
activation timing in the form of forward chaining rules called metarules. The lefi-hand
gide of a metarile gives the specifications of pattern matching with WM. The right-kand
side of a metarule gives the specifications of WM modification and the XS to be execuied.
When KS inference type is backward chaining reasoning, the geal io be verified must also
be specified on the right-hand side.

Rules are compiled into ESP code when executed,

3.1. Metaknowledge

Generally speaking, meta.knawledgé iz knowiedge in an expert system about how the
system operates, or knowledge about the use and control of domain knowledge, namely
knowledge aboui knowledge. Currently, it is introduced inte the sysiem with various
architectures, such as frame system, mule system and an architecture integrating these.
In many rule systems and frame systems, metaknowledge is represented in the form of
hiearchical descriptions for metalayers, such as metarules and metaframes, and is separated
from the domain knowledge. In the rule system environmemt of PROTON, when the
application domain problem can be divided info subproblems and solved, the knowiedge
about centrol of subproblem solution is separated out as metaknowledge and provides a
good prospect of the total system.

3.1.1. Description format

Metaknowledge consists of the metarules, their control strategy, and the termination
condition of the recognize-act cycle of metarules, It’s formal is the same as that of forward
chaining rule description. In addition to the metarule body, there are also the specifications
of hitting strategies for rule and rule application prierities in metarule format. The hiiting
strategy for a rule specifies the activation of the rule, once only or many times. The left-
hand side of metarules consists of the AND-combination of the WM element’s patiern,
user-defined predicates or methods, and ESP predicates, while its right-hand side consists
of the AND-combination of the WM manipulation predicate, user-defined predicates or
methods, ESP predicates, and the KS name. However, when the KS inference type is
backward chaining, the goal pattern to be verified should be also given.



3.1.2. Control of knowledge source invocation

KS invocation control is performed in terms of metaknowledge and the inference mech-
anism of metaknowledge. Because various control mechanisms of K5 invocation can be
realized in the form of metarules, metaknowledge is represented in that form too. In this
case, it is desired that the WM for KS control be separated from the WM for the probiem
domain, when the WM for a rule inference mechanism is designed.

The mechanism of control of KS invocation can be summarized as follows.

1. Selection of one applicable metarunle.
2. Execution of the KS specified in the right-hand side of this metarule.

3. If KS execution succeeds, then the actions speciiied in the right-hand side of
metarule, in general WM manipulation predicates, are executed. If it fails,
then end this metarule. If all applicable metarnies have been exhausted,
terminate.

4. Go to 1.

If the user extends metaknowledge functions, then a blackboard model architecture
can be easily designed. Details of this architeciure are discussed later.

Items 1 and 2 above correspond o the recognize-act mechanism of metarules. There
exist two strategies for this mechanism. One involves seleciing the applicable rule and
executing it immediately without making an agenda, and the cther iz the sirategy of
gelecting one rule according to a certain procedure considering such parameters as rule
application pricrities and time tags, from the agenda made by evaluating the lefi-hand
side of all rules

The KS control mechanism is shown in Figure 5. For example, when metarule 1 is
selected and executed, knowledge source KS1 is activated and finally the rules in the KS1
are executed. If the KS1 succeeds, then the right-hand side of metarulel is executed and
the informatien for KS control in WM is updated or deleted. The user can indicate the
exit option for checking the termination conditions in each rule’s recognize-act cycle.

3.2. Knowledge Source (KS)

The advantage of iniroducing the knowledge source is that it makes it possible to
perform the inference mechanism efficiently by grouping rules into multiple knowledge
aources and by reducing the search spaces. In this system, there is no invecation path
from one KS which is under execution to the other KS. In other words, the transfer
between KSs must be through metaKS. If the problem domain cannot be divided into
multiple subproblems, inference must be performed using only one KS. The inference type
is determined in each KS as one of FC, BC, or MIXED.



3.2.1. Description format

Figure 6 gives an example of tue KS description format. K3 inference control in-
volves the control strategy for the rule application, inference fype and exit condition of
the recognize-act cycle. When the KS inference type is backward chaining, goals cac be
specified statically te KS. There are two types of rule formats, for FC and BC. When the
KS inference tvpe ia FC, KS rules are described in the FC rule format, when ii iz BC,
KS rules are in the BC rule format, and when it is MIXED, K& rules are is the MOXED
format using the combination of FC ana BC rules.

Rule application pricrities and rule hitling stralegy cac be specified as additional
items to the rule description.

In the FC K&, namely rules from KS rules are described in only FC rule fermat: the
right-band side of the rule consists of user-defined predicates, ESP predicates and built-ia
predicates for WM manipulation, such as make , modify , and remove . The syntax of
a BC rule is almost the same as that of an FC mle. Bui, it should be neoiiced that the
right-hand side of 3 BC rule consists of the WM pattern or propose predicate, which is
different from that of an FC rule. In the case of the WM pattern, the backward chaining is
performed without modification of the WM, and in the case of the propose predicate, the
addition to the WM is caused bv executing right-hand side of rules confaining the propose
predicate. The uszer can describe a flexible rule specification using propose predicates.

Specifications about whether the user queries facts or not can be represented in the
attached procedure form embedded in the template of fact (TF). WM element patierns
can be specified by regarding the elements in the frame system as object-aiiribute-value
triplets, and the relations among the elements as predicates. The has-a relation can be
defined among elements in the frame system environment, and the inheritance mechanism
of the instances among the {emplates of elemenis {TEs) is executed according Vo this
relation, Thus, the inheritance link of the TEs can be represented using attribute names
of WM element patterns in the rule description.



3.2.2. Inference type

The inference types in K& are:

* Forward Chaining {FC)
* Backward Chaining {BC)
* MIXED reasoning (MIXED)

Forward chaining {FC) is called data-driven or pattern-driven reasoning. FC performs
the recognize-act cycle of applicable rules by entering the instance objects into the WM
and updates the WM as a result until there exists no applicable rule in KS. A typical
example is OPS5.

Backward chaining is called goal-driver reasoning. It verifes the goals by invoking
BC rules and asking the user. A typical exampie is EMYCIN.

In general, mixed reasoning generates hypotheses by executing forward chaining rules
and then verifies them by backward chaining rules. In PROTON, ${be mixed reasoning
mechanism mainly uses the forward chaining rules, and BC rules are invoked and exe-
cuted automatically to get the necessary data for invocation of FC rules. The inference
mechanism of MIXED KS is ehown in Figure 7.

3.2.3. Ruie appiication mechanism

There are iwo control strategies for the rule application in a KS, namely the first-hit
and conflict resolution strategies, whick can be applied to the three inference types. Here,
the inference mechanisms of FC KE and BC KS are omitted. The inference mechanism of
MIXED KBS is used in explanation of the following cases of first-hit and conflict resolution
strategies.

1. FPirst-hit cirategy

1) Select one PC rule from MIXED ES.

2) If the evalnation of the left-hand side of an PC rule selected suceeeds,
the execution of the right-hand side of this rule iz performed.

3) When step 1 fails. if the WM element patterns in the left-hand side of
FC ruie can’t be matched against WM during recognition of this rule,
then they are verifled by invoking BC rules.

4) If there exists no applicable rule, then terminate. Otherwise, go to
atep 1.

2. Conflict reaciution strategy

1) Make an agenda by selecting all applicable rules.



2) When atep 1 faila, if the WM element patierns in the left-hand side
of FC runle can’t be matched against WM doring recognitien of all
applicable rules, then they are verified by invoking BC rules.

3) Select one FC rule from agenda based or the given estimation and
execnte the righi-hand aide of this rala.

4) If agenda is empty, terminate. Otlhcrwise, go to atep 1.

3.5. Association with blackboard model architecture

The concept of the blackboard model was adopted into the HEARSAY-II speech
understanding system. In this svstem, the blackbeard is a giobal data basze whick zan he
accessed by independent kaowliedge sources and used for means of communication with
each other. Generally, it is said that the blackboard model architecture is a arckiteciurs
with a global daia base as the communication inierface. The architecture zonsistz of the
three main components. They are the knowledge source, the blackboard data siructure,
and the control module. The knowledge source in the blackboard model architecture is
almost the same as that of PROTON.

In PROTON, the blackboard data structure can be represented using the WM ele-
ments in a frame system environment. If desired, the blackboard data structure can be
organized into an abstract hierarchy and be easily represenied in the form of the WM
elements using has-part and super link in a frame system snvironment. Then, if this
data structure iz desired to be described as an abstract hierarchy by uniquely using ihe
whole-part relation, it can be easily represented as an absiraci hierarchy by atiaching a
unigue identifier to the has-part link. The general mechanizm of the controi module in the
blackboard model architecturs is as follows:

1. Candidate generation of the action to be takex nexi (eg. KS invocation)
by having the conirol manager continnounsly monitor blackboard changes.

2. Determination of focns of attention.

3. Selection (scheduling) of action to be done next by means of the focus of
‘attention.

4. Iovocation of KS according to changes of blackboard spportunistically.

B. GGo te 1.

Of course, some criteria are needed to determine when this coatrol cycle is to be
terminated.

In PROTON, the metaknowledge and its invocation mechanism alinost correspond
to the above control mechaniasm. For example, items 1 and 2 in the blackboard control
mechanism corresponds to item 1 in the contro! mechanism of KS invocation of PROTON,
itemn 3 to item 2 and item 4 te item 3. The activate condition in the biackbozard model
architecture corresponds to the left-hand side of a metarule. Thus. in PROTON, the vari-
ous activate conditions can be represented using metarule, hecause the activate condition



can be desribed in a metarule format. The corresponding K8 is selected and execuied
by metarule invocation, and when KS execution is termicated, the right-hand side of a
metarule, except for the KS invocation, is executed and elements in the WM are updated.
This update process to the WM corresponds to the focus of attention, such as generation
of event, geal, and so on.

In PROTON, the invocation mechanism of the metaKS monitors changes in the WM
continuously and decides which metarule in the metaK3 is executed next. From ihis
iterative process, the sequences of KSs are performed dynamically as the result.

However, it is insufficient for PROTCN’s mechanism to represent ihe biackboard
mode] architecture for the planning problem as in the case of B.Hayes-Roth [4], because
PROTON does not provide the scheduling functions for effective utilization of the KSs.
This results from the fact that PROTON is intended to be nused, act for the special purpose
of the design problem, but for general purposes.

3.3.1. XS invocation type

In the svstem with the blackboard model architecture, of course including PROTON,
the KSs are invoked opportunistically. Invocation and execution of KSe correspond to
solving the subproblems inte which the problem can be divided. In most design problems,
it seema that KS invocation is not performed very opportunistically and is performed
almost procedurally. .In other words, it appears that there exist many cases where only
the subproblems into which a problem of the application domain can be divided, namely
KSs, can be invoked procedurally and these are considered as the target for current design
problems.

However, when considering a more complicated design problem as the target, which is
more practical, it is thought that the KS invocation mechanism shouid not be performed
according to the procedural approach, but rather according to the opportunistic approach.
Naturallv, considerable facilities for planning will alsc be needed, in order to deal effectively
with these probiems.

3.3.2. Necessary facilities

In order to achieve the above KS invocation mechanism, a sophisticated planning
facility will be needed. Furthermore, an intelligent backiracking focility, especiaily for
dependency-directed backtracking, will be needed to invoke KSs opportunisticaily. The
reason why a dependency-directed backtracking is needed for opportunistic KE imvocaiion
is the fact that it stores the justifications for the K5 invocation and the execution process.
If the KS exectuion fails, it can then backtrack to the most promising alternative by using
these justifications and thereby, facilitates efficient KS invocation and execution.

Of course, the justifications of KS rule execution must alsc be stored in order to use
the dependency-directed backtracking approach. In this case, it is inefficient tc apply it
to all the rules over all the KSs as it would demand tremendously wastful computation.
Therefore, only rules in the specified KSs should be applied in this approach.

In the future, PROTON will be extended to realize a framework including these
planning (scheduling) and dependency-directed backtracking mechanisms.

—_—13—



4. User-interface facility

The user inierface provides various facilities thal assist in utilizing the system. In
the case of the expert system building tool, the user can be classified into two types: the
builder of the expert svstem, the Knowledge Engineer {KE), and the user of expert systems
built by a KE, the End User (EU).

We think that the utilizalion atages of the tool are best represenied by the following
five stages:

(1} Enowledge representation

(2) System invocaiion
Here, KE and EU ioad the knowledge data constructed at the above stage and begin
to execute inferencas.

(3) Debugging
(4) Swstem execution

This is the stage when EU execuies and utilizes the expert sysiem constmcied oy KE.

(5) Syatem evaluation

This i3 the stage wher the iool builder or KE evaluates the periormance of the tool
and knowledge base constructed by obiaining various data on sysiem execuiion.

Items (1), (3) and (5] are discussed in the following sections.

4.1. Necessary facilities for knowledge representaiion

We consider necessary facilities for knowledge representation o be the edifing and
the browsing faciiities. An editor is necessary to describe knowledge in a ruie and frame
description format.

The browser displays the global information abouf rules and {rames:

* Display of hiearchical DAG{Directed Acyclic Graph) expressions for rela-
tions among TEs and is-a hierarchy among TEs.

* Display of slot values inherited by certain TE’s, their initial vaines, and
demons

* Display of TE and TR referred to by rules

In order to increase the efficiency of debugging, the information that the editing and
browsing facilities provide should be accessable during debugging.

13—



4.2. Facilities necessary for debugging

Debugging means the repetitive discovery and deletion of bugs. Furctions are classified
into three types: interruption, investigation, and revision.

* Control of flexible actions = interruption

This is the function thai interrupis and resumes the action when possible, if the svatem
iz in execution. Af an interrupt stage of the system, KE can investigate anc change infernal
states of the system.

* Probing the internal states of the system — investigation

This is the function that comprehensively shows KE the internal states of the system,
and the changes being made at the stage of the interrupt.

Trace

This displays the system’s internal states at every execution of a rule. The conients
of the display consist of an agenda, a firing rule name, and changes of WM as a result of
the rule execution.

WM

The elements in WM consist of instance objects of TE and relations among TE in-
stances. KE can have various viewpoints of WM. For example, there are cases when we
wish to reference only certain TE instances, and relations corresponding to zertain TE%.
At the stage of prebing WM, the search trees are prepared in order to deal wiik the varicus
viewpoints of WM. KE can traverse these trees fresly.

Inference history

The KSs and rules are displayed. The former shows the KE names sxecuied sequen-
tially up to the present. The latter shows the rule names executed in the forward chaining

K5 and the verification processes in the form of AND-trees in the case of backward chaining
KS.

* Revisions of internal states = changes

This function helps to delete the bugs discovered at interrupts and invesiigations of
the system, and to change the system internal states experimentally, in order to discover
the bugs. Revisions are made on WM and rules.

Revisions on WM
Addition and deletion of WM elements
Rewriting the slot value of WM elements

Return to certain atates in the past

The third item restores the current state to certain state in the past. It can return to
the state just before the specified rules were executed and the KS’s were activated.

14-



Revision on rules
Addition and dejetion of rmies
Forced completion of inference actions

Selection of rules from the agenda to be executed next

4.3. Necessary facilities at the stage of system evaluation

The following data must be ccllected in order to evaluate the system.
Execation speed of rules

This shows the number of rule firings. The execution speed can be obiained according
to differences of inference type and size of knowledge base. This is usec as the parameter
for comparation of performance with other tools.

History of changes within WM

This shows histories of the agenda and changes within WM. If the localities by refering
to WM can be found using these data, it can be reflected in the architecture of WM.

Access frequencies to rales

In each rule of KS, they are obtained by cellecting the number of registration of the
rule to an agenda and firing of the rule in the case of forward chaining K2, and the number
of references to the rule and successes of the rule in the case of backward chaining K3.

5. Conclusion

PROTON, the frame system environment, the rule system environment, and the user-
interface environment were described.

PROTON provides several features, such as a hybrid knowledge representation envi-
ronment, a comfortable user-interface, user-customization functions, and a statisiical data
collection facility.

Mainly static knowledge about components and relationstips among them is repre-
sented, and atiached procedure and inheritance mechanisms are provided in ike frame
system environment.

Because rules can be grouped and modularized in the form of multipie KSs in the rule
system environment, the structure of rule representation is hierarchical and clear. There-
fore, rule representaticn is easy and inference can be performed efficiently by reduction of
search space. When the application domain problem can be divided intc subproblems and
solved, knowledge on control of subproblem soluticns is separated out as metaknowiedge
{metaKS) which provides a good prospect of the total system.

User-interface environment provides various facilities that assist in utilizing the sys-
tem. They consist of a browser, a debugger, an editor, and so on.

PROTON is currently under construction and is intended for experimentation. It will
be evaluated by being applied to real application problems.

The results of evaluation will be used to improve the functions.
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