ICOT Technical Report: TR-217

[R-217
Inductive Inference of Context-free Languages
—Context-free Expression Method—

by
T. YOKOMORI

November, 1986

©1986, 1COT

Wita Kokuszi Bldp, 21F ((3) 456-3191--5

“ :D I 4-28 Mita 1-Chome Telex 1C0T J32964
Minato-ku Tokyvo 108 Japan

Institute for New Generation Computer Technology

Inductive Inference of Context-free Languages

— Context-free Expression Method —

Takashi YOKOMORI*

*)Research Staff, Fundamental Informatics Section, International Institute for
Advanced Study of Social Information Science, FUJITSU LIMITED.
140 Miyamoto, Numazu, Shizuoka 410-03 JAPAN

Abstract

An inductive inferece problem of context-free languages is
considered. There have been many attempts to this problem,
and most of them are based on a problem setup in which a
representation space for hypotheses is a class of context-free
grammars. An inference algorithm given in this paper , on
the contrary, employs a kind of extensions of regular
expressions called context-free expressions as a
representation space for context-free languages. The
algorithm, based on the notion of an identification in the
limit, is significantly concise when compared with existing
algorithms.

Then, a subclass of context-free languages is examined,
and a simpler algorithm and its improved version for the
subclass are presented together with some complexity results
on the inference problems.

Further, a topic on meta inductive inference is briefly

discussed.

1. Introduction

An inductive inference is, in general, recognized as a process of finding a set of
rules from given many examples. The mechanism underlying is one of the most
significant functions for supporting knowledge acquisition process in the various
phases of problem solving we encounter, and it is also one of the primary subjects in
the research on machine learning.

For the present, the research efforts in the inductive inference problem mainly
forcus on the domains of finite-state automata, formal grammars, first-order logic,
LISP programs, and so on, and some results have been obtained in its own domain.
There remain , however, many to be done in the context of developing practical
inference algorithm for solving realistic application issues such as a problem of
automatic programming from examples.

Now, we consider the following model of inductive inference problem: Given an
object L of inference, an inductive inference device (IID) tries to infer a
representation H for the object from examples. It is assumed that IID has an
enumeration mechanism by which any possible hypothesis from the representation
space can be eventually enumerated at least once. It is also assumed that we can
utilize an oracle concerning examples from the object. ID asks the oracle for an
example, and computes hypothesis and outputs it, and again asks another example
for the next step, and this process is cyeled. In a sequence of hypotheses Hy, Ha, ...
11D is said to identify L in the limit if there exists a positive inlegern such that Hyp
represents L and Hy, 4; equals to Hy for alli=0.

A simple algorithm for identification in the limit is the one based on the notion of
identification by enumeration. Let Hy, Hg, ... be an effective enumeration of the
possible hypotheses, and suppose a set of examples ey, ez,..., ek are presented. Then,
IID provides as its next output the first hypothesis which is compatible with all these
examples. Under the assumption of a perfect oracle, the sequence of hypotheses

converges in the limit,

Now, Shapiro([Sh 82]) extends this idea to the domain of first-order logic, and
constructs a program which infers sentences from examples of their logical
concequences, which is recognized as the first attempt and fruit(success) in the area,
His representation space for hypotheses is restricted to the class of sentences in
clausal forms, and the alphabet of the representation language is fixed to be finite.
The object of the inference in his strategy is the Herbrand model , and examples
from the model are given in the form of ground atoms. Although Shapire’s method
has really a fruitful success, as Laird suggested[La86], it is not necessary true that
the first-order logic is best suitable for general purpose as a representation space for
hypotheses. For example, it isindeed possible to represent regular sets in terms of
Horn logic, however, regular expressions or finite-state transition graphs can
provide a better and more intuitive way of representing regular sets.

This is exactly the piont which motivated this work. In the next section, we
consider the inductive inference problem for context-free languages, and employ a
representation space for hypotheses different from the ones in the exsisting methods.
This enables us to make an elegant discussion on the problem and the algorithm for
solving the problem.

This paper is organized as follows: Fisrt, a formal framework for discussing the
problem of inductive inference is given in Section 2. Then, Section 3 deals with the
inductive inference problem for context-free languages and gives an inference
algorithm for the problem, in which the notion of a conlext-free expression plays a
central role. In Section 4, a subclass of context-free languages called semilinear
languages is investigated as the inference object, and simpler and improved
algorithms for inferring the class are presented, together with some complexity
results. In Section 5, a topic on meta inference is briefly mentioned, and followed by a

concluding remarks in Section 6.

2. Formal Framework for Inductive Inference

There have been a number of attempts to formalize a problem of inductive
inference. Among them, the concept of an identification in the limit devised by Gold
takes a central position in the framework for inductive inference of formal
languages. Here we adopt a formal definition of more abstract problem setup which
has been recently proposed by Laird.

An abstract inference problem is defined as follows.

Definition 2.1([La86])

An abstract inference problem is a 6-tuple (D, dg, 2, h, ASK, EX), where
(1) D is a finite or countable set partially ordered by = (called semantic domain of
objects),

(2) dg is a designated element of D (called target),

(3) Q is a countable set of expressions (called representation space),

(4) h: @ —D is a surjective mapping from expressions to objects,

(5) ASK is an oracle for = such that ASK(ejez)=1 if h(e;)zh(ep), and =0
otherwise(eq,ez €£2),

(6) EX is an oracle for examples of dp such that if EX()= +e then dg=h{e), and if EX()
= —ethen dgzh(e)e is an example of do).

Note. The example set of dg consists of both positive (signed +) and negative
(signed—) examples with respect to do. EX() has no input, denoted by (), and

produces +e or —e as an output per each call of the oracle.

This formalization provides a simple formal framework for the inductive
inference problem setup in which each example on the target can be regarded as an
element of representation space. In fact, using this framework it is possible to deal
with several existing inference problems with representaion spaces such as logic
programs, regular expressions.

Now, it is well recognized that the way of presenting examples plays a significant
role in the inductive inference problem([Go67]). The following definition is often used

in almost all the work reported so far.

Definition 2.2([La86])

The oracle EX () is said to give a complete presentation of dy if for every e € Q such

that dg=h(e), EX() eventually returns " +e” at least once, and for every e ¢ 0 such

that dpzh(e), EX() eventually returns " —e"at least once.

Then, it is known that an inference algorithm for the abstract inference problem

is given as follows :

Algorithm Ag (Identification by enumeration [LaB6])

Input:

Output:

Procedure :

A recursively enumerable set of Q of expressions
An oracle ASK(eq,ez) for whether hie)zh(eq) or not?
An oracle EX() for a complete presentation ol dg
A sequence of expressions e1, €2, ... such that ey, is correct for the
first n examples
Let ey, e2,... be an enumeration of Q
ie1l
EXAMPLES+® (empty set)
do forever:
EXAMPLES«EXAMPLESUEX() (get next example)
while ASK(eje)=1 for some negative example —e or ASKi(eje)
=0 for some positive example +e
i—i+1

Output e;j as the next hypothesis.

The correctness of Algorithm Ag is guaranteed by the following .

Theorem 2.1 ([La86])

Algorithm Ag identifies dg in the limit.

Turning to the inductive inference problem for formal languages in general, it is
very common for the problem setup to take formal grammars as its representation
space. And , several resulls on the inference problem of regular sets have been
successfully reported, while only a little is known about the effective, complete
algorithm for the inference problem of the language classes larger than regular sets
([AnT78],[An86],[Bi72] [Go78],(ETT76],[Shi83],[TATT],[WhT77],[Ta86]).

In this paper, we present an inductive inference algorithm for the class of context-
free languages. The abstract inference problem given above is employed as a formal
framework of the problem. Hence, it is necessary to set up the problem so that each
example on the target may be regarded as an element of the representation space.

Qur approach is unique in that it does not employ the class of context-free
grammars as a representation space. Instead, we use a kind of extension of regular
expressions called “context-free expressions”. This makes it possible to formalize the
inference problem of context-free languages as an instance of the abstract inference

problem and also to provide a very simple algorithm for the problem.

3.Inductive Inference of Context-free Languages

In this section, the notion of a context-free expression is introduced which
constitutes the representation space for context-free languages. The context-free
expression, which has been originally proposed by Gruska ([Gr71]), is a
representation form for a context-free language and is a natural extension of a

regular expression.
3.1 Context-free Expressions —Extended Regular Expressions

We shall give some basic notions and notations needed through this paper. (The
reader is assumed to be familiar with the rudiments in the formal language theory.

See, e.g., [SaT3] for definitions unstated here.)

For a given finite alphabet , the set of all strings with finite length (including

zero) is denoted by I*. (An empty string is denoted by £.) A language L over L is a

subset of L*. For an infinite alphabet I', Lis a language over T'if L is a language over
some finite subset Zof I'.

A product of languages Lj and Lg, denoted by LiLg, is defined as follows:
LiLo={xy|x ¢ L1, y € Lz }. For a language L and an integer ig0, L! is defined
inductively : L0={e}, Li+1=LiL. Further, we define L*=UjzoLi, and L+ =Uj21Li,

and call *-closure and + -closure of L, respectively.

A context-free grammar is a 4-tuple G=(N,T,P,S), where N is a finite alphabet of
nonterminals, T is a finte alphabet of terminals such that NNT=®, 8 is a
distinguished element of N called the initial symbol, and P is a finite set of production
rules of the form A—w (A¢N, we(NUT)*). For %, v €¢(NUT)*, a binary relation = is
defined as follows: x=y iff there exist u, ve(NUT)*, A—weP such that x=uAv and
y=uwv. Let =* be the transitive, reflexive closure of =. A set L(G) = {x]| S=*x and
x€T* } is called the language generated by G. A language iscalled context-free if there

exists a context-free grammar G such that L =L({G) holds.
Now, the following operation plays a crucial role in this paper.
Definition 3.1 ([Gr71])

(i) Let o be a symbol and Lj, Lo be languages. Then, o-substitution of Lg into L ,
denoted by L 1 olig, is defined as follows:

Ly 1 oLg ={x1¥1 = Xk¥kZk+ 1/%1 0 XK0x) +1€Ly, 0 does not occur in the word

X1 = Xk+ 1 and yi €Lg for 1=5i=k}
(ii) Let o be a symbol and L be a language. Then, o-iteration of L, denoted by Lo, is
defined by
Lo={x|x ¢LUL 1 oLUL 1 oL 1 oL U-~, and x has no occurrence of a}.
Hemarks.
(1)If Ly does not contain o, then Ly ToLg =Lj.
(2)Let L be a language over T and suppose that T does not contain o. Then,

L*=(LoU{e}}o and L+ =(LoUL)o.

Now, we introduce a notation for representing context-free languages, called
“econtext-free expression”.

Definition 3.2([Gr71])

Let T be a (possibly infinite) alphabet, I" be the boldface version of I', i.e, I" ={o]
geT). Then, context-free expressions over I' are strings over TUI" U{d,+,(,)} defined
as follows:

(i) is a context-free expression,

(ii)ifaisin T U{e}, then a is a context-free expression,

(iii) if E, Eq are context-free expressions and o €[, then (E1+Eg2), EEg, (Ey)o are
context-free expressions,

(iv) nothing else is a context-free expression.

For each context-free expression over I', a language over I is associated in the
following convention:
Definition 3.3([Gr71])

A mapping | | from context-free expressions to a class of languages is defined by:
(i) [p|=D
(i} |a| ={a}(for va eI’ U{eh)

(iii)|E; + Eg| =|E1|U|E2l, |E1Eg|=|E1||E2|, and |Ea|=|E|o-
Example 3.1
Let a,b, o be in I', then E=(acb+ab)o is a context-free expression. Further,

|E| =|{acb +ab)e| = {acb, abje ={aibi|iz1}.0]

Definition 3.4 (Language Class Qr)
Let be ' a (possibly infinite) alphabet. Then, a class of languages {11 is defined
as follows:
(1)®, {e} € Qr,
(2)if a € I', then {a}c Qp,
(3) if Ly, Lg ¢ Qp and g¢l, then LyULg, L1Lg, and Lyo¢ Qr.

MNow, the next result plays an important role in this paper.

Theorem 3.1 ([Gr71])

Let Z be a finite alphabet, and let L be a language over L. Then, L is a context-
free language if and only if there exists a finite alphabet T such that ZCT and L ¢ QT

Therefore, we have the following characterizalion of context-free languages in
terms of context-free expressions.
Theorem 3.2

LetE bhe a finite alphabet, and let L be a language over I, Then, L is a context-free
language if and only if there exists a finite alphabet T and a context-free expression E
over T such that ZcT and [E |= L.

Proof. Obvious from Theorem 3.1 and definitions.(]

Thus, context-free expressions provide a way of representing context-free
languages, and for our purpose , i.e., for developing an algorithm of the inductive
inference problem for context-free languages, it can provide a better representation
space than any other device like grammars. That is, as is shown later, an inductive
inference algorithm for context-free languages is obtained by naturally extending
the one for regular sets in terms of regular expressions.

3.2 Inductive Inference Algorithm
In this paper, we formalize the inductive inference problem for context-free
languages as follows:
< Inductive Inference Problem for Context-free Lanugages>
(1) a semantic domain D is the class of context-free languages, and a partial order 21is
an inclusion relation over D,
(2) dpis a given context-free language,
(3) a representation space { is the class of contex-free expressions,
(4) for Ein Q, h(E)is defined asa language [E |in D,
(5) an oracle EX() works as follows:

EX()= +eimplies h(e)cdp, and EX()= —e implies h(e) g dy.

Now, let L be a context-free language over a finite alphabet . We fix an infinite
alphabet ' over which context-free expressions are defined, where LCI.(It is
assumed that auxiliary symbols ¢, +, (,) are not containedinT'.)

We define an operator & on £, the set of all context-free expressions over I, as
follows:
Suppose E, Eq, Eg are context-free expressions over I', As a notation, by E1—Eg we
denote Eg € 6(Eq):

(1) o~

(2) p—a (va cTU{e}

(3) p—(P) o (voel)

{(4) d—{d+ Q)

(5)ifE;—E, then E; +Eg—E+Ezand E2+E;—Ez+E

(8)if E;—E, then Ejo—Eo (voel')

(T ifE{—E, then E;Es—EE2 and EgE1—E2E,

Note that there are two types of rules forming the operator &: one for rewriting ¢
((1)-(4)), the other for preserving structure of expressions((5)-(7)).
Lemma 3.1

The operator & defined above has the following properties:
(i) & is complete for the most specific expression ¢ in the sense that the set &*(¢) of all
expressions obtainable from § in a finite number of applications of & includes at least
one expression for every context-free language.
(ii) For arbitrary expressions Ey, Eg in Q, whenever E1¢5(Eg), [Eq |2|Eg] holds.
Proof.

We prove by induction on the way of constructing expressions in Definition 3.2.
(i) By Theorem 3.2, it suffices to show that Qc8*(¢). First, by the rewriting rule (2)
above, we have thata ¢ 8(3) for va €TU{e}. Now, suppose that E; and Eg are in

5*(d). (In what follows, by —* we denote a finite number of applications of =. Then,

b—d+d (by (4)) —* E;+¢ (by applying (5) together with the induction
hypothesis)—*E + E2 (by applying (5) together with the induction hypothesis),
thus, we have Ej+Eg € §*(¢). Similarly,

d—dd (by (1)) —* E1d (by applying (7) together with the induction
hypothesis) —*EEz (by applying (7) together with the induction hypothesis),
hence we have E1Es ¢ §%¥(3). Further, d—d o (by (3)) and since $—*Ej, by applying
(6) repeatedly, we have ¢ o —*Ejo, hence ¢—*Ejo,i.e. Ejo € §%(¢).

(ii) Since, from the rules (1)-(4), &(d)={dd, &, d+d, o, do(voel)}, we have that for
each E € 8(9), [E|2 |3[=2.

Now, let B’ be in §(E). Then, there are only three cases concerning E.(Note that
if Eis in T'U{e}, then no rule in§isapplicable to E.)

(1) E=Eq+Eg; Let E{' ¢ §¥(E{}(i=1,2). Then, by the induction hypothesis, [Ejl|2 |Ej|

holds.

Hence, by (5) |E|= |E1+Eg| = [Eq|u [Eglg [Er'|u [E2|= [Eor
[E|= [Eq +Eaf= [E|u [Eg|C [B1|J [Eg]= [E]

is obtained.

(Z) E=EEq; By the same hypothesis,
]E[= 1E1E2l= !E1 !Eg|§ iEl' 1Eg!= |E’| or
|E|= [E1Eqg|= [E1| [Bzlc [E1| [Be'|= [E]

is obtained.
(E=Fo(voeT): Let E{" ¢ §*(E}). Then, by the induction hypothesis, [Erl2 B4
holds. Hence by (6)
|E|= [E1o|= [Ey] oC [E1'] o= |E7|
is obtained. This completes the proof.C]
Example 3.2 (Derivation process of expressions)
Consider the following derivation process from ¢ :
key rule used

d— (e (3)

— (dd)e (1)

-10-

— (¢+) bk (4)

— ((pp+) D (1)
= ((adp+d) bl (2)
— ((a(dlo+d) Pl (3)
— ((ald+dlo+) fle (4)
—* ((a(dpdpd+ dla+d) d)e (1)
—*((a(aoo +blo+d) dle (2)
— ((a{aoo +blo+ d) Pl (1)
— {(a(aoo +blo+bd) d)e (2)
— ((a{aoo +b)o+bld)v) dic (3
— {(alago +blo +bld+dlv) d)e (4)
—* ((a(aoco +b)o +b(ddd +dIv) dle (1)
—*((a(aco+blo+b(bvv+a)v) bl (2)
— ((a{aco+bla+ b(bvv+alv) (p+d)c (4)
— *({a(aoo+h)a +b(bvv +alv) (xt+¢ll (2)

Thus, we have eventually obtain an expression :
E=((afaco+h)a+b(bvv+a)v)it+e)l
and itslanguage is:
|E|={w] #alw) = #p(w), W ¢{a,b}* }, where #;(w) denotes the number of a letter x
appearing in w.
(By the way, the language |[E| is generated by a grammar with the initial
symbol S and the set of rules : {S—aBS, S—aB, S—bAS, S—bA, A—bAA, A—a,
B—aBB, B—b}.)O

Now, using the operator § defined above, we can obtain an algorithm for the

inductive inference problem of context-free languages, which is quite simple and

based on the principle of "identification by enumeration”,

-11-

We assume the oracle EX for the set of positive and negative examples. Note
that sinee a positive example € can be regarded as an expression E whose language |E|
is {e}, the set of positive examples constitutes a subset of the representation space Q.
Definition 3.5
(i) (complete and sufficient oracle)

Let dg be a context-free language of target. An oracle EX is called complete and
sufficient for dg if there exists a signed subset K of Q satisfying the followings:
(1) the set {EcQ| for all e in K, if e is positive, then h(e)c h(E), else h(e)gh(E)} is
exactly the set {E¢Q| h(E) = dg}.
(2) for every ¢ € K such that dygoh(e), EX() eventually returns " +e” at least once, and
for every e € K such that dp2h(e), EX() eventually returns " —e" at least once,
(ii) (admissible presentation of do)

A presentation of examples of dg is called admissible if it has an oracle EX which

is complete and sufficient for do.

It should be noted that there exists such a K for our case, that is, if we take K as
the set {E€Q | |E|is a singleton , and if it isin dp, then B hasa sign +, otherwise it has
asign — }, then K satisfies the conditions mentioned above. Hence, we may assume
the existence of the admissible presentation of dp.

Before presenting an algorithm, we need some preliminaries.

For a given target context-free language L, let T= {a1,...,an} be the alphabet
over which L is defined. Further, for each kz1, let Tk =TUARUA L U{d, +,()},
where Ak ={01, 09, ..., ok}, A’k =01, 02, ..., Ok}

Now, Theorem 3.2 says that for any context-free language L, there exist some
integer k=1 and an expression E such that [E|=L and E is a string over T'k. (Note
that an integer k, in general, depends on L.)

[The outline of the algorithm]
We outline the inductive inference algorithm for context-free languages. For a

given expression E and iz0, k=1, let 5(E,i,k)={E|E—iE’and E'is a string over Ty }.

-12-

Then, §*E)=UjzoUk=218(E,i,k). We abbreviate 8(¢,i,k) as 8(i,k) . The algorithm
requires an enumeration procedure which, starting with ¢, enumerates every

expression. The enumeration is performed in the order indicated in Figure 1.

d— 8(1,1) = &(2,1) = 8(3,1) = 6(4,1) =- - -

(P —)58(1,3) = 8(2,3) 3

(p—)6(1,4) = -

-

Figure 1. The Enumeration Order

As a notation, we denote an element of 8(i,k) by [E,(i,k)]. Note that for each ik,
§(i.k) is finite. Further, let B&(i+1k)={EJE—E’ and Ecd(i k), E'€['k*}, that is, an
element of 8(i + 1,k) is obtained from an element of §(i,k) by applying &x once, where
5k is a restriction of § to Iy, Finally, each 6(1,k) is obtained from ¢ by cne
application of 8y .

Now, the algorithm works as follows: By applying & to ¢, it enumerates a
hypothesis (an expression) E and stores into a queue Q in the form of [E,(i,k)]. then
refines (generalizes) each hypothesis by examples. The enumeration is performed in
the order indicated in Figure 1, thatis

8(1,1), 8(2,1), 8(1,2), 6(3,1), 5(2,2), 6(1,3), 6(4,1),...

.13-

For a hypothesis E, it does not cover some positive example(it is called “too specific"),
then the algorithm generalizes E in some way. Otherwise, if its language |E| includes
some negative example(it is called "too general”), then the algorithm simply discards
it. This is repeated until a correct hypothesis is found.

The algorithm is given below as Algorithm Ajq.

For the sake of helping one understand the process of enumerating hypotheses
in the algorithm, Figure 2 illustrates how the contents of a queue Q changes during
the enumeration.(The contents of Q is represented as a rectangle whose length may
change as the time goes. The shadow portion of @ denoting 8(1,k) is created only
when 8(k +1,1) is produced from 8(k,1), and it is placed before 6(k + 1,1)).

Remarks.
(1) For given integersik=1, 6(i,k)is obviously computable.
(2) For any E and an example w, it is decidable whether w ¢[E| or not, that is, the

membership problem for the class of context-free languages is decidable.

Theorem 3.3

For any given context-free language dy, the algorithm Ay identifies dg in the
limit.
Proof. We need to show the following two: Fisrt , the algorithm Aj converges some
hypothesis E, secondly, the hypothesis E is correct for the target dg.

From the completeness property of & ((i) of Lemma 3.1) and Theorem 3.2, there is
a chain of generalization steps from ¢ : § =E¢—E;—-~—E,=E and |E[=d. Here we
assume that n is as small as possible for the given dg. Property (ii) of Lemma 3.1
together with the minimality of n ensures that for each i, [E;|C|Eq|. Then, there are
strings w; such that w; € |E| and wj ¢|E;|. Let Eq be in 8(n k).

[Proof for correctness] Assume the algorithm converges to some expression E:
that is , there exist i,k =0 and E in 8(i,k) such that E is correct for not only all
examples in EXAMPLES but also every example given in the future. (That is the

definition of "convergence”.) Hence, E is correct for dp.

.14 -

Algorithm A; (Inference Algorithm for Context-free Languages)

: Input: A recursively enumerable set of context-free expressions £
: An enumeration operator §
An admissible presentation of a target language dg

: Qutput: A sequence of expressions Ep, Es, ... such that Eq is correst for the first
' n examples. :

E‘Prﬂcedum:
: Q«5(1,1);{elements of (1,1) are stored in the queue Q}

EXAMPLES«D (empty set)
X —next(Q):{next removes the top element of Q}
do (forever):
EXAMPLES —EXAMPLESUEX() {get next example}
while (let X =[E;,(i,k)] be the j-th element of &(i k), then)
3ec EXAMPLES s.t. E; is not correct fore
if Ejis "loo specific”
then do
if i=z2
then if k=1landj=1
then append 8(1,1)8(E},1,1) tothe tail of Q;
X +next(Q);
else append 8(E;,1,k) to the tail of Q;
Xe=—next(Q);
else append 8(E;,1,k) to the tail of Q;
X-+next(l);
else (E;is “too general”)
discard E;;
Xenext(Q);
Qutput E; as the next hypothesis.

Ewher-.’:
E is "too specific” 1=
if 3+e¢EXAMPLES s.t. e¢ |E|, then return true

else return faise
E is “too general” :=

if 3_ecEXAMPLES s.t. e ¢|E[, then return true
else return [false

n
..

(top) The Contents of Q (bottom)
6(1,1) >

6(2,1)

S sa2) | 36D

8(3,1) 6(2,2)

822 | sam | 4D

e L e

8(1,3) 6(4,1) 8(3,2)

T

6(4,1) 6(3,2) 6(2,3)

H

53,2 | 823 | 1| 851

time

Figure 2. Queue Transition

[Proof for convergence] Suppose that the algorithm diverges. Then, we show, by

the induction on j , that every hypothesis E; (0 =j=n)in the chain above appears on the

-16-

top of Q and is generalized. When j=0, it is trivial. Suppose that E; appears on the
top of @ as a hypothesis in &(i,p) and is generalized. Since Ej4+1€8(Ej,
Ej+1€8(i+1,q) for some q. The divergence of the algorithm implies that the finite
number of expressions preceding Ej+1 will all appear on the top and be generalized
or simply discarded. Hence, Ej+1 eventually appears on the top of Q and is
generalized due to wi+1. Thus, Eu(j=n) eventually appears on the top. However,
because of the assumption of the divergence, E, is not correct for some w, which
contradicts the fact that [E,|=dg. Henee, the algorithm converges.

Thus, we conclude that the algorithm converges to a correct expression.[]

4.Inferring a Subclass

In the previous section, the whole class of context-free languages was
considered as the class of inference object. It is, however, obvious that the algorithm
is not so efficient, and we know that guessing from several comlexity results on
inferring regular sets, it seems to be very hard to find an efficient algorithm for the
inference problem of this class of languages, neither.(Note that, for example, the
minimum inference problem for finite-state automata is shown to be NP-
complete.[Go78]) On the other hand, a recent report on the polynomial time
algorithm for regular sets ([An86]) suggesis a possibility of finding a practical
inference algorithm, provided that a representation space and a target class of
languages are carefully and successfully chosen.

In this section we resirict our attention to a subclass of context-free languages
called semilinear languages, and examine the complexity results on the inference
problem for the class as well as the algorithm for the problem. In course of
examination, it turns out that a context-free expression approach to the inference
problem for the subclass has a preferable property that an enumeration procedure in
the inference algorithm can be achieved by a context-free grammar, which leads to

the meta inference discussion in Seclion 5.

4.1 Semilinear Languages and Inference Algorithm

-17 -

Definition 4.1(Semilinear languages [Gr71])
(i} A context-free grammar G=(N,T,P,S) is semilinear if it satisfies the following: For
each AeN, xe(NUT)*, A=*x implies that x contains at most one occurrence of A.
(ii) A language L is semilinear if there exists a semilinear grammar G such that
L=L{G).
Remarks.
(D There are a number of terminological equivalents used for semilinear grammars
and languages : finite-index grammars and languages[Sa73], non-expansive
grammars, derivation-bounded languages|GS68], superlinear grammars[Br68].
(@ Be careful not to confuse with another "semilinear” in the formal language theory,
which usually indicates a set of vectors in Euclidean space.

Now, Let T be a finite terminal alphabet, and let Tg=Tu{o1,02} and Iz

=Tu{ay,02, 01, o2tuld, +,0,)}.

Lemma 4.1 ([Gr71])

Any semilinear language over T is contained in vy, that is , for any semilinear
language L cver T there exists a context-free expression E over T3 such that L=|E|
holds.

This property on semilinear languages distinguishes the context-free expression
method from any other representation method (such as grammars , or abstract
machines). That is, in the grammatical representation, for example, there is no
upper bound on the number of nonterminals neccessary for expressing arhitrary
semilinear language. This is known as the fact that for any non-negative integer n,
there exists a semilinear language L, which cannot be generated by any context-free

grammar whose number of nonterminals is less than n.

Lemma 4.2

Let EXPg be the set of context-free expressions containing only symbols from T'g,
that is, EXPy={E|p—"*E and E consists of Tz}. Then, there exists a context-free
grammar G such that L(G)=EXPz holds.
Froof.

-18-

Consider the following G =({A}, £, P, A), where E=T2u({(,),+}, P is defined by:
(1) A—AA

(2) A—a (va eTu{oy,o, e,0})

(3) A—(A)eili=1,2)

(4) A—(A+A)
Let E be an arbitrary expression in EXPg, then by induction on the length of an
expression used in the proof of Lemma 3.1, it is shown that A=*E and E ¢Z*.
Conversely, suppose that A=nxand x €17 Then, we shall show by the induction of'n
that x isin EXPs. When n=1, it is trivial. Suppose that the claim holds for n=k and
that

A=kwiAwg= wiwws = x, wherew, wy, wg¢I*®
If this is reviewed as

A=y=kx,
the first step A—y in the derivation is one of the rules (1), (3), (4) above, Let
y=AA, then there exist i,j such that A =1 x, A =i x, and x=x1xo with i+j=k. By
the induction hypothesis, since xi1, x2 ¢EXP3, we have that = ¢ EXPy. The same

argument works for the cases y={A)ojand y =(A+A)O

Example 4.1 (Derivation Tree for an Expression)

Consider a language L=({aibijiz1}e)*. The language L is known as a
semilinear language. An expression E satisfiying L=|E|is derived by the grammar
(as shown in Figure 3. |
As a result, the derived expression E is:

E=((avsb+ab)ogeo) + £)o1.0]
Thus, the enumeration procedure can be realized by a context-free grammar as

a generator.
From these observations, deline an operator 82 on EXPs as follows:
[1}tp-*tptb|[¢+lb][[¢r}al|(¢:luz|a (aeTu{o1,02,8})
(2)ifE;—E, then E1 +Eg—E+Egand Eg+ E;—Ez+E
(3)ifE;—E, then E,0;—Eo; and Ej02—E02
(4) if E;—E, then E\Eg—~EEz and EoE1—EqE.

-19-

ay

A

(

a o3

Figure 3. Derivation Tree for E

-20-

Notes. The rules (2),(3),(4) are required only for 87 to be a operator on EXP2. Hence,
the essential part of 82 consists of only (1), which is identified with a context-[ree
grammar, as previously seen.
Lemma 4.3

The operator 52 defined above satisfies the following properties:
(i) 62 is complete for the most specific expression ¢ in the sense that the set 82%($) of all
expressions obtainable by a finite number of applications of B from ¢ includes at least
one expression for every semilinear language.
(ii) For arbitrary expressions E1, Eg in EXPg, whenever E1€82(E2), [E1|2[E2| holds.
Proof. Obvious from the definitions and Lemmas 4.1 and 4.2.0]

The inference algorithm for semilinear languages results in a very concise
formulation, which is a special case of the one for context-free languages and a

generalization of the case for regular expressions and is given as Algorithm As.

Theorem 4.1
For any semilinear language do, the algorithm Ag identifies dp in the [imit.
Proof. Similar to that of Theorem 3.3 and abbrevialed.[]

4.2 Another Algorithm

Although, in the previous subsection, a simple inference algorithm Ag for
semilinear languages has been given, it is too naive and ineffective to be used for
practical purpose. Here we shall present another version of an inference algorithm.

Before going on to a formal discussion, let's see the follwing example which
suggests the outline of the proof for the lemma coming up.
Example 4.2

Consider a linear grammar G =({5,A,B}, {a,b,c}, P, 5), where P = {S—Ab [bB |a8
[b, A—Sb |bB [aA, B—bS |aA [Bc). Suppose that we want to get an expression E
such that |E|=L(G) . Let Px be the set of rules with X on the ieft side. First, consider
the following procedure: Let A(+S) be a nonterminal such that the subset

Ra={A-+u;B;v| neither B;=S nor #A(i=1,...,p) } of P is non-empty. (If there is no

-21-

Algorithm As (Inference Algorithm for Semilinear Languages)

;’Input: A recursively enumerable set of context-free expressions EXPo
: An enumeration operator g
An admissible presentation of atarget language dp

Output: A sequence of expression Eq, Eg, ... such that E,, is correst for the first
: n examples. :

: Procedure:
: Q<«®;{ possible expressions are stored in the queue Q}
EXAMPLES «® (empty set) :
E«;{E keeps the current hypothesis; ¢ is the most specific expression} :
do (forever): :
EXAMPLES+EXAMPLESUEX();{get next example}
repeat
if Eis "too specific”
then append 82(E) to the tail of Q;
Eenext(Q);{next removes the top element of Q}
else if E is "too general”
then discardE;
E«next(Q);
until E iscorrect for every example in EXAMPLES
Output E as the next hypothesis.

where
[E is “too specific”] and [E is "too general”] are defined asin Algorithm Ay

such a nonterminal but S in N, then this procedure may be skipped, and move on to
the next step below.) Further, let X;—x1A¥y1,....Xg—XpAy, be all productions whose
right sides contain A, Then, by substituting all ujBjv; into A in the right side of each
Xj—xjAyj, construct n X p new productions Xj—xju;Bvyyj-|[xjupBgvpy; (1Sj=n) and
add them to P, and at the same time, remove Ra [rom P, It is clear that resulting new
grammar ' is equivalent to the original G. In our case, Ro ={A—bB}, Rg ={B—aAl}.
If we take B and apply the above procedure to B, we have a modified grammar G’ in
which the set of productions P' is {S—Ab |bB |aS |b, A—Sb |bB [aA| baA, B—bS |Bc}.

-22-

Construct Eg =(bS+02¢)a, for P'p, and replace all occurrences of B appearing in P
_P'g with Eg, yielding a new grammar Gy with the set of productions {S—Ab |bEg
|aS [b, A—Sb [bEg|aA|bah}. It holds that subp(L(G1))=L(G")=L(G), where subp(Eg)
=|Eg|. At this time, since Ra is empty for this new grammar, by constructing Ea =
(Sb+bEg+aag-+baoglog , we have a modified grammar G" in which the set of
productions is {S—Eab|bEg [aS[b}. Finally, we have an expression :

Es=(Esb+bEg+aS+b)s

=((Sh+h(bS + ooc)as+ acy +baoglogb +b(bS+ geclos+aS+h)s,

By replacing S with 01, eventually

Es=((o1b+b(boy + gzc)og+aog + baoy)ogh+blba) + o2c)og +aoy +bloy,

is obtained. From the way of construction, it is obvious that Egisthe desired one. O

Lemma 4.4

Let G=(N,Z,P,S) be a reduced linear (context-free) grammar with the property
that for any A,BeN, there exist x,y x'y'¢L* such that A=*xBy and B=*x'Ay". Then,
there is an expression Eg in EXPg such that (1) L(G)=|Eg| and (2) Eg is of the form
(E(o1) +E(EA,)+-—-+E(Ea,) +E(e))ay where Ea,=(E(o1)+E(o2) + E(Eg)+~
+E(Ep))og (r,t=0, A;BjeN—{8]), and E(X) is an expression schema of a finite
summation of the form: Zu;Xv; (u;,viel*, 1 20).
Proof. From the property of G, we may assume that X—a¢P and aeZ* imply
X =S.(Otherwise, using the property one can modify G and get an equivalent
grammar satisfying this condition.) Since the lemma is trivial in case of N={S}, we
may assume that N contains at least two nonterminals. For X in N, let Px be the set of
all productions with X on the left side. First, consider the following procedure:
{Procedure] Let A(=S) be a nonterminal such that the suhset Ra={A—uBvj
neither B;=S nor =A(i=1,..,p) } of Po is non-empty. (If there is no such a
nonterminal but S in N, then this procedure may be skipped, and move on to the next
step below.) Further, let X1—%1A¥1,.... Xn—XnA¥yy be all productions whose right
cides contain A. Then, by substituting all uiBjvi into A in the right side of each

X;—x;Ayj, construct nXp new productions X;— xJ-u1B1vlyji--~|xjupﬂpvp}rj (1=j=n) and

-23 -

add them to P, and at the same time, remove R from P. It is clear that resulting new
grammar G is equivalent to the original G. Note that since Ra=%®, Pa in the
grammar G’ must be of the form :

{A—x18y1||xSytlui Avy|-JurAvy}, where xi,¥i,uj,vj€ Z* - (#).

Now, construct an expression Ep from (#) as follows:

Ea={x18y1 + -+ xSyt +uj0o9vy + - +ur09vy)a;
and replace all occurrences of A appearing in P—Py with Ea, yielding a new set of
productions:

P'={X—Na)X—a¢P—Pu}, where { is a homomorphism defined by JY)=Y(Y
=A), flA)=Ep. Consider a grammar Gy =(N—{A}, Zu{Ea}, P', S), then it is easy to
see that suba(L(G1))=L(G")=L(G), where suba(Ea)=|Ea|, suba(a)=alacZ).(End of
Procedure)

After repeatedly applying the above procedure to all A(=5) in N such that Ra
=@ until no such an A exists any more, let G, be the final resulting grammar, (Note
that the above procedure obviously terminates.). And, let Aj,...,Am be a sequence of
nonterminals involved in the elimination process from G to G, above. Then, we
have:

suba, (...(suba,, (L(Gm))...)=1(G),and in Gm,
for A(+8) in N(the set of nonterminals of G) if any,

P4 is of the form:

{A—x)Sy1|-|xtSytlurXyvi|--JurX,vr}, where x,y;,u5,vj€Z*, X;e{Ep|BeN N, —{S}}
u{A}, and

Pgisof the form:

{S—=x1Sy1|-|xeSyduiAivi[-|urArvelzi|-|zq}, where xi, yi, uj, vj, 2k€E*, AjeNpu
{EalAeN=Nm—{S}.

Then, for each A in N —{S} by constructing an expression E4 in the manner above
and substituting each E into A appearing in the right sides of Pg, we eventually
have Es=(x;Sy1+-+xSyi+uiEa,vi+--tucEp vet+zp+--+2g)8. Finally, by

replacing S with oy,

_94 -

E5=[x14:r15r1+--+xt51}rt+u1Emv1+--~+u.-E_qrvr+zl+--v+zq',lu1
is obtained. Thus, using a schema E(X)=ZIxiXyi, we have a desired form of an

expression Eg. It is almost obvious that [Eg}=L(G) holds.C)

Lemma 4.5

Let G=(N,E,P,S) be a reduced semilinear (context-free) grammar. Then, there is
an expression Eg in EXPg such that (1) L(G)=|Eg| and (2) Es is of the form (E(ay)
+E(Ep,)++E(Ep) +Ele)on where Ea;=(E(o1)+E(o2)+ E(Ep,) + - +E(Ep,)
+E(e))as (r,t=0, and A;BjeN—{5}), and E(X) is an expression schema of a finite
summation of the form: ZujXvj (uj,vie(CU{EAAEN —IS}h*, andiz=0).
Proof. 1tis known ([Gr71])that a context-free grammar G=(N,Z,P,S)is semilinear if
and only if all grammatical levels of G is linear, where 2 grammatical level Gj of G is
an ordered pair (N 1 P;), each P; is an equivalence class of P/=: A—a=B—[iff either
A=Bor[A=*x;Byj and B=*xgAy2, for some x1,X3,¥1,¥2¢ (NUZ)*], and Nj is the set of
symbols on the left sides of productions in Pi. A grammatical level is linear iff the set
of productions is linear. Let Gop=(No,Fo) be the grammatical level such that Ng
contains S, and Gi=(N,Pr)(1=k=t) be all other grammatical levels of G. Then,
define a binary relation + on P/=as follows: Gi-GjiIT thereis A—xBy inPj, for some
AinNj, Bin Nj, x,y € (NUD)*. In this case B is regarded as a terminal symbol(called
quasi-terminal) in Gi and denoted by its boldface B . A-relation +introduces into P/=
a semi-lattice structure with the maximum element Gg .(Note that G is assumed to
be reduced.) Further, all grammatical levels Gj =(Nj, Pj) such that A—acPj implies
a€ (N;UL)* constitute minimal elements. More precisely, since we are dealing witha
semilinear grammar G (i.e., Gj is linear), a must be in T*N;L*UL*. Hence, by
Lemma 4.4 for each X in N; we can construct an expression Egj‘x which isin EXPg
and |E'35~x| =L(G; x), where Gj x = (N;,Z,Pj,X).

Now, suppose that GjGji(i=1,...,p) hold and that for each X in Nji and Gji,
Eq,ﬁ x has been obtained. Then, since each symbol Xin Njjisa quasi-terminal Xin

Gj=(N; Pj) and G is linear, by replacing X with Eg;i x in Gj, for each A in Nj we can

-25-

get an expression Eg,a, and [Eg,| =fI{(Gja)) holds, where Gja=
(N}, Eu{X|X¢Nji(i=1,...,p)},P,A) and fIX) = [Eg; | (XeNj), fla) = a(ael). By

applying this procedure to each node of the semi-lattice recursively in a bottom-up
manner, we can eventually have an expression Egys for S in Ng and Gp. (Note that
Gp is the unique element on the top of the semi-lattice). From the way of
construction, it is easy to prove that |Eg,s|=L(G) holds. (For example, this can be
proved by the induction on the height, i.e, the length of the longest path from the top
to the hottoms, of the semi-lattice.) It is also easily seen that the expression Eg, 5 is

in the desired form.

Example 4.3

Returning to Example 4.1, consider a semilinear grammar G=({S,A}, {a,b,c}.
[S—AcSle, A—aAbjab}, 8) generating a language L=({aibiliz1}c)*. Then,
grammatical levels of G are : Go=({S}, {S—AcS|e}), G1=({A}, {A—aAb|ab}), and the
semi-lattice structure of G is Ggi-Gy. For Aand G, we have an expression:
EG,A =(aogb+ab)ag, and hence for S and Gg, Eg,s=((aogb+ab)ogco;+e)o; is

obtained.[J

Now, from these observations, we can refine an operator 53 and modify aninference
algorithm Ag. First, we extend the alphabet over which expressions are defined. Let
A={Xs,Y5,X1,X2,Z1,Z2,W1,Wg} and A’ be its boldface version. Define an operator P
on the set of expressions over AuTg as follows:

(1) p—(Xs+Xj)o1

()X~ Ys+X3{Wy

(3IW— W1+ Wgle

(4)Wg—aWsla (aeTu{e})

(5)Xs—X201Xg+ Xgle

(B)X2—YsXzlaXoYs|a (aeTu{eh

(MYs—(Xs+2Z2;+Z2)o2

(8)Z1—XzgogX2+Zfe

-926-

(9)Z9—Yg+Z2 X2

(10)ifE;—E, then E; +Ea—E +Ez and Eg+E;—E2+E

(11)if E;—E, then £;9;—Eo¢| and Ej0z~Edg

(12)if E;—E, then E|E;—EEg and EqE;—EoE.
Note that no boldface symbol of A actually appearsin any expression involvedin the
extension here.

Then, we can prove the following lemma.

Lemma 4.6

The operator &g defined above satisfies the following properties: 82’ 1s complete
for the most specific expression ¢ in the sense that the set 82" *(@) of all expressions
obtainable by a finite number of applications of &2 from ¢ includes at least one
expression for every semilinear language.
Proof. From Lemma 4.5 , let Eg =(E(a)+E(Ep,)+ +E(Ep,) +E(€))oy be an
arbitrary expression for a semilinear language, where each component satisfies the
condition stated in Lemma 4.5. It suffices to see that there is a derivation such that
¢—*Eg . For this end, 411 one has to do is to see that Xs—*E(g1) and X;—*E(Ea)+
+E(Ea,)+E(e), and hence, that Ys —*E(Ea,) and Wi—*E(e). (Formal discussion is
omitted here.) L

Now, a modified version Ag’ of the algorithm Ag is straightforwardly obtained
by replacing 82 with & and making a small modification to restrict the domain of

expressions to EXPa.

Theorem 4.2
For any semilinear language dg, the algorithm Ag' identifies dg in the limit.

Proof. Almost cbvious from Lemma 4.6.1]

4.3 Complexity Results of Inference Problems
In this subsection the following type of problem is considered: For a given
sample set S, find a contexi-free expression E such that I is compatible with S,

Further, another type of inference problem of deciding whether or not for a given

- 27 -

Algorithm As’ (Improved Algorithm for Semilinear Languages)

Input: A recursively enumerable set of context-free expressions EXPy
: An enumeration operator &9’
An admissible presentation of atarget languagedp

Output: A sequence of expression Eq, Eg, ... such that E,, is correst for the first
: n examples. :

: Procedure:
: Q«82'(¢);] possible expressions are stored in the queue Q,
¢ is the most specific expression}
EXAMPLES«©@ (empty set)
E+«get(Q);{E keeps the current hypothesis,
next removes the top element of Q}
do (forever):
EXAMPLES<EXAMPLESUEZX();{get next example}
repeat
if Eis not in EXPg
then append &2'(E) to the tail of Q;
E<next(Q);
eise (E is in EXPy)
if Eis "too specific” or E is"too general”
then discard E ;
E<next(Q);
until E is correct for every example in EXAMPLES
Output E as the next hypothesis.

where
: [Bis "too specific"] and [E is “too general”] are defined as in Algorithm Aj

--

sample set S and a positive integer t there exists an expression E whose size is t and

is compatible with S is also examined.

Definition 4.2

(1) The size of a context-free expression is the number of occurrences of the symbols of

the alphabet.
(2)A sample set S over T is a finite subset of £* X{+,—} such that whenever (u,a) and

{v,b) are membersof Sand u=v, thena=b.

-28-

(3) A context-free expression E is compatible with a sample set 8 iff for each (u,2) in 5,
ue|E| iffa= +.
Definition 4.3

Let S be a sample set over I, and t be a positive integer. Further, let = be a
subealss of the class of context-free languages and @ be the smallest set of context-
free expressions sufficient to express any language in E. Moreover, it is assumed
that an enumeration procedure P for elements of Q is given. Then,
(1) the minimum inference problem for E via P is to find the minimum index of an
expression E in the enumeration P that is compatible with'3, and
(2) the inference decision problem for Z is to decide whether or not there exists an

expression E whose size is t and is compatible with 5.

Theorem 4.3

Let P be an enumeration procedure with the order in size. Then, the minimum
inference problem for the class of semilinear languages is NP-hard.
Proof. First, it is known that the minimum inference problem for regular sets in
terms of regular expressions is NP-hard([An78]). Further, we can show that for any
regular expression E, one can construct a context-free expression E’ such that E'is in
EXPsand|E| = |E|.In fact, if E is of the form (Ej)*(or (E1)*), then let E'be (Eqo+c)
alor (Ejo+E)o). If E is of the form Ey+Ez2 (or EjE2), then let E' be E itself. Apply
this procedure to E; recursively. It is almost obvious that the resulting expression E’
is in EXP3 (actually in EXPj:the set of expression using only one auxiliary symbol)
and |E| = |E'. This takes at most 0(n) time, where n is the size of an expression E,
Thus, the minimum inference problem for regular sets in terms of regular
expressions is polynomially reducible to this problem at issue, hence the problem is

NP-hard.OJ

Thus, il is seen that the minimum inference problem in which the enumeration

procedure in the algorithm Ag is employed is NP-hard.

Theorem 4.4

-929.

The inference decision probiem for the class of semilinear languages is NP-
complete.
Proof. 1t sufices to show the following two: Let R={(S,t)| there is an expression E in
EXPs whose size is at most t and is compatible with S}, then (i) R is in NP(the class of
nondeterministic languages polynomially solvable), and (ii) R is NP-hard.
The proof of (i): By Lemma 4.2, each element in EXP3 is generated by a specific
context-free grammar (. Since, except for the rules in (2), the right-hand side of each
rule in G contains at least two symbols, the height of a derivation tree for an
expression E in G is at most 0(t). Hence, we can nondeterministically guess the
expression E of length t, which takes at most 0(t). Further, let m be the cardinality
of S and n=max{lg(u) | (u,a) €5}, then it takes at most ({mn3) to see if for each (u,a) in
S, ue¢|E|iff a=+. (Note that the membership problem for context-free grammars is
golvable in time 0(n3).[HUB9]) Hence, Risin NP.
The proof of (ii):By [An78], it is known that the inference decision problem for
regular sets in terms of regular expressions is NP-hard, Further, as shown in the
proof of the previous theorem, from a given regular expression E it is possible to
construct an equivalent expression E' in EXPy in polynomial time, Hence, R is NP-

hard. This completes the proof.[J

5. Meta Inference

In the previous section, we have seen that a context-free grammar can work as a
generator for enumerating expressions in the inference algorithm for semilinear
languages. This observation leads to the following interesting topic on meta
inference algorithms.

Reviewing the inductive inference problem for formal languages, the inference
imodel states : Given an object I (context-free language), an inductive inference device
(TID) tries to infer a representation(context-free expression) denoting the object L
from its examples. This isillustrated by Figure 4 below.

On the other hand, as we have seen, an expression enumerator § is realized as a

context-free grammar, which implies that an enumerator in the IID is identified with

=30 -

e1 E1
X

e7 \ E2
1D .
hypotheses
examples {expressions)

Figure 4. Inductive Inference Schema

a context-free expression. Therefore, one can think of a meta inference problem in
which for a given object, the meta-TID infers a representation (context-free
expression, or enumerator) denoting the object from examples of expressions, where
the object is a class of expressions (or, a class of context-free languages denoted by the
expressions). Nole that since the input of meta-IID, which is an expression, can be
regarded as a string over some alphabet, the inference schema of the meta-inference
problem is structurally equivalent to that of the inference problem in the usual sense,
which is illustrated by Figure 5.

Hence, we can discuss the meta inference problem for a family (or hierarchy) of
language classes within the semilinear context-free languages and easily get an
inference algorithm Ag as shown below. In the problem setup, the object is given as a
target class C of languages (e.g., the class of semilinear languages, the class of linear
context-free languages, or the class of regualr languages, ete.). The sequence of
examples consists of context-free expressions denoting the corresponding context-
free languages on C. The inference algorithm produces a sequence of hypothesiss
(enumerators), by each of which any language in C could be possibly infered. The

enumerater 82 can be employed as a meta enumerator for the algorithm Aj.

-31-

E \ 12
) Meta-lID
En / \
In
examples hypotheses
(expressions) {enumerators)

Figure 5. Meta Inductive Inference Schema

6. Concluding Remarks

Using context-free expressions, we have considered the inductive inference
problem for context-free languages. The context-free expression method we
developed here may be characterized by the fact that compared with the conventional
problem setup of grammatical inference, it can provide a very simple inference
algorithm. The method has a great advantage that the regular expression approach
may be naturally extended to the case.

There are, generally, two types of inference procedures : enumerative methods
and constructive methods. Although this classification is not clear for some class of
inference methods already proposed, enumerative methods have an advantage over
constructive mehtods in that since the former is based on the exhaustive search
strategy, itiscomplete and optimal in some sense. While the latter is typically more
effective than the former.

Now, there are a number of literatures which deal with the inductive inference
problem for context-free languages. In [KKT76], a constructive method for

grammatical inference of context-free language(more exactly, BNF expressions) is

-32.

Algorithm Az (Meta Inference Algorithm for a family of language classes)

Input: A recursively enumerable set of context-free expressions EXP;

An enumeration operator bg
An admissible presentation of the target class C of languages

| Output: A sequence of enumerators (expressions)ly, Iz, ... such thatIn is
: correst for the first n expressionson C.

: Procedure:
: Q«®;{ possible enumerators are stored in the queue Q}
EXAMPLES«$ (empty set)
I+¢;{I keeps the current hypothesis; ¢ is the most specific
enumerator}
do (forever):
EXAMPLES «EXAMPLESUEX();{get next expression}

repeat
if Tis "too specific”
then append 8o(I) to the tail of Q;
Inext(Q);{next removes the top element of Q}

else ifIis "too general”
then discardl;
T—next(Q);
until 1iscorrect for every expression in EXAMPLES

QOutputI as the next hypothesis.

f;where
(1 is “too specific”] and [1 is "too general”] are defined as in Algorithm A,

..

discussed from the programming language inference point of view. [Wh] discusses
enumeration procedures of context-free languages, and presents several techniques
for improving efficiency of the procedure. Due to being based on the constructive
method, the former seems not to have a theoretical background such as the
completeness, while the lalter employs many improvements, but is still far from the
practical efficiency. [Ta86] proposes a constructive method for composing
grammars based on the idea of extending linear grammar case. Although, by

assuming the upper bounds for making search space finite, this constructive

-33-

method assures the completeness, none of the criteria for the precondition is
discussed.

The context-free expression approach proposed in this paper, which is based on
the enumerative method, has the advantage mentioned above. However, it still
remains left open to solve the efficiency problem. It seems that we need to employ a
kind of statistic ideas to get a more practical algorithm for language classes larger

than regular sets.([An86],[Ki86],[Va84])

Acknowledgements

The author is grateful to Dr. T, Kitagawa, the president of IIAS-SIS, for
ceaseless encouragements, He is also indebted to Dr. H.Enomoto, the director of
IIAS-SIS, for providing useful reference papers as well as invaluable advice. Dr.
T Nishida gave many useful comments on the earlier draft of this paper. Last but not
least, discussion with the colleagues Y.Takada, Y.Sakakibara, and H. Ishizaka was
very fruitful.

This work is a part of the major research and development of FGCS Project

conducted under the program setup by MITL

References
[An78] Angluin,D., On the Complexity of Minimum Inference of Regular Sets, inf.
and Contr, 39,337-350(1978).
[An86] Angluin,D., "Learning regular sets from queries and counter-examples”,
Technical Report 464, Dept. of Comput. Sci., Yale University, 1986.
[Bi72] Biermann,A.W., An Interactive Finite-State Languages Learner, Proc. of the
First USA~Japan Comput. Conf.,13-20 (1972).
[Br68] Brzozowski,Y.A., Regular-like Expressions for Some Irregular Languages,
IEEE Conf. record of 9th Ann. Sym. on Switching and Automata Theory 278-280,

1968.

-34-

[ET76] Enomoto,H. and Tomita E., A Represcntative Set of Deterministic Finile
Automata, Transactions of [ECE, Vol.59-D, No.2, 660-667 (1976).(in Japanese)
[Go67] Gold, E.M., Language Identification in the Limit, Inf. and Contr. 10, 447-474
(1967).

[Go78] Gold E.M., Complexity of Automaton Identification from given Data, Inf. and
Contr. 37, 302-320 (1978).

[Gr71] Gruska,J., A Characterization of Context-free Languages, J. of Comput. and
Sys. Sei. 5, 353-364 (1971).

[GS68] Ginsburg,S. and Spanier,E.H., Derivation-Bounded Languages, J. of Compud.
and Sys. Sci. 2, 228-250 (1968).

(HHU69] Hoperoft,J .E. and Ullman,J.D., "Formal Languages and Their Relation {o
Automata”, Addison-Wesley, 1969,

(1s86] Ishizaka,H., Model Inference Incorporating Generalization, Proc. of Symp. on
Software Sci. and Engineering, Kyoto, Sept. 1986.

[Ki86] Kitagawa,T., “Statistical Information in Inference Process and Data
Analysis”, Research Report 66, Intern. Inst. for Advanced Study of Soc. Inform. Sci.,
1986,

[KK77] Enobe,B. and Enobe K., A method for Inferring Context-free Grammars, Inf.
and Contr.31,129-149 (1976).

[La86] Laird,P.D., “Inductive Inference by Refinement”, Technical Report TR-376,
Dept. of Compt. Sci., Yale Universily, 1986.

[Sa73] Salomaa,A., “Formal Languages”, Academic Press, 1973.

[Sh81] Shapiro,E., “Inductive Inference of Theories from Facts”, Technical Report
192, Dept. of Comput. Sci., Yale University, 1981,

[Sh82] Shapire,E., "Algorithmic Program Debugging”, Ph.D Dissertation, Dept. of
Comput. Sei., Yale University, 1982, also published by MIT Press, 1983.

[Shif3] Shinohara,T., Polynomial Time Inference of Extended Regular Pattern

Languages, Lecture Notes in Compul. Sci. 147, Springer-Verlag,115-127 (1983).

-35-

[TaB86] Tanatsugu K. , A Grammatical Inference based on Self-embedding for
Context-free Languages, Proc. of LA Symp., Kyoto, Feb., 1986.(in Japanese)

[TA77] Tanatsugu, K. and Arikawa,S., On Characteristic Sets and Degrees of Finite
Automata, Intern. J. of Comput. and Inf. Sci. 6, No.1, 83-93 (1977).

[Va84] Valiant,L.G., A Theory of the Learnable, C.A.C.M., VOI.27, No.11, 1134-
1142(1984).

[Wh77] Wharton, E.M., Grammar Enumeration and Inference, Inf. and Contr.33, 253-
272 (1977).

-36-

