ICOT Technical Report: TR-216

FE-216
UNDECIDABILITY OF DETERMINACY. TWO
DECIDAB! F CASES OF DETERMINACY AND
THEIR APPLICATIONS TO SOURCE-TO-S0OURCE
TRANSFORMATION OF PROLOG PROGRAMS
by
H. Sawamurs

(TLIITSLE Lid.)

November, 1986

CEYRA, OO

hna kokosa Bldg f1F (W5} 4oh6=-319]1~n0

I' D I P-22 Alia =0 home Peles JCOYE Fa2dd

Minato-ku Tokvo 108 Tapan

Institute for New Generati;n .Com'putér Techno_logy



UNDECIDABILITY OF DETERMINACY, TWO DECIDABLE CASES OF
DETERMINACY AND THEIR APPLICATIONS TO SOURCE-TO-S0URCE

TRANSFORMATION OF PROLOG PROGRAMS )

Hajime Sawamura

International Institure for Advanced Study of Seocial Information Science

([[AS-SIS), FUJITSU LIMITED, 140 Mivamoto, NMumazu, Shizuoka 410-03, Japan

* This paper is a revised and extended version of a paper [I]| presented =zt 1985
Symposium on Logic Programming, held in Boston, Massachussers, U.S.AL, July

15-19, 1985,



ABSTRACT

The determinacy of a predicate call (goal) plays very important roles
in source-to-source transformation {oprimization) of Prolog, a
nondeterministic logic programming language. By the determinacy of a
predicate call, it is understood that it succeeds through at most one
clause of itz defining clauses when it calls them, and it never succeeds
again when it is backtracked.

in this paper, we deal with three themes on determinacy. First, ir is
shown that the problem whether for any predicate (call) it is deterministic
or not is undecidable. Its implications are then examined, Second, the
concepts of a-determinacy and r-determinacy, as decidable cases of
determinacy, are introduced. These concepts are mutually defined, and
their properties are investigated. Third, based on these concepts, three
applications to the program transformacion of Prolog are described,
namely, the inline expansion, the automatic cut insertion and the

simplification of a sequence of conjuncts.



1. INTRODUCTION

The terms "determinacy" and "nondeterminacy" often appear in diverse
branches of computer science such as automata and formal language theory,
computation thecory, programming languages and their semantics and
verification, etc., as well as other fields of science, Although their definitions
differ in the respective fields, the problems that need to decide the
determinacy itself have been few except for theoretical interest. In this paper,
we deal with the transformation of programs in Proleg [2] in which the
determinacy of a predicate plays extremely important roles,

The nondeterministic programming languages which enable us to express
the procedures with essentially nondeterministic nature have been studied by
several authors. Among others, the languages devised by Floyd [3], Dijkstra [4],
and micro-planner, an artificial intelligence-vriented programming language [5]
are well-known nondeterministic ones, in addition to contemporary Prolog and
Concurrent Prelog [6]. The programs written in these languages are
nondeterministic in the two main senses : don't care and don't know (7). Prolog
and micro-planner realize "don't know" characteristic of nondeterminacy by
backtracking, and Concurrent Prolog and Dijkstra's language of guarded
commands realize "don't care" characteristic. The language by Floyd can have
both characteristics according to interprerations of the nondeterministic
Construct.

This paper is concerned with nondeterminacy by means of backtracking in
Prolog. By the determinacy of a predicate call (goall, it is operationally
understood that it succeeds rhrough at most one clause of its defining clauses
when it calls them, and It never succeeds again when it is backtracked. With
this definition, it is shown thar the decizion problem for such determinacy is
unsolvable, and its various implications are examined. In this connection, the

decision problem in the "don't care" sense of nondeterminacy would be reduced



to the undecidability of the wvalidity problem of first-order logic.

Due to the language character of Prolog, its language processing system
tends to require additional time and space gverhead for backtracking, compared
with conventional programmig languages. One promising information for
reducing it is to determine whether each predicate call is deterministically
accomplished or not. It is , however, impossible in principle to determine 1t on
the account of the unsoclvability of the decision problem mentioned above.
Therefore, we have to seek the concepts of algorithmically decidable
determinacy. As decidable cases of determinacy, two closely related concepts,
a-determinacy and r-determinacy, are introduced, and their properties are
investigated. These determinacy are operationally and syntactically defined
without committing to the semantics of a predicate.

Various source-to-source optimization techniques for Prolog have been
presented by the author and his colleagues for the purpose of improving Frolog
programs [8]. In our rerminology, optimizing Prolog programs is meant to
improve them in the sense of partial evaluation or symbolic execution. From
the compurational complexity point of view, this amounts to reducing the
computation steps at the spource-level to some exrtent. Those techniques are
different from the unfold/fold transformation of programs [9, 10], the partial
evaluation [11] and the deductive construction of Horn clause programs [12].
Based on those techniques a practical Prolog optimizer, which is not for pure
Prolog but for full set of Prolog, has been implemented [8]. The complicated
data/control flow of Prolog programs often forces us to require various
preconditions in the optimization rules of programs. Of these preconditions, it
i« rhe determinacy of predicates, among others, that has been important to
construct the Prolog optimizer. In facr, the determinacy of a predicate allows
us to formulate the most efficient source-fo-source optimization technigues. In
this paper, three applications of determinacy to Prolog optimization are

deseribed : the inline expansion as an interprocedural optimization technigue,



the automatic cut insertion as an intraprocedural optimization technigue and
the deletion of multiple conjuncts in a clause as a local optimization
technique,

The remainder of the paper consists of five sections, Section ? describes
the notations. Section 3 includes the proof of the undecidability of determinacy
and its consequences. Section 4 provides the two decidable cases of
determinacy and their properties, as well as their exrensions. Section 3
includes three applicarions of determinacy to the source-to-source

transformarion of Prolog. Final section deseribes concluding remarks.

L NOTATIONAL CONVENTIONS

We assume that readers are familiar with the syntax and the semantics
of Prolog |2]. Here, we present only the notations and definitions needed to
describe the transformation schemata, which will be introduced in the
succeeding sections. It should be noted that we use the distinguished symbols

as syntactical variables ranging over the syntactic domains of Prolog.

[Motational conventions)

{1) The letters P, H (with or withour subscripts) represent goals
(predicate calls) or heads of clauses, which are of the form of predicate
names followed by some arguments, and the letters p,q,r represent predicate
names or propositions.

{2) The boldface letters § and T (with or without subscripts) represent
(possibly empty] sequences of gnals which are delimited by commas If S is an
empty sequence, it denotes "true" predicate. A boldface lecter A (wirh or
without subscripts) represents a nonempry sequence of terms in Prolog.

{3} The boldface letters P and Q represent vertical rows of clavses or



goals.
(4) If t is a term of Prolog, then t' is a term obtained by renaming all

the variables in L.

In order to illustrate that a sequence of clauses or goals is transformed
into an improved one by using appropriate predicate definitions if noccessary, we

use a horizontal line which corresponds to derivability in logic.

[Transformation schemal

The transformation schema is a figure of the form

P

Q

where P and Q are called an upper sequence and a lower sequence of the

transformation schema respectively.

3. UNDECIDABILITY OF DETERMINACY

Undecidable results, in general, are often derived by some suitable coding
or ascribing to other undecidable results [13, 14). Our proof, like Russell's
paradox, creates a simple antinomy in terms of Prolog programs.

Before going into a proof of undecidability of the determinacy, it must
be noted that computable funcrions are computable in Prolog, as well as in
Horn clause program [15, 16].

Let us introduce the concept of determinacy to be needed in our
transformation rechnigues. It is nor a specialized one, but can be generally
accepted for other purposes as well. In fact, ir seems 1o be the same as the

one described in Warren's report [17] and Mellish [18].



Definition 1. A goal (or a predicate call) is deterministic if it succeeds
through at most one clause of its defining clauses when it calls them, and it

never succeeds again when it is backtracked.

Note thar wich this definition, a predicate call which does not terminate
at the first execution is deterministic, and a predicate call which succeeds at
the first execution but does not terminate on backtracking is deterministic as
well.

Debray [19] consider a more general and less operational notion of
predicate, that is, functionality relative to a mode, where all alternatives mav
produce the same result. It should be remarked that our definition of
determinacy does not refer to the functionality of a predicate at all, but is
only cencerned with the success or failure of a predicate call by unification.
In general, it is obviously undecidable if a Prolog predicate is functional.
Theorem 2 below claims the undecidability of our determinacy in a more

general setting of Prolog.

Theorem 2. No algorithm exists for deciding whether for any predicate
call it is deterministic or not.
Proof, Suppose there exists an algorithm which realizes a predicate det:
for any predicate call P
det(P) = success, if P is deterministic,
failure, otherwise,
Here, consider the following program:
g :- detiql.
0.
For this program :
(i} Suppose det{g) = success. Then on backtracking, a call g succeeds again,

or else It succeeds in its second clause. Therefore it is not deterministic.



(ii) Suppose detlq) = failure. Then a call g succeeds only in its second
clause. Therefore it is deterministic.
Both cases lead to contradictions. Conseguently such an algorithm der

does not exist.

It should be remarked that our argument in the proof can be also applied
to the case that the predicate det is written explicitly as a two-place
predicate such as det{P, Defs), where Defs is a set of defining clauses to be
needed for deciding the determinacy of a predicate call P. In the proof we let

the predicate det he a unary predicate, for clarity.

Obviously we have
Corollary 3. Mo algorithm exists to decide whether for any predicate call

it is nondeterministic or not.

Corollary 4. No algorithm exists which answers the number of the
solutions of any predicate call.

Proof. Such an algorithm turns out to answer the number of the sclutions
of a deterministic predicate call as a special case, but it is impossible by

Theorem 2.

Corollary 5 No algorithm exists for deciding whether for any proposition
{without any variable) it is deterministic or net.
Proof. The proof for Theorem 2 cun be restated by using "any proposition

p" instead of "any predicate call P",
This coroliary says that even at the propositional level, deciding the

determinacy of a predicate call is impossible in principle.

Theorem 6. Suppose that an algorithm of the following predicate det'



exists: for any terminating predicate call P,
det'(P) = success, if P is deterministic,
failure, otherwise,
Then, there exists a nonterminating predicate call r such that det'(r) does not
terminate.

Proof. Similar to the proof of Theorem 2.

Next, we turn to the undecidability of the determinacy in "don't care"
sense. In this case, we can ask a question whether or not the selection points
in the possible execution paths of programs can be uniguely determined. For
example, it is not decidable which guards in Dijkstra's nondeterministie
language [4] are true. Obviously, such a decision problem can be reduced to

the undecidability of the validity problem of first-order logic [20].

4. TWO DECIDABLE CASLES OF DETERMINACY

Due to the megative result of Theorem 2, the concepts of effectively
decidable deterministic goals are desired.

We intreduce the two kinds of concepts of determinacy : a-determinacy
(absolute detcrminacy) and r-determinacy (relative determinacy). Generally, the
success or fallure of a predicate call depends on the contents of its
arguments, The r-determinacy captures such an argument dependency of a
deterministic predicate call. On the other hand, a-determinacy means
dererminacy which does not depend on predicate arguments at all, Thus, a
predicate p is a-deterministic if and only if p(A) is r-deterministic for every
argument A.

Im this section, first, a mutually recursive definition of these two

concepls is given, and rhen the separate definitions of them are presented.



4.1 a-determinacy and r-determinacy

In the following definition, we assume that the constructs dynamically

modifving a program, such as "aszsert", "retract", etc., do not appear in the
ying a prog pp

program.

[a—determinacy and F—determimcy]
A predicate call plA) is termed a-dererministic or r-deterministic if it
satisfies the following mutually recursive conditions.
(i} If p is a built-in {evaluable) predicate of Prolog and p(A) is
deterministic, then p(A) is a-deterministic and r-deterministic.

{iil Let a predicate definition P of the predicate p be

H1 P- SI.

I'—IiL 1. Sil’ [, ] 512., where the cut symbol "!" (if any) is the
. rightmst occurrence in the body.

H il 5 -

n n

Then, for each i (l<i<n), if either (1) or (3} of the [ollowing conditions holds,
then pl{A) is a-deterministic, and for each Hj which is unifiable with plA), if
(1), (2) or (3} holds, then plA) is r-deterministic:

{1} There is no cut symbol in the body of the i-th clause, it is the last
clause in the program P, and every goal of S“ and Si‘! is a-deterministic or r-
dererministic.

(2} There is no cut symbol in the body of the i-th clause, it is not the last
clause in the program P, plA) is not unifiable wirh any Hj (i+1<j<n) and every
goal of S“ and 5[2 is a-dererministic or r-deterministic.

{3) There exist cut symbols in the body of the i-th clause and every goal

of S].2 is a-deterministic or r-deterministic.



The correctness of the definition can be stated as follows.
Corollary 7. If a goal plA) is a-deteministic or r-deterministic, then it is
deterministic.

Proof. By induction on the structure of the definition.

The definitions of a-determinacy and r-determinacy have been provided
based on the three concepts: cut's behavior, deterministic built-in predicates
and unifiability statically determined. In other words, they never refer to
what types of arguments a predicate takes when it iz called. a-determinacy
and r-determinacy seem to be less complicated and berter concepts than other
computer-checkable determinacy in the sense that they can be determined
without committing to the semantics of a predicate. Here, by the semantics
of a predicate we mean to prescribe the domain of terms in which the
predicate succeeds. Prescribing such a semantics for a predicate beforehand
would be generally impossible if a type-system andfer a type-inference were
not provided for Prolog as in [21, 22).

As mentioned in the beginning of this section, if a goal is a-
deterministie, it is always deterministic without depending on its argument
form. In other words, an a-deterministic goal is absolutely deterministic in the
scnse that it does not depend on its argument form in the goal. Therefore,
when a goal plA) is found to be a-deterministic, we sometimes call the
predicate p a-deterministic or simply deterministic. In contrast to the
absolute determinacy of a-determinacy, an r-deterministic goal is relatively
deterministic since its predicate depends on how it is called. Hence, the
predicate itself of an r-deterministic goal is sometimes called r-deterministic.

From the above observations, we have

Corollary 8 If a goal is a-deterministic, it is also r-deterministic.



Furthermore, from our definition
Corollary 9. A deterministic predicate call except built-in predicates is
not determined to be a-deterministic if the number of its defining clauses is

more than 2 and there exist no cut symbols in them,

Of course, as easilv seen (rom the following program, the conditions in
this corollary seem to be too strong;
H :- S fail.
H:- T.
where no cut occurs in S and T, and every predicate call in T is a- or r-
deterministic. Such a syntactical extension could be incorporated into our
definition with no difficulty. Racher, we have preferred the definition of

determinacy as general as possible,

Corollary 10. At the propositional level, that is, when the predicate to

be examined is a proposition, a-determinacy coincides with r-determinacy.

Corollary 11. For every argument A of a predicate p, plA) is r-
deterministic iff & predicate p is a-determinisric.

Proof. {==) From an arbitrariness of the argument A, consider a goal p{X)
where X denotes a sequence of wvariables. It can not be r-dererministic with
the condition (2) in the definition of r-determinacy. So, if p{A) is r-
deterministic for every argument A, then it must be r-deterministic with the
condition {1} or {3) in the deflinition of r-determinacy. Hence, it is a-

deterministic. (<=} BY Corollary &

Lemma 12, For every argument A of a predicate p, a goal plAl succeeds

{is provable) iff a goal p(X) succeeds (is provable), where X is a sequence of

variables.

- 10 -



Proof. Due to the following form of theorem in first-order logic :

|- ¥x.p(x) iff |- p{x), where x is a free variable.

Corollary 13. Let X be a sequence of variables, a goal p(X) is r-
deterministic iff a predicate p is a-deterministic.

Proaf. Due to Corollary 11 and Lemma 12,

Corollary 11 and Corollary 13 suggest an equivalent alternative definition
of determinacy. That is, r-determinacy can be first defined and then a-

determinacy in terms of Corollary 11 or Corollary 13, Formally we define r-

determinacy and a-determinacy as follows.

[r-determinacy]
A predicate call plA} is termed r-deterministic if it satisfies the
following conditions.
(i) If p is a built-in (evaluable) predicate of Prolog and plA) is
deterministic, then p(A) is r-deterministic.
(ii} Ler a predicate definition P of the predicate p be

H1 B Sl.

:E:'-

it S“, ('] Siﬂ” where the cut symbol "!" {if any) is the
rightmost occurrence in the body.

H =5,
n n
Then, for each H, (I<i<n] which is unifiable with plA), if (1), {2) or (3) holds,
then p{A) is r-deterministic:

(1) There is ne cut symbol in the body of the i-th clause, it is the last
clause in the program P, and every goal of S“ and Si? is r-deterministic.

(2} There is no cut symbol in the body of the i-th clause, it is not the last

clause in the program P, p(A) is nor unifiable with any H] (i+1<j<n) and every

- il =



goal of S“ and 5.12 is r-deterministic.
(3) There exist cut symbols in the body of the i-th clause and every goal

of Si is r-deterministic.

2
[a-determinacy]

A predicate p is termed a-deterministic if for every argument A, a goal

plA) is r-deterministic, or A predicate p is termed a-deterministic if a goal

plX) is r-deterministic, where X denotes a sequence of variables.

it is noted that the former part of the definition of a-determinacy is

not effective.

Example 1. The predicate p is a-deterministic.
pla) :- write{all, ni, !, writelaZl.

plb) :- write{b).

Example 2. The goal q([a,bl) is r-deterministic, but the goal q(X) is not.
qllc]) := writel{c), plbh
alla| X1} :- writela), p(X).

where the predicate calls p{X) and p(b) call their defining clauses above.
Example 3. The following predicate "transform' is a-dererministic
whatever the predicate 'fold' is
transform('end_of_file') :- &
transform(T) := fold(T,R),write(R]),write("."),nl !, fail.

4.2 Extensions

Here, we touch on miscellaneous methods for expanding the class of our

- 12 -



decterminacy.

(1} Simple extension : In the condition (2) of the definition of a-determinacy
and r-determinacy, when a goal is unifiable with a head of the defining
clauses, we propagate the unification (substitution} information to the bady, in
order to detect the determinacy of the goals in the body.

(2) Use of mode information : As pointed out by Mellish [18], mode
information of a predicare can be expoited to expand the class of determinacy.
For example, consider the following program -

:- mode programming_language(s,-).
computer_language({P) :-
programming_language(P,Inventor), human(Inventor).
programming_language(lisp,mcCarthy).
programming_language{prolog,colmerauer),
programming_language(pascal, wirth),
human{meCarthy).
human{colmerauer).
human(wirth),
A predicate call "programming_language(P,Inventor)" can be seen 1-
dererministic with the help of its mode declaration.

(3} A type-system and/or a type-inference [21, 22] would be one of
promizing methods for expanding the class of our determinacy. But here, we do
not go into this independent topic further since it is beyond the scope of the

present paper.

3. APPLICATIONS OF DETERMINACY TO SOURCE-TO-SOURCE
TRANSFORMATION OF PROLOG PROGRAMS

In this section, we describe three applications of determinacy to

- 13 -



transformation rechniques for Prolog programs.

{1) Inline expansion

In general, the main purpose of the inline expansion is twofold : to
delete subroutine linkage overhead and to increase opportunities for local
optimizations by providing more global program units for them.

A Prolog program has, by nature, several alternative clauses for a
predicate. Due to this nondeterminacy of Prolog, the inline expansion
techniques are more complicated in Prolog than ordinary programming
languages. Here, we propose a natural method for the inline expansion of
Prolog programs. In this method, a predicate call is replaced by a disjunction
of alternative clauses of its defining clauses, each preceded by a sequence of
equational goals which represents the unifiability of the call with a head of
its defining clauses.

It it norted, however, that this replacement is valid only when no
alternative clauses have cuts in their bodies, because the cuts brought into the
original clause usually cause a different control flow. The next example

exhibits such a situation.

{a) Before inline expansion:

Pi-q & I

p-l

{b) After inline expansion:

p:-q la=a b ',c;a=ad,r

- 14 -



In the program (a), suppose the call ¢ fails. Then, the call a fails and
the control backtracks to q. On the other hand, the failure of the call ¢ in
the program (b) causes the call p to fail,

Thus, the existence of cut symbols in the defining clauses has a serious
influence upon the possibilities of the inline expansion. In what follows, a
method of the inline expansion is schematically introduced, in which the
determinacy allows to expand a call by its defining clauses Including cuts. In
this paper, a clause with no body, say "P.", is identified with a clause "P :-

Erie,

[Transformation schemal]

H :-8,

n n

p{A]] i- Tl'

pthmil 1= Tm. , where cuts appear in some clause of the predicate p.
H, :- 5..

H :- S+ (plA) = p{Alil'. T]' Poeee i pIA) = plA)T, Tm'h 5o

R
p{Al} - T,
p{Am]' - T

where ecither of the following conditions is satisfied:

- 15 -



(1) If there exists no cut symbel in Si]' then l:he. i-th clause is the last
clause of the program and every predicate call in S” is a-deterministic or r-
deterministic.

(2} If the.re exist cut symbols in S“, then every predicate call in Sil which
appears on the right hand side of the rightmost cut symbol in S” is a-

deterministic or r-deterministic.

Taking Theorem 8 into consideration, the phrase " a-deterministic or r-
deterministie " in this definition could be replaced simply by " r-deterministic
" However, the above definition is intended for such a situation that given a

program (a set of predicate definitions), a-determinacy is detected beforehand

as an attribute of a predicate.

Note that even if cuts appear in the bodies T.'s {l<iem), the above
expansion can hold without the expansion conditions (1) and (2) il the
unifiability of the call plA} with any head p{Ai] whose clause includes cuts is
known to fail. However, currently we are not concerned with these situations

for simplicity.
Example 4.

r(a,¥,Z) := 1, qlY), append([al,Y,Z).
rib,Y,Z) - plb), appendi[bl,Y,Z).
append([],L,L} - .

append([X |L1],L2,[X|L3]) :- append(L1,L2,L3),"

fa,Y,Z} - !, qlY), append([al],Y,Z).
rib,Y,Z) == plb), {append([bl,Y,Z) = append([],_L, LL ' ;
append{[b},Y,Z) = append([_X|_L1],_L2,[_X|_L3]), append(_L1,_L2, L3),!L.

- 16 -



append{[],L,L) :- &
append([X {L1LL2,[X|L3]) :- append{L1,L2,L3},"

where the predicate calls q{Y) and p{b) call the definnig clauses given in
Example 1 and 2 respectively,

The lower sequence will have to be further optimized by the use of the
other transformation techniques presented in [8]. The consecutive applications
of them to the second clause in the lower sequence yield

r{b,L,[b|L]} - plb,.

(2} Automatic insertion of cut symbols

Cuts should be inserted into the place where unnecessary redo can oeccur
on backtracking, so that the optimization of nondeterministic programs based
on backtracking can be partly realized. We accomplish this in the following

case,

[Transformation schema)

I:Il - S
‘1 = Sip Sig
}:'I" <= Sn'

]:l i SI.

I:;I' = Sip b Sy
I;in - S“.

where either of the following conditions is satisfied:

{i} If there exists no cut in 5“, then the i-th clause is the last clause of

- 17 -



the program and every predicare call in 5” is a-deterministic or r-
deterministic.

(ii) If there exist cuts in S ,, then every predicate call in S, which
appears on the right hand side of the rightmost cut symbal in 5, is a-

deterministic or r-deterministic.

Mote that the same remark as the transformation schema of the inline

expansion is applied to the phrase " a-dererministic or r-deterministic " in this

definition,

Example 5.

rile]} :- writelc),!,plb).

rilalX]) :- write(a),q{X).

rlle]) = writelc),!,plb), .

rilalX]) := write(al,!,q(X).

where the predicate calls plb) and g(X) call their defining clauses given in

Example | and 2 respectively.

(3) Simplification of a sequence of goals

In [8], we have presented various techniques for simplifying a sequence of
gonals at the propositional level. Most of them are local simlification rules or
Aeletion strategies, and are often applied to the resulting clauses after the
inline expansion as well as are used individually within a clause. Here, we
rake rthe optimization schema : "deletion of multiple conjuncts in a clause” in
which the determinacy of a predicate call matters.

Any identical predicate call occurring in a sequence of conjunctive goals

- 18 -



is deleted except the leftmost goal, by the repeated applications of the

following schema.

[Transformation schema]

H:-S, P, S

H:- S], P, 5?, 53.

where the goal P in the lower sequence is itz leftmoaost occurrence and the

2 F, 53.

following conditions must be satisfied

(i) P Iz r-deterministic.

(ii} P is not a predicarte call with side effect such as a buile-in
input/output predicate or a meta predicate, and furthermore it is not an extra

control predicate such as cut svmbol, "repeat”,

We show below an instance of the transformartion schema which are nor
correct on account of the nondeterministic character of a predicate to be
deleted. Suppose we have the assertions :

glal.
q(bl.

ale).

then consider the following instance,

repeat, g(X], repeat, not{X = a)

repeat, gq{X}, not{X = a)
In the upper sequence the first success of q(X) with X = a forces to repeat
"not(X = a)" indefinitely, but in the lower sequence the second success of gl X)

with X = b completes the execution.

The next instance seems to be correct although it violates the condition (i)

- 19 -



ahove. But, it reveals an anomaly concerning the order of solutions. Suppose
we have rthe assercions :

plE(Y,V)}.

plilb,ell.

plf{b,d}).

qlfib,Ul}.

gl fle,V}).

then consider the following instance,

p(X),g(X),p(X),not(X = flb,c)}

p(X),qiX),not(X = f(b,e))
The upper sequence terminates with X = f(b,d) and then X = fle,V), but the
lower one terminates with X = fle,V) and then X = f{b,d). That is, both the

solution sets are equal but the order of solutions is different.

6. CONCLUDING REMARKS

We have given a simple proof to the unsolvability of the dererminacy.
This might be proved in a construcrive way such as coding, although our
definition of the determinacy dues not seem to be suitable to such a proof. In
fact, it may be proved from the halting problem of the Turing machine [13] or
Post's correspondence problem [13] , etc. and alse from some results of formal
language theory such as the theorems con the deterministic language or the
ambiguity of a language [14].

In his book [7, Chapter 5, p.114], Kowalski writes : " The situation,
however, in which search can be restricted because a procedure call computes

the value of a function is undecidable in principle. 1t is easzier for the

qzﬂ'-



programmer to convey such information to the program executor as a comment
about the program, than it is for the executor to discover the fact for irself.
" Kowalski seems to found his assertion on the undecidability of the validiry
problem in first-order logic [20]. His definition of determinacy is concerned
with the functionality of a procedure call, For example, a relation Fix, v} is
deterministic when the variable y is a funcrion of x in the relation F{x, vy} and
x is given as inputr [7, Chapter 5, p. 113). With this definition, the decision
praoblem of determinacy can be obvicusly ascribed to the validity problem of a
first-grder logic formula such as

¥ x, v, z [Prog - (Fix, v} & Flx, 2} -» y = zJ]

where Prog is a set of Horn clauses which specifies the predicate F, However,
notice that we have provided a more general definition of determinacy for
Prolog program transfoermation than thar of Kowalski, in the sense that it is
only concerned with the success or failure of a predicate call, and with that
definition have considered the decision problem. Theorem 2 can be thought of
as giving a formal justification for his assertion in a more general setting of
Prolog. The cut, on the ground of which we have put the definitions of the
decidable determinacy, can be viewed as a clue of the determinacy detection
given to the program executor.

Nondeterminacy is said to be one of the characterizations of
nonprocedural programming [23]. Prolog, a nondeterministic logic programming
language, is deeply invelved in the suppression of unnecessary detail from the
statement of an algorithm. For the purpose of transforming programs, however,
we have shown that the detection of the determinacy permits us to improve
the Prolog programs at the source-level. From the point of view of Prolog
programming methodelogy, it may turn out to give the programmer a
beneficial information on the bhehavior of his program, resulting in a rise of
the reliability of Prolog programs. On the other hand, from the point of view

of implementation issues of computer languages, it would be useful for an

- 21 -



efficient compilation and an efficient implementation of ar-parallelism as
well.

Last but not least, we mention Smolka's work [24]. In relation to the
determinacy, he proposes to declare a procedure as a functional procedure and
to assert a& procedure call as a functional call, rather than to check the
determinacy. In this paper, however, we have presented a method to extract
the determinacy information directly from a program text, not requiring user-
supplied declararions and assertions. Conceptually, the detections of a-
determinacy and r-determinacy roughly cerrespond to declaring a functional

procedures and asserting a functional call respectively,

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Dr. Tosio Kitagawa, the
president of IIAS-SIS and Dr., Hajime Enomoto, the director of [IAS-SIS, for
the continuing guidance and encouragement.

The author is also grateful to the former coauthor, T. Takeshima for
discussions and helpful comments.

Finally, the author would like to thank R. Venken of Belgian Institute of
Management for many valuable comments on his earlier research report.

This work is part of a major R & D project of the Fifth Generation

Computer, conducted under program set up by the MITL

_ 29 -



REFERENCES

[1] Sawamura, H. and Takeshima, T. : Recursive unsolvability of dererminacy,
solvable cases of determinacy and their applications to Prolog eoptimization,
Proc. of the 1985 Symposium on Logic Programming, IEEE Computer Society,
Basron, Ma., pp. 200-207, 1985,

2] D. L. Bowen : Dec system-10 PROLOG USER'S MANUAL, version 3.43,
Dept. of Artificial Intelligence, Univ. of Edinburgh, 1983.

[3] Floyd, R. : Non-deterministic algorithms, JACM, Vol. 14, No. 4, pp. 636-
644, 1967.

[4] Dijkstra, E. W, : A discipline of programming, Prentice-Hall, 1976.

[5] Sussman, G. ]. : Micro-planner reference manual, MIT Al-Memo 2034,
1971,

[6] Shapiro, E. Y. : A subser of concurrent, Prolog and its interpreter, 1COT,
TR=-003, 1983,

(7] Kowalski, R. : Logic for problem solving, North Holland, 1979.

[8] H. Sawamura, T, Takeshima and A. Kato : Source-leve] optimization
techniques for Prolog, I[IAS Research Report No, 52, 1985,

[9] Burstall, R. M. and Darlington, ]. : A transformation system for developing
recursive programs, JACM, Vol. 24, Na. 1, pp, 44-67, 1977.

[10] Tamaki, H. and Sato, T. : Unfold/fold transformation of logic programs,
Proc, of the 2nd Int. Logic Programming Conf., pp. 127-138, 1984,

[11] Komorowski, H. J. : Partial evaluation as a means for inferencing data
structures in an applicative language : A theory and implementation in case of
Prolog, Conf. record of the 9th ACM Symp. on Principles of Programming
Languages, ACM, pp. 255-267, 1982.

(12] Hogger, C. J. : Derivation of logic programs, JACM, Vol. 28, No. 2, pp.
372-392, 1981.

[13] Davis, M. (editor) : The undecidable, Raven Press, 1965.

{14] Hoperoft, ]. E. and J. D. Ullman : Formal languages and their relation to
automata, Addison-Wesley, 1969,

[15] Tarnlund, S-A, : Horn clause computability, BIT, Vol. 17, pp. 215-226,
1977,

[16] Sebelik, ]J. and Stepanek, P. : Horn clause programs for recursive
funcrions, in Clark, K. L. and Tarnlund, $-A. (editors) : Logic programming,
Academic Press, pp. 325-340, 1982

[17] Warren, D. H, D. : Implementing Prolog - compiling predicate logic

programs, D.A.l. Research Reports No. 39 and No. 40, Depr. of Art.
Intelligence, Univ. of Edinburgh, 1977,

- 23 -



[18] Mellish, C. 5. : Some global optimizations for a Prolog compiler, ]. of
Logic Programming, Vol. 2, No. I, pp. 43-66, 1985,

[19] Debray, 5. K. and Warren, D. 5 : Detection and optimization of funcrional
computations in Prolog, LNCS 225, pp. 490-5-4, 1936,

[20] Church, A, : A note on the Entscheidungsproblem, The Journal of
Symbolic Logic, Vol. 1, No. 1, pp. 40-41, 1936, and Correction to a note on
the Entscheidungsproblem, ibid., Vol. 1, No. 3, pp. 101-102, 1936.

[21] Myecroft, A. and O'Keefe, R : A polymorphic type system for Prolog,
Logic Programming Workshop, pp. 107-121, 1983,

[22] Mishra, P, : Towards a theory of types in Proleg, Proc. of the 1984 Int.
Symp. on Logic Programming, [EEE, pp. 289-298, 1984

[23] Leavenworth, B. M. : Nonprocedural programming, LNCS, Vel. 23, Springer,
pp- 362-385, 1975,

[24] Smolka, G. : Making control and data flow in logic programs explicit,
Proc. of the 1984 Lisp and Functional Programming Language Conf., ACM, pp.
J311=322, 1984.

- 24 -



