ICOT Technical Report: TR-224

TR-224

AN APPROACH TO PROOF CHECKER
by
K. HIROSE (Waseda Univ.)
K. YOKOTA and K. SAKALI

Januarv. 986

CH9RT. 1ICOT

Mita Kokusal Bidg. 21F (3 456-3101~5

I[: OT 4=78 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokve 108 Japan

Institute for New Generation Computer Technology

AN APPROACH TO PROOF CEECKER
Ken HIROSE (Department of Yathematiecs, Waseda University)

razumasa YOKOTA (4th Laboratory, 1COT)
Ko SAKAL (2nd Laboratory, ICOT)

I, INTRODLCTION

Automated thecrem proving or automated deduction underwent a quarter of a
century of research and development and today it forms one of the oldest areas
in artificial intelligence (Al). Meanwhile there have beep implemented many
interesting theorem provers and proof checkers. It is recognized however that
most of them are devoted to deal with only "formal” prools and that there have
been developed rather a few prool checkers. Here, proof checker denctes a
system which checks the correctness of given proafs. Horeover, there seems to
be good reason now to make a study of not enly proof checking but alse formal
proof generation, in view of status quo of automated thearem proving.
Nevertheless, when proofs to be checked are not stated "formally” but
informally, their proof checker should be powerful enough to check them, where
the "informality” induces different kinds of problems not encountered in the
systems dedicated to formal proofs, and hence deserves a harder investigation
vet to do. A proof checker for informally stated preofs has to fill possible
gaps of inference occurring between proof steps within 2 given informal proof.
It is very often that these gaps are very wide. For instance, if a given proof
consists of enly a conclusion, the proof checker would have virtually the same
capability of generating its proof with & completely automated theoren prover.
In addition, the proof checker should have some facilities for acquiring or
learning knowledge of proofs and theorems to achieve amicable and efficient
proof checking. Therefore, a proof checker for informal proofs should have
many functions such as theorem proving, knowledge base for nmathematical
theories, and certain inductive inference, or inductive learning, based on the
knowledge base in addition to deductive inference functions. Hence, it is
extrenely difficult to construet a practical and powerful theorem prover or
peoof checker, where the word "practical” means 1o handle informal proofs.
Continuous efforts will be requested to gradually resolve the difficulties
impeding us from making it a good assistant ar an efficient aid for education.

[n my opinion, the perspeciives of knowledge information processing will
provide a powerful approacn to sueh a proof cheeker, sinece it will be
considered as an inference and computatien (or ratiocination] svstem coupled
with a certain knowledge base. | think this approach would play a fundamental
roie in the following peints:

(1) Tt will give a cue to a lormalization of inductive theory,
(2) it will be ahle to clarify relations between various propositions and

This paper is based on an invited talk by K.Hirose at the Twelfth
International Symposium of Yathematical Foundaticns of Computer Science’ 86
(MFCF'86), Bratislava, Crechoslovakia, August 95-28, 1088.

methods,
{3) it will also help 1o elarify mutual relations between mathematical
theories, and
(4) it will provide a new approach te nmetamathematical treatment of
mathematics, that is, a metathecry not confined to a single particular
mathematical theory, but a theory about multiple correlated mathematical
theories,

Knowledge information processing, in other words, the construction of an
ideal intelligent map-machine system is one of the majer goals at ICOT
{Institute for New Generation Computer Technology). Since the above mentioned
proof checker is considered as an archetype Al system, & research project on
proof checking system has been established as one of RED goals at ICOT under
the title of the Computer Aided Praof (CAP) project. This paper deseribes the
status of ICOT s CAP project.

2. OVEEVIEW OF CaP PROJECT

The Fifth Generation Computer System (FGCS) Project in Japan is a ten-year
program (1982-1991) being pursued by ICOT and its Working Groups. At its
initial stage (1982-84), many tools and systeas were developed for use in R&D
activities at the intermediate stage (1985-1988). The CAP system is situated
in a framework of an intelligent programming (IPS) projeet, which is one of
the important projects of FGCS. In brief, IPS is a system for symbelie
computation which processes specifications, programs, logical formulas as well
as algebraic formulas., It uses theorem proving or proof checking techaiques
for program derivation {(ctransformation), program verification, term rewriting,
formula manipulation and so on. Thus, CAP plays a central role in IPS.

CAP has gone into effect in 1983 as a subproject of ICOT Working Group 3,
and many theoretical issues were discussed [1,2) there. It will be active
until the end of FGCS project, i.e., 1891, The fina! goal of this project is
to construct & general proof cheeker incorporating a large amount of knowledge
common Lo working mathemaricians, with various utilities such as proof aditor,
pretty printer (with two-dimensional display), and svymbolic manipulator of
sathematical formulas, Because of the restricted rescurces available for us
and other limitations imposed on us, we initiated the project by tentatively
building a simple proof checker lor some concrete hranches of mathematics and
then by successively upgrading it into a general proof checker, instead of
directly undertaking the ronstruetion of a general one.

45 a matter of faet, it took a let of effort to implement even a simple
proof checker. A formal language had to be designed for use in writing
theorems and proofs, and proof editor for mathemarical text with complex
structures, proof checking facilities and knowledge base management facilities
to store and control many definitions, theorems and proofs, and to maintain
their consistency were also required. Many experimentations are nmow underway
on computer-assistance for solving mathematical problems, for the purpose of
getting an ideal interface for man-machine collaborartion on such activities in
particular, We also plar to enhance the system into a central subsystem of IPS,

- 2 -

which facilitates such functions as program derivation and verification.

In the first place, we selected three branches of mathematics as the targer
of our prool checker.

(1) Linear Algebra (LA)

(2) QJ
{(3) Synthetic differential geomertry (SDG)

Linear algebra is the ao0st familiar branch of college mathematics, We
selected the textbook by S. Furuya "Matrices and Determinants” for a {reshman
cource and designed a formal language for writing all theorems and their
proofs in the book. Another reascn for selecting linear algebra was to perfornm
an experiment with a two-dimensicnal display. This proof checking system is
named CAP-LA and based on Gentzen's natural deduction system (NE) with scne
additienal inference rules.

The second one, QJ, is a formal system developed by Prof. M. Sato of Tohoku
University {3], intended as both a logical system and a programming system. QJ
is a constructive system based on free intuitionistiec logie. The programming
language Quty (formerly called Qute [4)), which itself is based on the svstem
QJ, will be an implementation language of the QJ proof checker. Self-
referential expressions can also be written in QJ. Hence we ean write
metatheorenms in it. The first important target of this proof checker, ecalled
CAP-QJ, is to check the incompleteness thecrens.

The third one, synthetic differential geometry, is a very new field of
mathematics originated by A. Kock [3). The theory aims to study differential
geomelry in a synthetic manner by introducing infinitesimal objects. The proof
checking system, called CAP-SDG (6], will be based on a interactively
controlled term rewriting system to check a proof line by line.

The implementation of CAP-LA is running ahead of the others in CAP project.
In what follows | will mainly describe the CAP-LA system.

3. CAP-LA SYSTEY

The first version of CAP-LA system was implemented on the PSI machine by a
prograaming language called Extended Self-contained Prolog (ESP). PSI is the
personal sequential inference machine developed by ICOT during three years at
the initial stage and is now heing used as an R&D tool for many FGCS knowledge
processing systems (7,8). ESP is a logic programming language with an "object”
concept, designed for the PSI machine (8). The operating and programming
system of the PSI is also written in ESP.

Proof Description Language (PDL, the first version) was designed for the
CAP=LA system and ever 90 % of thecrems and their proofs in the above book
have been written in it. The first version of CAP-L4 consists of the following
lour main modules:

(1) System Controller,

(2) Proof Editor,

(3) Proof Checker,

(4) Knowledge Base Yanager.

Their ecenfiguration is shown in Figure 1.

System Controller

Proof Editor I

Erowser Theory
Hnowledge
. Baze

Froof Checker '

| Term Rewriter]—’

Fig.l Configuration of CAP-LA

The system controller controls the other modules of the system and provides
a man-machine interface. The proof editor is a structured editor dedicated to
mathematical proof and has special knowledge about the syntax of the Proof
Description Language (PDL). The editor includes a browser editor. The pranf
checker is a kernel module of the svstem. [t eontrols general knowledge of
logical iaference and special knowledge of linear algebra and checks whether a
given proof is correct or not, The checker alsc contains a term rewriting
system Lo check equality of terms. The knowledge base manager contains various
kinds of systematically organized knowledge such as definitions, theorems and
proofs (checked or not) in the form of terms. It controls their cansistency,
and retrieves necessary information by unification during proof checking. Upon
completion of checking, it inserts new inference rules for successive proof
sLeps.

The implementation of the first version of CAP-LA svstem was completed in
farch, 1986 and tests are now underway. The system consists of 4,000 lines of
ESP and four programmers working for six months was required for its
implementation.

4. PROOF DESCRIPTION LANGUAGE

PDL plays a central role in man-machine interaction., PDL should facilitate
reading and writing every mathematical proof and at the sametime PDL should
suffice the requirement that every written proof in it be convertible into
machine-readable format For further use in proof cheeking. Moreover, PDL
should have rich expressive power enough to represent various kinds of
mathematical proofs. We selected Gentzen's natural deduction systen (K} as
its basis, since it seems to refleot intrinsically the process of human

introduction rule

. o (a:t)
s A B A(a)
AN B ANE Wit A
elizination rule
- {4) (B}
A ‘t..r" B E E ANB Yrrt.A(x) oait
C 4 Ala)

{"a:t" means that "a is an element of type t')

Fig.2 Inferasnce Rule Schemas of VK

YWe=introduction rule

A:
hence A | B

DMe=introduction rule

L]
i

i)
hence 4 & B

W-introduetion rule
all xit.alx)
since
let a:t be arbitrary

Ala)
end_sinee

W-elimination rule
Al B
henee C
since divede and conquer & | B

1

case A
C
case B
l::- -
end_since

M—elimination rule
Ve=eliminaticn rule

Fig.3 Corresponding PDL Proof Templates

interface and we preferred to have logical completeness of our system. Figure
2 depicts two inference rules, an introduction rule and an elimination rule of
NK. And Figure 3 shows the proof templates in PDL syntax corresponding to
rules of NK in Figure 2.

Similarly, other inference rules of ¥K alse correspond to the proof
templates in PDL. Many inference rules are necessary to develop wmathematical
theories, and they also correspond to the proof templates in PDL (Fig.4,5). We
built approximately fifty rules inte the first version of CAP-LA. Once a proof
of a theorem is checked and found to be correct, it is registered into the
system knowledge base as an inflerence rule for further use in the successive
proof checking environment.

(n:nat] (A{n)]

4(0) 1ne1)

Aln)

Fig.4 Mathematiral Inductian

all m:nat.i(a)
since induction on m
base

3(0)
Step
let n:nat be such that A(n)

A(n+1)
end_since

Fig.5 MHathematieal Induetion in PDL

The basic policies underlining the first version of PDL are as follows:

(1} The syntax of PDL includes the proof 1emplates corresponding to the
inference rules of XK.

(2) Tt should be a strongly typed system in which all elements are typed. The
user should be able to definc new types with parameters. Tvpes are handled
in the same way as other logical formulas.

(3) Constants (such as integers and O-veetor), funetien svmbols, and
variables are not distinguished syntactically. All the bound variables mus:
be bound explicitly by a guantifier. The user should be able to define new
constants and function symbols. Constanis and free variables are logically
handled in the same way.

(4) The user should be able to wse naturally in a proof conjunctions,
adjentives and adverbs,

(3) The user should be able to specify the inference to be applied at each
proof step or to skip checking.

(6) The system contains some special knowledge about linear algebra. Vectors
are to be considered as cne-column or one-row matrices,

The syntax of PDL will not be detailed, sines it is very easy to understand.
It will be delineated by making use of a simple theorem and its proof. Figure
€ shows a simple theorem on the determinant of transpose and its proof quoted
from "Linear Algebra”™ by S. Lang, and Figure 7 shows the rcorresponding
description in FDL.

Theorem 6. Let A be a square matrix. Then Det(4) = Det(®*4).

Proof. In Theorem 3, we had
{*.}' DEL(H-} = § 5{'5} Ay a0l -
Let ¢ be a permutation of (1,-,n].
If o(j) =k, then o~ (k) = j.
ke can therfore write
a LR R
In a product
T, 7 Bainga
each integer k from 1 to n occurs precisely once among the integers
o(l},~,e(n). Hence this product can be written
8 e 8 4 5T
and our sum (*®] is equal Lo
% e(a™t)a L 8 e
since e{o) = (g™ t),
In this sum, each term corresponds to a permutation o.
However, a5 o ranges over all permutations, so does o~
because & permutation determines its inverse uniquely.
Hence cur sum is egual to
(x) t(o)a LEn " 2 pfiae
The sum (#*%) is precisely the sum giving the extended form of the
determinant of the transpose of 4.

1

Fig.6 Theorem on the detersinant of transpose and its procf

theory determinant

det{A:square)
:= sum P:perm{col_size(A)).
sgn(P) # prod I:seg(col_sizel(d)). A(P[I},1)

thecrem determinant_of_transpose
all Arsquare, det(3) = det(trans(4))

proof
ler a:square be arbitrary
n = col_size(a)
then n = col_size(trans(a))
det{a)
= sum Piperm{n}. sgn(P) #* prod I:seg{n). a(P{1},1)
by definition
= sum Piperm(n). sgn(inv(P)) * prod I:seg{n). alinv(P){I],1)
= sum P:perm{n;. sgn{P) * prod l:segi(n). trans(a)(P(1},I)
since
let p:pern{n) be arbitrary
prod [:segin). alinv(p){I1),1)
= prod I:segin). alinv{p)(p(1)),pl1]]
= prod [:segin). trans{a)(p(l),1)
since
let i:segi{n} be arhitrary
alinv(p)lplil),pli)]
= ali,pli)]
= transfa)(p(il,i]
end_since
sgnlinv(p)) = sgn{p)
end_since
= det{trans(a)) by definition
end_proof
end_theoren

end_theory

Fig.7 Its Corresponding description in POL

3. PROOF CHECKING SUBSYSTEM

The proof checking subsvstem is the kernel of the CAP-LA system. This
subsysten consists of five podules (Fig.8), conversion, inference, ternm
rewriting, formula manipulation and rule generation,

1
Proof Editor

Proof Checking Subsystem -

Conversion |
| Kule Gen.)
+ | Theory
Inference — Knowledge
i Base

Tern Rewriting | —
]
Formula Yanip.

Fig.8 Configuration of the Proof Cheecking Subsystem

The conversion medule is an interface to the proof editer and econverts a
parsed proof tree inte the proof tree, for use in proof checking., The
ipference module checks the proof tree to see whether each step obeys KK and
other inference rules or not. The tepnm rewriting module checks formulas for
equality, that is, whether the bath sides of the equality in the forpula can
be rewritten into the same tern. The formula manipulation module is used 1o
convert an algebraic formula without changing its meaning. It also has certain
knowledge on finite summation (%), finite product (1), and so on. The rule
generation module converts the theorem and its proof to rules ready far use
in both the prool checking module and the ters rewriting module, and inserts
them into the theory knowledge base.

In the proof checking module, backward reasoning is performed at in each
inference step. For example, given an inference step

this module first checks whether or not there exists a strategy to prove GO
when D, E and F are proved. [f not, it checks whether G is verified or not by
applying rules in the environment where D, E and F are proved. Alter checking
G, it inserts G in the knowledge base and creates the new environment [or
checking at next inference step. When a formula with equality must be checked,
contrel is transferred te the tern rewriling module. After retrieving possible
rewriting rules from the knowledge hase, the term revricting module tries o
apply the riales to all redexes in the terms and compares Lwo [rreducible terms,
If two terps are found egyual by this reduction, it returns the resull wilh Lhe

-9 -

environment where they are egqual.

6. SYSTEY SESSION —— an example

A sanple session with the CAP-LA system is explained in this seetion.

ifter entering the CAP-LA system, system menu window appears for function
selection, If you want to see a list of theories registered under your name,
click the function in the menu, then the next window appears (Fig.9).

This list is also used for selection of the theory vou need. If vou select a
theory "exaomple”, its content appears (Fig.10).

'l you want to check a text after editing. the text is [irst checked against
the syntax of PDL. If any errors are found, then next window appears (Fig.11).

If all errors are corrected, correctness of the proof is to be checked. During
proof checking, vyou can see at another window the part of theory currently in
check. Upon completion of proof checking, if you want to print out the result
in a pretty form, wyou can print it in an English form (Fig.12) or a Japanese
form {(Fig.13).

The session proceeds using various windows on a bit-map display (Fig.14).

7. Further Plans for CAP Projects

ke recognized from the experience of the first version that PDL can be used
Lo express nol only linear algebra but many branches of mathematics and that
the performance of proof checking is efficient. So we already began to design
the second version of CAP-LA featuring the followings:

i, PDL

(1) Extension to higher order logie.

(Z) Intreducing generic types or type variables, with which users can define
more natural type hierarchy,

{3) Introducing user-defined proof templates or cxtraction of proof templates
from checked proofs.

(4) Suppression of long, repetitious and tedious proof by admitting
"similarly', "+ and so on in a proof.

(5) Introducing a lot of syntax sugar so that a user can write theorems and
proofs easily,

- 10 -

CAF -4 SYSTEM 1.9

Thecry Listing Menu itestl)

Thaory names {modal

L Example (taxt)

2 gdetl (text]

3 ind {taxt)

' 4 nat ttext)

5 natural (text)

& teat (taxk}

! 7 trs (taxt)

CAP-LAtstring [(89.28) *-i% polrtestlrtestrproor --lap—-

Fig.®

Car=LA SYSTEM 1.0

theory Examols:

=ort segim:posr{xipas} a3
1 s %
L ={m

end_sart

function Kimatrix + Yimabtrix tmatrix
A mima
col_aizadf) = cal_sizaly)
& row_s1ze X! = row_siselY)
attain
col_aize (i) = col_siza (N+Y)
Lorowosizadd) = row_size (K+Y)
L olall lisegdeal_size(X+¥)>, jizegdrow_aiza (N+¥)y . (0+¥0 00, j] = XOi. jI#¥0i. 00
&Xiatancae
Fravyaa
unlouansss
proved
sndofunztion

funeticn trid:matris) imatrix
attain
col_sizadtriX}) = row_size(X)
L row_sizs{ter)} = =2al_siz=e{X)
Lodall ivrsegdbr(Xiz, jrsegetriXiy | br{X00Eej] = X000 00
axlatence

CAF=LAlzsrrong) [B9, 28] =-1x palitesclrtaxtrtrs..l =~lap=-=- =x

succass !

Fig. 10

- 11 -

CAF-LA SYSiEd L. @

4

?haaru Exampla;

thearam sucs_nonzarc!

all Xipos . (@ = X+1) axiam :
end_thaorea

theorem al:
all Xitpoas . (X = @ ! [some Yipas . X = ¥+1))
since
let X:ipos be arbitrary

(X = & ! (some Y:pas . X = Y+#1))
giNncCH

induztion on ¥

Imd

i ARaREEsFRes Lrror Message List for nat SERIRRAURER

EHROR Mo. 1

Comment: ¥ is not defined heras !
In:

ipduction anm Y

CAP=LAdstring) (8%, l4] ==1x polrtestlrtexcrnac.. 1/ =—lok-—— X

deug moos

Fig.11

EiF-LA SYSIEW L@

theary Exampla:

theorem succ_monzerodl
ail Xipoa . Wi = XK+l) axiom i
snd_theorem

theorem al:
all ¥ipos . (X = @ ! {(some Yipoz . X = Y+1I1)
sLhACca
lat X:ocs bae arbitrary
(X = & | i(zome Yipoa . X = Y+I})
since
incucstiilan on X
basze
clLaar
atED
let Kipos ba arbitrary
some Y!pos . K+l = Y+l obvious
end_since;
and_sinas:
end_theoran

and_theary

CAP=LAlacrina; (29, 28] 2=|% ndl}tasti}taxt}na:..LT ==lgp== ¥

C-x i

Fig.12

AP= 8 SYZVEA 1.2

a
T8 suct_NoRTers
TATHD JERDER X CHLT
no L (0 = X+13
o
IR al
TNTH FRem XOKHLT
¥ = 0 k2
AE RO Y SEELT
X = Y=
LIEA
¥ Faogn X & BET:
A 0= 0 Exud
mE mEcs Y w@EmoT
X = Y|
S
Aozilrs wwmeEint g
ba=s=
FE i
sLap
EWI OACEN N o EEei
. £4 BUOEE Y FEELT
1] Kal = ¥4y

EEEE!

CAP-LAlstringl [72,28] T=.T polotecc rtextonar.. 18 ==Li—

=

Fig.la
: i : g ifrie.manipulator_L
Jdatugger_b llibrarzan.s Compiling o sc=Tanie fu Ir .
| Check |- = = = = = ¥aysruser>CAP_LANcheac
- Catalogus File Mame»pdhker
Compile Catalazging e e
macs._ 3 Uncomeile capg.coyg BL‘F""S'H'_E
Save cap_deg end,y BUFHMAN.E5F. 4
r': nad :1 - - : - BUFTAP.EEP. 3
class cap_dcg has T e R “E 3
- 2
. Y e o
iparse (Class List B0 Tuamn 1 e Fre
bhaorg (EDITEE L 5P 3
) TP suce_nopzerno F. 3
tocal seTD FROEE K IIHMLT 5P, 2
notio = H+id EF. 2
£ 5
name ([tarminal (nams. =
cong (B, AC) o 2
not_keyword (Al 1| wm 4 2
_ THTD RS X ORALT 7
var ([terminal {integd R L. 4
consiB. AT, BE FAOYN Y STEELT s 4
intagar (A1 ¥ o= Y] 1
var{lterminal {var iad = i
cans{B.A.C) . Fwe FRoum Y ot BT BF. &
Mot _kayword (A) . | X e e ¢, 2
- — - P13
theary (theory (dummy JCAP-LA istring) [<5.17] #=1% polbtastlibtentinat.. b ——fap-= b 5
Vitarminal (head_endl Soocass ! L 3
FPHACS tasol{B7. 23] == EP. 8
Aaaa: »sysiuser>CAR broremror—r—ooroorres - 4
TETWIN.ESP. 2
USER : CAP_LA -
SIMPOS Versicn 2,09 @2-May-36 Friday 17:29:23

B. Proof Checking

(1) Combination of forward and backward reasoning.

(2) Type infercnce and type checking for proof checking.

(3) Utilizing conjunctions, adjectives and adverbs in a proof for the
improved efficiency of proof checking.

(4) Checking the higher order theorems or metamathematical theorems.

C. User Interface

(1) Twe-dimensional display te display such as £, [1, matrices, etc., using
a bit-map displav.

(2) Fully interactive proof checking.

{3) Stepwise relinement of a proof by collaboration with the system.

(4) Derailed error messages and help messages for the novice user and more
natural English and Japanese proof forms.

Other CAP subprojects, CAP-SDG and CAP-QJ, are also active in connection
with CAP-LA. At first we selected three branches of mathematies, but now,
judging from the experience with CAP-LA, we do not think it Necessary to
restrict the scope (of the system) to some specific branches of mathematics.

CAFP-SDG, which does not necessarily mean synthetie differential geometry,
aims at a fully interactive proof checker based on the term rewriting svstenm.
The term rewriting system considers both terms and formulas as terms, and
handles higher order logic easily. We plan to develop the second version of
CaAP-LA and the prototype system of CAP-SDG this vear, and integrate them next
year,

ke are currently under experimentation with CAP-QJ to describe some
metamathematical theorems and proofs in the 0J system. A compiler and an
interpreter for the programming language Quty are scheduled to be implemented
this year. This subproject is closely related to another iPS project, called
Program Construction System (PCS), which aims to derive programs from proofs.
Given a constructive proof for a formal specification writtem in QJ, a
realizability interpreter derives a realizer as an execurable part of the
proof, that is, a program. The realizability interpreter is also now under
experimentation and this system will employ Martin-Lof's intuitionistie Lype
theory as generalization and specialization of program modules,

2. COMCLUSIQNS

The FGCS project in Japan did not select Lisp as a kernel language, but a
logic programming language like Prolog because of its powerful functions based
on unificaticn and its high productivity, The logic programming language
itself is based on thecrem proving such as SLD resolution. Studies of theoren
proving er proof checking play an essential role in the total plans of FGCS
in Jaran. Computer science has a history of only 40 years, while history of
mathematics lasted over 2,000 years. | expect our approach to mechanization of

- 14 -

mathematics will bring forth many centributions to FGCS project, for insvance,
the accumulated knowledge on knowledge, programming and inference.

khile there are many systems for automated theorem proving and proof
checking (10,11,12,13,14), aost of them are stand alone systems and seem to bhe
limited in their aims. In Japan, there were not many studies in the field when
we decided to start our project. Now, CAP project started in the FGCS
framework, and is planned to become & kernel system of many knowledge
processing systems. The CAP-LA system is intended to be the first step to such
a system.

Acknowledgoment

ke would like to thank meambers of Second Laboratory of [ICOT and its CAP
Working Group for uselul discussion and suggzestion. And we would also like to

express our gratitude to engineers who have participated in the development of
CAP-LA.

References

(11 T.!da, ¥.Sato, S.Hayashi, ¥.Magiya et zl, “Higher Order: its laplication
to Programming Languages and Computational Models”, ICOT TH-29, 1983,

(2] 1COT Working Group 5, "Several Aspects on Unifiecation™, 1COT T¥-46, 1084,
(3] ¥.Sete, "Typed Logical Caleculus™, TR-83-13, Dept. of Computer Science,Fao.
of Science, Univ. of Tukyo, 1983,

(4) ¥.Sato and T.Sakural, "Qute: & Functional Language based on Unification”,
Froceedings of the International Conference on Fifth Generation Computer
Svstems, ppl37-1635, 14984,

(3) A.Kock, Synthetic Differential Geometry, London Mathematical Society
Lecture Note Series 31, Cambridge University Press, pp3ll, 1981,

(6] S.lavashi, “Towsrds Automated Synthetic Differential Geometry 1 --—- haszie
categorical construetion”, ICOT TH-104, 19&3.

(7] S.Uchida and T.Yokoi, "Sequential Inference Yachine: S1Y Progress Report”,
1COT TR-86, 1984,

(8) T.Yokoi and S.Uchida, “Sequential Tnference Machine: SIY Its Programming
and Operating System”, ICOT TR-87, 1984.

(8] T.Chikayama, “Unique Feature of ESP", Proceedings of rhe International
Conference of the Fifth Generstion Computer System, Tokyo, pp202-258, 1984,
(10] ¥.J.Gorden, A.J.Milner and C.P.Wadsworth, "Edinburgzh LCF", Lecture Sotes
in Cemputer Science,78, Springer, 1973,

(11) J.Ketenen and J.S.weeninz, "FKL — in Interactive Proofl Cheecker, User's
Reference Manual”, Department of Computer Science, Stanford Univ., 1083.

(12) ¥.Hagiva and S.Havashi, "Some Experiments on EEL", ICOT TH-101, 1985,

(i3] 4.Trybulec and H. Blair, “Computer Aissisted Reasoning with Yizar",
IJCAI" 85, pp2R-28, 1983,

(14) ¥.Shanker, “Towards Yechanical Vetamathematies”, Journal of Auromated
Reasoning, 1, ppd07-434, 1083,

f
e
o

|

