ICOT Technical Report: TR-222

TR-222

An Object-oriented Programming
Language based on A Parallel
Logic Programming Language KL |
by
M. Ohki. A. Takeuchi and K. Furukawa

Necember, 1986

986, 1COT

Miita Rookusan Hidg, 21k 03 456-3191~5

“ :O | 3-28 Alita 1-Chome Uelex WO J32064

Mimmato-ku Takyo 108 Japan

Institute for New Generation Computer Technology

An Object-criented Programming Language based on
A Parallel Logic Programming Language EL1

Masaru Ohki, Akikazu Takeuchi * and Koichi Furukawa

ICOT Research Center,
Institute for New Generation Computer Technology,
Mita Kokusai Bldg. 21F, 1-4-28, Mita,
Minato=ku, Tokyo, 108, Japan

Abatract

We have been studying a knowledge programming language called
Mandala, based on cbject-oriented programming. In this paper, we
deseribe an implementation ef an object-oriented programming language
as part of ocur study of Mandala. Object-criented programming is
well=suited to parallel execution. However, for many parallel
executable object-criented programming languzges, it is only possible
te execute procedures for individual objects in parallel, but not
procedures within objects. We propose a language which can execute
procedures within objects in parallel. The language is implemented on
KL1(Kernel Language Version 1) which is a parallel logic programmeing
language based on GHC, and maintains the KL1 feature that 2 unit of
parallel execution is small. However, it is difficult to implement
the instance variables, the internzl states of chjeects, because this
invelves multiple access to resources, i.e., te instance variables.
Firet, we propose a method for implementing access of instance
variables to avoid parallel multiple access, called the single
assignment methed. An instance variable can only be updated once
while processing a messape. We designed an object-oriented
programming language using this approach so that this langusge would
have the functiona of an cbject-oriented subset of Mandala. This
language has the instance variable, the is a hierarchy and the part_of
relation as language primitives,

®) current address : Central Research Laboratory, Mitubizhi Electrie
’ Corp. 1-1, Tsukeguchi-Honmachi B-Chome, Amagasaki,
Hycge, 661, Japan

1. Introduction

We have been studying the lmowledge progranming language Mandala
[Furukawa 84] on KLi(Kernel Language Version 1) [ICOT B5, Tanaka 86].
KL1 is a parallel logic programming languzge based on the resclution
mechanism of GHC [Ueda B6], and it is originally the language for the
PIM(Parallel Inference Machine) hardware which is developed in ICOT.
EL1 provides object-oriented programming using a perpetual process
similar to Concurrent Prolog [Shapiro 83a). Mandala has realized
object-oriented programming using this mechanism. Since its first
implementation aimed to verify the power of the language, the
object-oriented part of Mandala was not entirely implemented on EL1
[Furukawa 83]. In this paper, we describe an implementation of an
object-oriented programming language, a subset of Mandala, in KL3
alene as part of our study of Mandala.

Object-oriented programming is not only useful for writing programs
but also suitable for parallel execution, and many parallel executable
object-oriented programping langusge have been proposed [Yonezawa B6,
Tokoro B4). These programming languages can execute procedures on
individual objects in parellel, but cannot execute procedures within
objects in parallel, with some exceptions, e.g. [Kahn 86]1. The

language we are proposing can even execute procedures within objects
in parallel. We do not want to restrict the executable parallelism
unit of KL1. If procedures within an object are executable in
parallel, the follewing advantages result.

{1) It becomes possible to improve the parallelism.

If procedures within objects cannot be executed in parallel, it is
because the parallelism is less than or egual to the numbers of
cbjects. The parallelism is the number of processes which can be
executed in parallel. However, if the procedures within objects can
be executed in parallel, the parallelism can exceed the mumber of
objects. Users can naturally extract the entire parallelism of
programs by considering only local parallelism within an object. But
if procedures within objects could not be executed in parallel, the
users could only extract the entire parallelism by increasing the
number of objects.

(2) It becomes unnecessary to introduce special message sending

primitives.
in our language, it is possible for programmers to control the

synchronization of the execution between objects using the suspend
mechanism of KL1 after sending messages to other objects. For the
language whosze procedures cannot be executed in parallel within an
object, special message =sending primitives are necessary Lo process
ocbjects in parallel. They are related to the control of execution
after sending messages. Most parallel cbject-oriented programming
language= have at least two types of message-sending primitives.
Those of one type wait to return the repily, and the others do not.
Mecreover, a special primitive iz necessary to wait for replies from
other objects.

However, if we make procedures within an object executable in
parallel and the syntax of the methods which programmers should
describe is abstracted like Mandala, it becomes difficult to implement
instance variables which are the internzl =tates in objects. The
reason is that parallel pultiple access to & resource, an instance
variable, occours.

In this paper, we propose an implementation method of instance
variables to aveid parallel multiple access, called the single
assignment metheod. This methed is restricted to updating an instance
variable only once during processing a message. Using this approach
we design an cbject-coriented programming language with the functions
of an object-oriented part in Mandala. Our language has

(1) instance variable,
{2) is a hierarchy, and
{3) part_of relation

as language primitives.

There are acme differencesz between Vulcan and our language. The
methods of Vulecan [Eahn B8] are different {rom its implementation
language Concurrent Prolog [Shapiro 83a], but they are rather similar
to Smalltalk [Goldberg 83]. The methods of ocur language are exactly
KL1 clauses. We think that KL71 is a powerful language. Vulean
introduces some sequentialities to its language specificaticon to
implement inatance variables and zending messages, but our language
aveids sequentiality in implementing instance variasbles and sending
mezsages. The inheritance mechanism of our language is implemented by
ecalling methods in superworlds, but Vulcan's implementation involves
copying methods in superclasses or delegation of parts. We cannot use
both methods, because the copying method may generate encrmous
translated codes, and it is impossible to call methods in superworlds

[

from the guard in the delegation method.

We present the above problem and implementation methods in Section
2. We have considered three methods, but chose the single assignment
method, which iz more suitable for our purpose than the other twe.
Sectien 3 contains a language specification and description of its
implementation, and Section 4 presents an example of & simple
programming enviromment.

2, Implementation Issues for Parallel Execution in Objects
2.1 K

KL1 is a parallel logic programming language based on GHC [Ueda 86].
It is similar to Concurrent Prolog and PARLOG [Clark 83] in that its
program consists of Horn clauses with guards in the following form.

H Ho G1I""‘l {hll I B1:-'-| Bﬂ» {m:’c‘, n}G:J-.

where H, Gi and Bi are atomic formulas. H is called a head, the Gi's
are called guard goals and the Bi's, body goals. "!" is called a
commit operator, the left part (H,Gi,..,06m) of the cemmit operator is
called the guard part, and the right part (B1,..,Bn) is called the
body part.

To execute a KL1 pregram is to resolve a EL1 goal according to the
resolution rule. The resclution can be performed under the suspension
rule [Ueda B6] as showr below. That is, several goals may be executed
in parallel, and several clauses whose predicate names are the same a=s
the goal are tried in parallel.

(1) Unificaticn invoked directly or indirectly in the guard of a
clause "C" called by & goal "G" (i.e., unification of "G" with the
head of "C" and any unification invoked by solving the guard goals of
“C") cannct instantiate the goal "G,

(2) Unification invoked directly or indirectly in the bedy of a
clause "C" called by a goal "G" cannet instantiate the guard of "C" or
"G" until "C" is selected for commitment.

A plece of unification that cen succeed only by causing such

instantiation is suspended until it can succeed without causing such
instantiation.

2.2 BApproach to an obiect-oriented programming language

KL1 is well-suited to object-criented programming [Shapiro 83b]. We
can perform object-oriented progremming without introducing special
primitives to KL1. When writing a program in KEL] in object-criented
programming, we can implement an instance (we often use the word
"instance" instead of "object" to emphasize that we are dealing with
an cbject not a class, which is a template of an object) using
recursive call as a perpetugl process, and regard 2 set of oclauses
having the same predicate name z& templates of an instance. The name
corresponds to the name of a class to which the instance belongs.

Here is an example of object-oriented programeing using KL1.

counter{[up{l],State) :-
New_State := State + 1, counter{I,New State]).
counter([down|I],State) :-
New_3State := State - 1, counter(I,New State).
counter([show(X)1I],58tate) :

State = ¥, counter(I,State).
counter([],State).

This is a simple counter. The predicate name "counter" indicates the
class name. M variable "State" is the internal state that indicates
the value of the counter, and a variable "New_State" contains the
value of the modified new internal state. An instance is a perpetual
process. A predicate "counter" is recursively called in the first
three clauses. An instance of "counter™ counts up when it recelves an
"yuph message, it counts down when it receives a "down" message, and it
replies with its value when it recelves a "show" message. The "up"
and "down" messages modify the internal states "State™ to the new
internal states "New State". The last clause is used to terminate a
perpetual process when the final message "oull" arrives.

The above example shows that EL1 can easily real ize object-oriented
programnming, but we want to describe programs briefly, as in Mandala.
The following festures are necessary for this.

{1) Omission of recursive call
We abstract template eclauses for instances, like Mandala, to the
follewing:

instance([Message |Input],State) :=
sipulate(Message, State,New State),
instance(Input, New_State).

In thi=z clause, the sectiocn to solve messages is concentrated in the

"gsimulate" predicate. HNow it is unnecessary to describe recursive
call in each clause.

(2) Omission of arguments to describe instance variables

This makes an instance variable a special primitive. FProgrammers
are no longer able to deal with them like ordinary legical variables,
but can only access them by special methods. An instance variable
becomes a shared resowrce held in common by several parallel
processes., Multiple access to shared resources is a difficult
problem. The diffieulty results from parallel multiple access to one
resource without specifying synchronization of the accesses. For
example, suppose predicate "get" is & command to read from an instance
variable and predicate "put" is a command to write te an instance
variable. Let us consider the following example to access an instance
variable, whose name is "state".

re s put(state,X1),..,put{state,X2),..,get{state,X3),..,

Sinoe all goals are executed in parallel, the two "put" predicates can
be executed in parallel. If parallel multiple access to the same
logical variable which implements the instance variable occurs, the
rput” predicate executed later may fail because variable "X1" may not
be unifiable to variable "¥2". Moreover, whether the "get" predicate
reads the value of either "X1" or "X2", or the value before both Pput®
predicates are executed, may be left undetermined.

(%) The introduction of inheritance
Mandala has a mechanism of property inheritance. Froperty
inheritance is also introduced in our language.

2.3 Imnplementation methods for instance variables

If we omit arguments to describe instance variables and make
procedures within an object executable in parallel, parallel mul tiple
2ooess to instance variables has to be avoided. There are three ways
to do this.

(1) Database method

The instance variables are stored in a database managed by a
database manager implemented by a perpetual process. Messages to the
database menager are used for access to the instance variables. The
merit of this method is that more than one access to an instance
variable, serialized by using a stream, is possible while a2 message is
being provessed. But, it has the defect that it is impossible to
acee=s instance variables in the guapd part.

{2} Bucket relay method

Moving instance variables from left goals to right goals in a
clause is regarded as bucket relay. If no access to an instance
variable occurs, the unmodified instance variable is passed to the
next goal; if it is modified, the modified value is passed to the next
goal. This method has the same advantage as the database method that
mere than cne access to an instance variable is possible while
processing a message to the object. It does not have the defect of
the database method described above, but if goals must be executed
from right te left, the program deadlocks.

(3) Single assignment method
This method 1s restricted in that it can only modify an instance
variable once while processing a message, and the modificetion does
not become effective until processing the next message. It does not
have the defects of the other two methods. However, it restricts
programming, though we do net think the restriction is very strong.

Since the single assignment method invelves the least restrictiens
on censidering methods in objects as KL1 clauses, we chose it even
though it does net gllew modification of an instance variable more
than once when a message is being prosessed. The next section
describes implementation of the object-criented programming language
on KL1 using the single assignment method.

3. Implementation.
3.1 Language specification

We designed an object-criented programming language on KLY according
to Mandala specifications. There are two bazic components: worlds and
instances. Each instance is associated with one world. & world
represents the knowledge required to solve goals, and an instance is a
goal solver for the associated world. When an instance receives
messapes from other instances, the instance regards the messages as
Ecals to be solved and tries to prove them using a set of clauses
stored in the associated world or the superworlds which the associated
world inherits.

It is possible to declare clauses, relations between worlds, and
instance variables in a world., Each clause is a KEL1 clause. We want
to add object-criented features te, and describe methods in, FEL1. We
introduce the loczl method in addition to ordinary clauses. By
describing a KL1 program as local clauses, the program can be executed
without modification. Local clauses can only be called from their own
world, but ordinary clauses cannot be called from local clauses.

There are two types of declaraticn that relate worlds. They are
super and part declarations. A super declaration represents a
conceptual hierarchical relation between worlds. A lower world can
irherit all declarations of its immediately upper worlds and their
upper worlds. PBut if there are several declarations of instance
variables with the same name in inherited worlds, the declaration in

the lowest world is used, A world may have several immediately upper
worlds, that is, multiple inheritance is possible. When a goal i=
ealled, clauses are tried from lower world to upper world in turn, and
elauses related by multiple inheritance are tried in parallel. In our
lapguage, like Mandale, if the guard part of a method is failed, other
methods are tried, and if the guard part is sueccessful, that method is
selected. Part declaration is used to define a composite instance
having lower level instances as its parts. If a world name is
specified in a part declaration, its part instance is autcmatically
generated when a composite instance is generated.

Declarations of instance wvariables specify internal states of an
instance. If an initial value is specified, the value is stored in
the instance variable when the instance is created. Since we use the
single assignment method to implement instance variables, only one
modification of an instance variable is allowed during processing of a
message. Thus, the modified value of an instance variable cannot be
referred to while processing the current message.

The language syntax specified in extended BNF iz shown below. The
extensions are: (1) "X" indicates a terminal symbol X; (2} { X }
indicates arbitrarily many (po=sibly zero) repeated appearances of X:
{3} [X] indicates X or void, i.e., ¥ is optional.

<world declaration?» ::=
"world" <world name>
["super" <world name> {"," <world name>} ";"]
["part"” <part declaration> {"," <part declaration>} ";"]
["variable"
<{variable declaration> {"," <variable declaration>} ";"]

["method"
<clause> ";" {<eclause> ";"}]
["local®

{elause> ";" {<claused ";"}]
llend." .

<part declaration» ::=
cvariable declarationy
“clause’ ::= <head> |

<part name> ["=" <world name>].
ti= <variable name> [":=" <initial wvalue>].
<headr ";-" <body> | <head> ":-" <{guard> "\" <body>.

Here "\"™ is used in place of the commit operator "[". An example
program iz given in Section 4, :

Here are the main system predicates in this language.

{1) new(Instance variable,Variable)

The "new" predicate is used to set & new value of an instance
variable:. It unifies a variable "Variable" to a value of an instance
variable "Instance_wvariable". Even if a new value of an instance
variable is set by the "new" predicate, it is impossible to refer to
the value using the "old" predicate while processing the eurrent
message. It 1s possible to refer it while processing the next
messzage.

(2) eld(Instance variable,Variable)
The "old" predicate is used to refer to instance variables, and

unifies a varisble "Variable" to the current value of an instance
variable "Instance variable".

{3) send(Destination,Message)

The "send" predicate sends a message "Message" to an instance
whose name is "Destination". It is possible to send more than ohe
message to (possibly) different instances while a message is being
proce ssed.

(4) add _channel(Instance_Channel Pair)

The "add _channel” predicate enters a list "Instance_Channel Pair",
consisting of a pair of an instance name and its channel, in a channel
list. Every instance has a channel list, whieh contains pairs of
instance names and the channels to them like a telephone directory. &4
channel is a logical variable connecting to an input variable of an
instance. If there is no entry of an instance in a channel list,
sending of messages to the instance is suspended,

(5) get_channel(Name, Channel)
The "get_channel™ predicate fetches the charnel "Channel" far the
instance name "Name" from the channel list,

3.2 Implementation

We developed a translator of an cbject-oriented programming language
on KL1. The translator transforms Programs with the syntax shown
above to translated KEL1 codes. A translator has the advantage that
tranaslated programs can execute fast, but it has the drawback that it
is difficult to handle programs as data, We developed & translator
First because we consider that efficiency is more important.

The single assignment method is used to implement instance
variables, but the method cannot be used to implement channels for
message sending to other instances, because it is necessary to send
more than one message while processing a message. We use the database
method deseribed in the previous sectien to implement channels, The
database manager distributes a mesgage to the channel connected toc its
destination using its channel list. The database managers are called
the instance distributors.

Translated KL1 codes consist of the "ecreate" predicate to create an
irnstance, the "instance" predicate to implement an abstract instance,

the procedures te eall global methods, and the translated code of
methods.

(1) Creation of instances

The "create" predicate is used to create an instance. The predicate
is common to all appliecation programs. Thus, 1t iz encugh that cnly
one "create" predicate exists in translated code. The definition of
the "create" predicate is as follows.

create{ﬁnrlq_name.Instanca_ﬂama,lnput,Initial_?alues,Initial_Directory} f=
world_template{Harld_name,Instance_Parts,Inatanns_variablesl,
sat_initial_yalues{Initial_values,Instancq_iariables,State},
ureatg_parts{Inatance_Parts,lnitial_Directury,Directory}.
instancq_distributor{Channel,Dirsctnry}.
instanceiwurli_nama,Instanc:_ﬂama,lnput,Cnannel,state].

Among the arguments, "Werld name"™ i= the name of the world used to
create an instance, "Instance_MName" is a name of an instance, "Input"
is an input channel for messages to the instance, "Initial Values" is
2 list of initial values of instance variahles, and

"Initial Directory" is used to set a list of pairs of names of
instances and their channels, known from the start, to the channel
liset. The "world template" predicate returns the names of the parts
and the instance variables given in the declaration of the world. The
"set_initial values" predicate initializes an internal state "Staten
of the instance using the initial velues and declarations of instance
variebles. The "create_parts" predicate makes instances [or parts and
the direetory to send messages to them. The "instance diztributor"
predicate delivers messages to destinations using the directory which

=1

it a list of pairs of destination names and channels to them.
"Channel™ is a channel from the created instance to its instance
distributor. The "instance" predicate corresponds to the created
instance itself.

{2} The definition of an instance

An instance is implemented by recursive call. In the definition
below of the "instance™ predicate, it calls itself as the last geal in
its definition.

instance (World_name,Name, [Goal |Input],Channel,State) :=
counter global(Goal,Name,Channell,State,Update Transactions, (succ,ck),_),
update states(Update_Transactions,State,New_State),
merge (Channel?,New_Channel,Channel),
instance (World name, Name, Input,New Channel,New State).

Note that definitiens of instances are different in each world. The
above definition defines an "instance" for the world “counter". If a
goal "Gozl" comes to an instance of "counter", the global method in
the world "counter"™ is tried first. The "counter global" predicate
calls the global method in "counter®., "counter" in "counter global®
originates from the name of the world "ecounter". For other worlds,
"eounter" appearing afterwards in translated code should be changed to
the name of the world, This predicate essentially executes an input
goal. "Channeli1"™ is a channel for sending messages to ocuter objects
through the "instance distributor"™ during execution of the goal.
Updating the instance wvariables during execution is reported using a
stream through "Update Transacticns". An element of the stream i= a
pair of pames of instance variables and values Lo be updated. The
last two arguments in the "ecounter global® predicate are used for
multiple inhepitance. ‘'suce' in the last but one argument means that
the goal must be successful, and 'ok' means that if a guard part is
successful, its body part may be executed. The “update states®
predicate updates the instance variables according to the stream.
When the stream ends, all instance variables which are not updated are
passed to "New State". The "merge" predicate merges the channel from
the "eounter global® predicate and the new channel of the recursively
called "instance" predicate into the channel to the
"instance_distributcor®.

If a null message arrives, an instance sends a null message to its
instance distributor through "Channel™ and terminates itszelf.

instance(World name,[],Name,Channel,State) :-
Channel = [].

{3} Procedures to call global metheods

Goals to an instance are first executed using global methods. There
iz a priority of methods in our language, because it has an
inheritance mechanism. Local methods of the world associated with the
instance have the highest priecrity, with the restriction that local
methods cannet be called by messages from outer objects. The global
methods in the world associated with the instance have next highest
priority. Global methods in the superworlds have the lowest priority.
The lower the superworlds, the higher the priority of the global
methods., Methods are separately executed as & guard part and a body
part. The "counter global guard" predicate executes cnly a guard part
of a method, If a guard part of the method fails, other guard parts
of methods are tried in order of the pricrity of the method. The code
for the glecbal method is shown below.

counter_glabal{ﬁoal,Name,Channel,State,Updatq_Transactiona.Heault,_} L

counter global guard(Goal,Name,Channell,State,Update Transactionsi,Body)

Result = (succ,Ack),

counter global_ body0(Body, Name,Channel?, Channel,
State,Update_Transactions,Update Transactions,fok).

If the guard part is successful, the body part of the method will be
executed. The argument "Body"™ is used to specify the body part
corresponding to the guard part of the method. "Result = (suce, fAck)"®
returns the result which means that the guard part is successful, and
"Ack™ is a variable for acknowledgment. If the "counter global®
predicate is called from the "instance" predicate, "Ack" is set '"ok'
in the “instance" predicate. The "counter global_ body0" predicate
checks the value of "Ack".

Next, we desoribe the code for inheritance., The translated codes
for multiple inheritance, i.e., that the world “counter" inherits two
superworlds "super1" and "super2", are used as an example. In this
implementation, contrel of execution to the superworld is passed by
"otherwise" when the guard parts in the current werld fzil.
"otherwise" is a special system predicate in KL1, and its function is
that a goal "otherwise" succeeds when the guard part of all cther
clauses whose predicate have the same name have failed., It is easy to
implement the inheritance mechanism from the lower worlds to the
superworlds using "otherwise". But it is not easy to implement
multiple inheritance. The inheritance rule for multiple inheritance
in our lanpuage is that the methods of multiple superworlds are tried
in parallel. The method whose guard part first succeeds is selected;
other methods are abandoned even if their guard parts succeed.
Multiple inheritance is implemented using the metacall. The syntax of
the metacall is "call(Goal,Result,Control)®, with three arguments,
"Goal"™, "Result™ and "Control®. Its specification is as follows
[Miyazaki 85] (This specifiecatien is tentative in KL1):

Wait until "Goal" beccmes a nop-variable and o=ll it. If it
Succeeds, "Hesult" is bound to 'success', If it fails, "Result" is
bound to 'fail'. If "Control" is bound to 'stop' while solving
"Goal", "Result" is bound to 'stopped' and the execution of the
metacall terminates, but all bindings made by "Goal" remain.

A metacall i= used teo avoid wasteful execution, because there is a
possibility that all the guard parts of the methods that can possibly
be used to execute the goal are tried. Let us consider the counter
program example. If the "counter global guard" goal in the current
world fails, the two metacalls in the following clause first try to
execute the guard part of the global methods of the two superworlds.
Their results are returned to "Resulti”™ and "Result2"., If the guard
part of a method is successful, the result is "(suce,Ack)" in which
"hek" is a variable for acknowledgment, otherwise, the result is
"(fail,no)". The results are checked by the "eommit_world"™ predicate.

cnunten_globaliGual,Name.channel.State,Update_Transaetinns,Result,tnnt} .
octherwlse |
ealll
superl_global (Goal ,Name, Channel,
State,Update_Transactions,Result!,Cont1), ,Cont),
call(
superz_global (Goal ,Name, Channel ,
State,Update_Transactions, Fesult2,Cont2), ,Cont),
commit worlds(Result,Cont,Resultl,Result2,Contt,Cont2).

commit world(Result,Cont,(suee, fck),X2, ,Cont?) :-
¥2=(_,no),Result=(suce, Ack), Cont2=stop.

commit world(Result,Cont,X1,(suee, Ack),Contl,) :-
X1=(_,no),Result=(suece, Ack), Cont?=stop.

commit world(Result, ,{(fail,ne),(fail,no),Cont1,Cont2) :-
Result={fail,no),Conti=stop, Cont2=stop.

ecommit_world({Result,stop, X1,¥2,Cont1,Cont2) :-
¥1=(_,no),¥2=(_,no},Contl=stop, Cont2=stop.

The "commit world" predicate selects the method which first reported
the suceess, whose form is "(suee, Ack)". If successes are reported
from the two superWworlds, the "commit world" predicate selects either
of the two and stops execution of other methods by instantiating
tstop' to the control variable of the metacall. The result may be al=o
reported to the lower worlds by the unificaticen of "Hesult"™ and
"{succ, Ack)", because the possibility that this world is a superworld
of the lower worlds exists. If the lower world is on the way, the
result iz tested like this world. Finally, the result is passed to
the caller of the goal, and the acknowledgment i= set to 'ok'. The
caller is the "counter global® predicate in the "instance" predicate
or the "call method" predicate described below. The acknowledgment
"ok is used to decide which body part can execute in the
"eounter global bodyO"™ predicate. If the acknowledgment is 'ok', the
body part is selected; if it is 'ne', the method is= not selected, If
Lthe results of the two superworlds fail, the third definition of
"eommit world" clauses is selected and a fail is reported to its lower
worlds (Result = (fail,no)). If ancther method is selected, the
control variable is instantiated to 'stop' and tries to cancel the
executiocn of the methods of the super worlds.

Execution of the beody part waits until the acknowledgment is
returned. The "counter_ global body0" predicate checks the
acknoewledgment. If the acknowledgment is 'ok', the body part is

executed. The "counter global body" is called to execute the body
part of the method.

counter_glebal body0(Body,Name, Channell, Channel,
State,Update_Transactionsi,Update Transactions,ok) :e
mergefUpdatq_Transacticns1,Updatq_TransantionsE,Update_rransactiuna},
merge (Channell,Channel?,Channel),
counter global body(Body, Name, Channel?,State,Update Transactions2).

(4) Tran=zlated code of a method

Now let us take a look et the compiled code of methods. & method is
sgparately translated to a guard part and & body part. We translate
the method below contained in the world "counter",

up(¥} = X > 0 N\ add1(X,X1), new(statel,X1} :

There is a goal "X » 0" in the guard part. In the bedy, "addi" is a
user-defined predicate, and predicate "new" is a system predicate.
The translated code of the guard part of the method is as follows:

counter global guard(up(X),Mame,Channel,State,Update Transactions,Body) :-
X >0 | Body = bodyi1(X), Update Transactions = [], Charnnel = [].

"body1(X)" is constructed for the identificatien to link it to its
body part. The identification must be unique in every method. The
variables Iin a geard part are passed to the body part as the arguments
in the identification. "Update Trensactions" and “Channel" are
instaptiated null, because no state is updated and no message is sent
in the guard part of this method. The body part of the above method
iz as follows:

counter_global body(body1(X),Name, Channel, State,Update Transactions) :-
call method({addl(X,X}),Name,Channel,State,Update Transactiensi),

=}
|

new{statel,X1,Update Transactions2),
merge (Update_Transactionsi,Update_Transactions2,Update Transactions).

User-defined predicate "add1" is translated to the goal for the method
call interface, the "call method" predicate. Bescause states may be
updated and messages may be sent while executing the "addi" predicate,
the stream "Update Transactionsi" for updated states and the stream
"Channel" for the chanmel tec the instance distributor must be passed
to the "eall methed" predicate. The "merge" predicate is used te
merge the streams from the "mew" predicate and the "call method"
predicate to "Update Transactions".

The "call method" predicate first tries to evaluate the guard part
of the local methods in the current world., If the guard part is
successful, its body part is selected, otherwise, the global methods
are tried.

call method(Goal,Name,Channel,State,Update Transactions) :-
counter_local guard(Goal,Name,Body) |
Update Transactions = [], Channel = [],
counter local_body{Body, Name).
call_methnd{ﬁﬂal,Hame,Chanﬁel,Stnte,Updatq_rranaactionsj -
otherwise |
cnunter_glﬂbal{ﬁnal,Hame.ﬂhannal.State.Upﬂatq_Transactinns,{suce,ck},_J.

4, Example

The following example is a very simple Program enviromment. Four
worlds are declared: "distributer®, "object", "terminal manager", and
"gounter®. The distributor has two important funetions. Ope is
ereation of instances and the other is distribution of messages Trom
cne instanee to ancther. If the distributor creates an instance, it
registers the name and the channel of the instance in its channel
list. The world "object" is the top-level world, and has a common
methed among instsnces. This is the "send_to" method for sending a
message "Message" to a destination "Destination® through the
distributor. The world "terminal_manager" has a method to display a
pessage to a terminal. The methods ik the world "sounter® are similap
to the KL1 clauses of the counter shown in Section 2. The werld
"ecunter™ has one superworld, "objeet", and an instance variable,
"state". The "addi" method is a local method. 1In the top-level goal
"test", the "create" predicate is called to create a distributor, and
the message to create a counter and a terminal manager as well as the
messages to the counter are =ent to the distributor,

world distributor
wethod
send_to(Name,Message) :- send(Name,Message) ;
create({Class, Instance) :=-
gEet_channel (distributer,Dis},
crcate[ﬂlnss,Instanee,ﬂes.{],[{distributor,nis}]}.
add_channel([(Instance,Mes)]} ;
end.

world object
method
send to(Destination,Message) :-

send(distributur,sanq_toEDastination,Hesaaga}} i
end.

Wworld terminal manager
super
object

-]] —

method
display(X) :- write(X) ;
end.

world counter
super
cbject ;
variable
state ;
method
aet(X) :- new(state,X) ;
up :- old{state, i), addi(X,X1), new(state,X1) ;
show :- old(state,X), send to(terminal_manager,[display(X)]);
local
add1{X,X1) - X1 (= X + 1 ;
end,

test -
Mes=[create{counter,ctl),
create(terminal_manager, terminal_manager),
send to{etl,[set(1),show])iDis],
create(distributor,distributor,Mes,[],[(distributer,Dis)]).

5. Discussion

We described an object-oriented language on KL1. This language is
gimilar teo Vulecan with some important differences.

{1} Instance variable
We use the esingle assipgnment method to implement instance
variahles. But Vulean uzes a method corresponding to the bucket relay
method to implement instance variables. We selected the single
assignment method because it imposes fewer restrictions on considering
methods in objects as KL1 elauses than does the bucket relay method.

{2) Description of methods

The methods in our language are described as KL1 clauses. We
selected KL1 for description of the methods because we believe that
KL1 i= a powerful language. The methods of Vulcan are not taken from
Concurrent Prolog, but are rather similar to Smalltalk. Vulcan uses
Concurrent Prolog as an implementation language, which means it hae
lost the parsllel control mechanism of Concurrent Prolog. It is
difficult for programmers to contrel programz in parallel.

{3) Implementation of inheritance
Inheritance in Vulear is implemented by the copying method that

invelves creating subeclasses with source copies of all methods
inherited from their superclasses, or the delegation method in which
that superclasses are regarded as parts, and methods in superclasses
are called by sending messages to them. In contrast, inheritance in
our language is implemented by calling methods in superworlds. We
think that the copying method is not realistie, because the number of
copied methods become enormous when we write the operating aystem. We
cannot use the delegation method either, because metheds in
superworlds cannot be called in guard parts.

We have implemented an cbject-criented program language on KL1. But
the current implementation is naive, so there is room for significant
improvement of performance. Inheritance is one of the main overheads.
The overheads may be decreased by calling the necessary method
directly. Ancother main overhead 1s execution of the "“update_ states"
predicate. It may be possible to reduce the overheads by specifying
instance variables explicitly as arguments in translated code. For

- 12

that purpese, it is necessary to determine which ipstance variables
are updated and which are not in ezch method by analyzing programs.

We should evaluate this language from several standpoints, not just
performance. One is usefulness. We intend to describe various
applications to investigate the influence of the restriction to single
assignment on programmers. Another issue is whether it is possible to
check the violation of single assignment in programs, The violations
are bugs, but the check is not easy. We also need to investigate a
language based on the database method, because we think that the
database method iz a good alternative. It may even turn out Lo be
better than the single assignment method, if it iz poassible to produce
translated code while aveoiding its defect, i.e., the possibility of
accessing inatance variables in guard parts.

Acknowledgment

This researeh is based on discussions in the Mandala group at ICOT,
and we wish to express cur thanks to the members, Susumu Kunifuji
(Fujitsu Limited), Karzunori Ueda, Tosihike Miyazaki, fAkire Okumuras
(ICOT) and Hideki Yasukawa (Matusita Electric). We would also like to
thank Kazuhire Fuchi, Director of ICOT Research Center, who provided

us with the opportunity cof deing this research in the Fifth Generaticn
Cemputer Systems Project.

References

(Clark 83] K.L.Clark, S.Gregory: FARLOG: A Parallel Logie Frogramming
Language, Research Repert DOC 83/5, May (1083).

[Furukawa 83] K.Furukawa, A.Takeuchi, S.Kunifuji:
Mandala: A& Conecurrent Prolog Based Knowledge Programming
Lenguage/System, ICOT TR-29, {1983).

[Furukawa 84] K.Furukawa, A.Takeuchi, S.Kunifuji, H.Yasukawa, M. Ohki,

K.Ueda: Mandala: A Logic based Knowledge Programming System, Proc. of
FGCS'84, (1984).

[Geldberg 83] A.Goldberg, D.Robson: Smalltalk-80, The language and
Its Implementation, Addison Wesley, (1983).

[ICOT 85] ICOT KL1 Group: Explanation material for Kernel Language 1,
ICOT internal report, in Japanese (1985).

[Kehn 86] K.Eahn, E.D.Tribble, M.S.Miller and D.G.Bobrow:

Vulearn:Logical Concurrent Ubjects, Knowledge Systems Area, Intelligent
System Laboratery, Xerox Palo Alto Research Center, (1686).

[Miyazeki 85] T.Miyazaki: Guarded Horn Clause Compiler User's Guide,
10T, (1985).

[Shapirc 83a] E.Shapiro: A Subset of Concurrent Prolog and Its Interpreter,
ICOT Technical Report TR-003 (1583).

[Shapirc £3b] E.Shapire, &.Takeuchi: Object Oriented Progracming in
Concurrent Frolog, New Generation Computing Vol.1, No.1 (1983)

[Tanaka 86] J.Tanaka, K.Ueda, T.Miyazaki, A.Takeuchi,Y.Matsumoto and
E.Furukawa: Guarded Horn Clauses and Experiences with Farallel Logic
Frogramming, Proc. of Fall Jeint Computer Conference, (1986).

{Tokoro B4] M.Tokero, Y.Ishikawa: An Object-oriented Approach to
Knowledge Systems, Froc. of FGCS'B4, (1684),

- 13

[Veda 861 K.Ueda: Guarded Horn Clauses: A parallel Logic Programming
Language with the Concept of a Guard, ICOT Technical Report TR-Z208
(1985).

[Yonezawa 861 A.Yonezewa, E.Shibayema, T.Tanaka, Y.Honda: Modeling
and Programming in an Object-Oriented Coneurrent Language ABCL/1, in
Object Oriented Concurrent Programming, edited by A.Yonezewa and
M. Tokoro, MIT Press, (1986).

