ICOT Technical Report: TR-201

THR-X01

Toward a High Performance Parallel Inference Machine
The Intermediate Stage Plan of PIM ——

by
A, Goto and 5. Uchida

September, 1986

AN19RG, 1COT

Mita Kokusa Bidg, 21F 03 436 3191 -5

|G DT 4-28 Mita 1-Chome Telex ICOT 32064

Minato-ku Tokvo 18 Japan

Institute for New Generation Computer Technolog;

Toward a High Performance Parallel Inference Machine
— The Intermediate Stage Plan of PIM —

Atsubiro GOTO Shun-ichi UCHIDA"®

June 7, 1986
draft

Abetract

The parallel inference machine [PIM) is the most important hardware research
target of the FGCS project. The initial stage mainly aimed to conduet R&D of indi-
vidual component techoologies by studying parallel inference mechanisms from various
standpoints. Three basic mechanisms for PIM were studied by software simulators and
by developing experimental machines with about 16 modules: the reduction mecha-
nism, the daia fow mechanism and the kabu-wake method. PIM RA&D in the initial
stage revealed the structures and characteristics importast to an efective PIM. It
also clarificd many of the problems associated with the development of more practical
experimental systems. In the intermediate stage, both parallel hardware mecharisms
and parallel software systems will be studied based on & philosophy that integrates
both the hardware and software aspects of the rescarch. Compouoent bardware mod-
ules will be developed with the aceumuelation of implementation techniques such as
appropriate hardware buildiog blocks and common software tools. Healistic soltware
research environments will be provided by connecting P'SIs to encourage kerael lan-
puapge implementation and parallel operating system development. Efforts to integrate
them into a total PIM system will start around the middle of the intermediate stage.

1 Introduction

The FGOS Project started m June 1582 with the establishment of ICOT (lustitute for
New Generation Computer Technolegy]. The project spans ten years, which is divided
into three stapes, namely the initial stage (1982-1984), the intermediate stage [1985-
1988) and the final stage (1989-1291). The project aims at the research and development
of fundamental computer technologies for knowledge information processing based on logic
programmiog|9]. The parallel inference machine (PIM] 15 the most important hardware
research tarzet of the FGCS project. Its ultimate aim is to develop a machine enabling
execution of paralle]l inference, the central concept of the filth-generation computer.

PIM research in the initial stage|2] was mainly intended to clarify problems by in-
vestigating various parallel processing mechanisms. We studied several PIM models such
ae reduction and data How for the parallel execution mechanisms of logic programming
languages. Then we built several software simulators and three hardware simulators,

These experiments convinced us that parallel processing is applieable to logic program-
ming Janguages and that programs could be processed in parallel if they contain paral-
lelism n them. We produced various implementation techniques and obtained valuable
know-how on implementing processing elements and for accelerating their performance.

*Fourth Research Laboratory, Institnte for New Generation Computer Technology {ICOT), Mita-Rekusai
Building, 21F. 428, Mita 1, Mimnato-kn, Tokyo 108 JAPAN

Table 1: Overview of PIM R&D in the initial stage

Research theme | PIM model | Experimental system |
Data-How mechanism | PIM-D PE x 16, 5M % 15 _
. by TTL and Am2900 series |

Reduction mechanism | PIM-R mG6BO00 x 16 !

Load distribution | Kabu-wake :ystérﬁ m6a000 = 16 |

Concerning logic programming languages, we understoad that it is ezsential to provide
parallel control/communication mechanisms among inference processes mnning in parallel
as basic language mechanisms. We decided to use GHC[18] as the basis of the kernel
language (KL1), the PIM machine language. This is becanse GHC can be implemented
more efficiently than other parallel logic programming languages. GHC is a stream-based
lancuage in which we can explicitly write synchronization among processes ruuuing in
parallel. We concluded that this feature is important for the PIM operating system,
althouph we must desigu the system description lanmuage by adding several important
features such as a modularization function to the current GHC.

In addition, we realized the importance of cooperation between the architecture re-
search and parallel software research. Especially in view of many extremely difhcult
problems, such as dividing inference tasks and assigning them to processing resources.
Such problems can only be dealt with effectively by integrating software and hardware
technologies. So we are pursuing paraliel software research and parallel hardware research
-+ collaboration in the intermediate stage, building the R&D basis for the final stage by
integrating them.

The intermediate stage target of PIM R&D is to establish the paralle! ioference ma-
chine architecture for over 100 processing elements by building practical machines. We
set the performance goal of PIM' at ahout 50-100 KLIPS? per processing element and
2-5 MLIPS per system, so that we can get adequate performance for running the parallel
operating system (PIMOS). We also make much of the secumulation of PIM implementa-
tion techniques for the final stage. In addition, the PIM implementation must be stable
enough for the software researchers and programmers in the final stage. As for the archi-
tecture research, our research emphasis will be on the use of iocality, synchronization and
scheduling, communication process by distributed unification, and stream processing.

This report first gives an overview of PIM research and development in the initial
stage|2], then it outlines the research philosophy and plan for the intermediate stage, and
finally it gives the current research status of PIM.

2 PIM Research in the Initial Stage

2.1 Objectives and Research Themes in the Initial Stage

The main objective of the initial stage PIM rescarch was to establish the base {or the PIM
hardware arehitecture to be built in the intermediate stage (see Table 1}.
However, first there were many unsolved problems in I'IM architecture to be addressed.
The frst Lmportant issue was to analyze the behavior of logic programs precisely.
Thus, PIM R&D began with static and dynamic analysis of geveral sample programs
written in Prolog or Concurrent Prolog{12]. Prolog was selected to deseribe don't-know-

n the fallowings, " PIM™ means the targen wachine we will develop in the intermediate stage.

TLIPS: Logical Inferences per Second

pondeterminism (OR parallelism) and Concurrent Prolog]14] to describe concurrent pro-
cesses or stream processing (AND parallelism). Both lanmuazes were used as examination
bases for PIM in the initial stage. The results of this analysia were incorporated in the
architectural design of the following PIM models.

Research on the PIM models followed, studying various mechanisms of paralle] infer-
ence from vanous standpoints, the objectives of which were:

» the design and evaluation of 'IM models from various viewpoints,
the trial manufacture of component modules, and
» the accumuiation of sufficient evaluation data.

Several software simulators we_:re_Enuilt for each machine model, and three of them were
also tested by developing experimental machines with about 16 modules.

2.2 Data Flow Mechanism (PIM-I2)

I the data fow coneept, each execution of an instruction starts when ail necessary data
are ready, resulting in parallelism regardless of whether it is explicitly indicated in the
program. Therefore the data ow mechanism is expected to be a low level paralle! bardware
mechanism in PIM|4,6,5,7.. The PIM project zelected the data flow mechanism as a
candidate for approaching the parallel inference machine capable of expioiting parallelism
in logic programs naturally,

PIM-I} executes logie programs in a poal-driven manner: the exeeution of a clanse
is initiated when a goal is given and it returns the results (solurions) te the geal. In
this execution, the PIM-D can exploit OR and AND parallelism as well as low the level
parallelism in unification.

A software simulator was developed in C on the VAX to confirm the detaifed structure
of the PIM-D. A Prolog or Concurrent Prolog program is compiled into a data fSow code,
and runs on this simulator as well as on the following experimental machine.

The bhardware simulator of the PIM-D' wos deveioped. Thia machine copsists of 16
processing element (PE) modules and 15 structure memory {50! modules, connectad by
a hierarchical bus network, as shown in Figure 1. Eack PE consists of several APUs as
execution units and an ICU, a data-driven mechanism. Bach 10U, AP and S8 is made
of bit-sliced microprogrammable processors (Am 2000 sertes} and TTL ICs.

We obtained various evaluation data and know-how through this research., Using
the software simulator, it became clear that the performance of the PIM-D lncrcases in
proportion to the number of PEz, if the siven programs contain paraileiism in them.
We also found how the language features affected dvnamic behavior such as memory
eonsumption, by comparing OR-Prolog, Concurrent Prolog and GHC. As for the hardware
simulator, we cbtained not only the performance and dynamic behavior (Figure 2}, but
also gathered many implementation technigues.

2.3 Reduction Mechanism (PIM-R)

Logic programs generate several picces of resolvent from a bedy goal 1o a clanse. This
can be regarded as a process in which a goal modifies itself vsing a clause as a rule. The
reduction mechanism can also be viewed as a kind of 2elf-modification. Considered in top-
down manner as above, the reduction mechanism can be used as a basis for PIM[11,13].
The conceptual configuration is showa 1o Figure 3. The PIM-R consists of two types
of modules, inference modules and stmcture memory modules, with netwaorks connecting

< 7-BUS
R ——————— e - -
Chusier L T Y]
1 11
1 (’ T-BUS] 88
- &
¥ L 1] I
el ey PR T [T |
FE s 5M N
1 —_— 1
V¢ <Bus 7 Taus
i a 1 T T
v o
o 2]] Rl
|AIIA||Q|=L = |5
IAEIARIR L E M
I ||-.-|i|L|! } :UI R :ul U!
=i |
E. .I.ll: I i
o0 Ll | |
- - L
' & aus b

Figure 1: A Configuration of the PIM-D Hardware Simulator

~m- T oquesns (GHC)
—s—aquick -sort(GHG)
—=—7 -queens(0R parallel)
==z== BUR(OR parallel}

M Cycles K RFS
15 T 13
1
1
k
L]
lI'\.
Beriprmance
E 410
o 2
E :
&
=]
Y] -5 o
0]

1 Z a 4
MNumber of Modules

Figure 2: Performance Improvement Ratio in PIM-D Hardware Simulator

Malwork Modes

F 1 anilh'ml.ll
! Precars Pool Lhil PPU]

t—u‘m— — [‘ﬁm. “.-lm._l
Swrlgh _J Bagrd

-—---r PR Coantradlar (7o == Frocess
Fzal

Inlerence
bodule #1

[I8+ SMM. Meatworh

Slruclne

| \xl Un-lln:m-nn wait - L1
i
1

flemnry SIAM E 1 L1u vt budler PABIE lurr Jimes
Madule |—| -",h = Ehu"
.11 ':-tlﬁ lnl b esurler ;—-— Lirifieg .---. Fen!

Figure 3: A Conceptual Confizuration of the PIM-R

them. An inference module {IM) consists of a process pool usit {PPU) and a unification
unit (UU). A PPU stores and mapages reducible proceszes. A reducible process is seat
to a UU, unified with an appropriate clause and then reducible zoals are gencrated. The
resulta are returned to the the PPU. The PIM-R executes Prolog programs in OR parallel
and Concurrent Prolog programs in AND parallel.

A basic software simulator was developed te confirm the fundamental validity of PIM-
il mechanisms, written in Prolog/C-Prolug, it muns oo DEC2060 or VAX-11. A detailed
software simulator was developed using accam precisely reflectine the desalied structure
of the PIM-R, such as internal data formats. It also handles more than 64 IMs

The PIM-R experimental svstem was nilt to examine the reduction mechanism. This
system copsists of 16 PEs (mG8000 Loards) connected by a common bus with a shared
memory. The shared memory iz nzed to simulate the various conpection networks to he
tested.

Using this software simulator we testad various methods, such as the efficiency of
sharing candidate clauses or structure daca, and the effect of a multi-environmen:. We
also abtained many interesting results about the relation Letween the dynamic behavior.
the network structure and load balancing strategies. wsing the hardware simulator (see
Figrure 4).

2.4 Kabu-wake Method

It is an important problem to examine how to divide a job, or how to distribute each
picce of a job among PEs. The Kabu-wake method is ane of the hardware supuorted
mechanisms for job division and alloeation in the multi-inference processor environment.
The Kabu-wake method uses an effective job allocation mechanism for getting all zolutions
in a large tree search(8 15].

In the Kabu-wake method, each inference processor, having a job, sesrches solutions in

*—= Chain | Left & Right)
C===0 Chain { Right)

weeew Mlesh (2 Directions)
o—— Mesh i 4 Directions)
& s Perfect Connection

Time (Ratiok

=

AN

1]
Program: 7 Queens
Scheduling: Breadth
FirstNerwork: 100 Mhbis
1. ! !

1 2 N
MNumber of PE

i
I
I

-

Figure 4: Dynamic Behavior in PIM-R Hardware Simulator

a depth first manner. Idle processors issue requests for jobs to the busy processors. If cne
processor réquests a job from another processor, it splits up its own job and passes scarch
of the remaining branches of the tree to the other proecessor, se that they perform OR-
parallel inference. This execution feature is expected to minimize job allocation overhesd
among inference processors,

The experimental system was built to test the effectiveness of the Kabu-wake method
quantitatively. The hardware configuration is shown in Figure 5. The system cousists of
16 PEs (one PE for input /output}, connected by two kinds of exclusive networks; CONT-
network and DATA-network. The CONT-network i3 a ring network for job requesting
packets., The DATA-network iz a high throughput switching network for transferring
a split job (kabu). We obtained various interesting results (Figure 6], oo relationships
between the size of given problems, network traffic and system performance.

The compiler has been developed for the Kabu-wake method, so that each PE can
execute given jobs more quickly. New evaluation results will be published in near future.

2.5 Approaches of PIM Models Research

The approaches of the above three PIM models can be summarized as in Figure 7. First
let us consider PIM-D apd PIM-R research. |n the PIM-D rescarch, we aimed to apply the
data fow mechanism to logic programs as a basic hardware mechunisim. This is the reason
we recard the PIM-D research as a bottom-up approach. The PIM-R research started by
regarding the execution models of logic programs as reduction. Thus, PIM-R research can
be scen as a top-down approach. On the other hand the Kabu-wake method was alming
to approach the PIM architecture from the view point of load division and balancing that
is one of the important functions in parallel inference processing.

We should integrate these research results in PIM R&D in the intermediate stage,
rather than simply compare them and select one approach. This is because we found

PE + For inferencing

[KABU-WAKE interpreter is
installed)

CONT NW: For requesting job

{ FEs' status are circulated)

|
:@NETWORK

e

CONT-MNETWORK

DATA NW: For transferring job
{ Multi-stage swiiching |s used)}

Figure 5: The Kabu-wake Method Experimental System

Improvement

Rario

Performanrce i | |
: ldea] Performance

iil=]

! | Ty T T T T T
! I e

| |
" : a7 18 Mrexaa

rrl‘.-;Hl;" / . |

o
o A Textl |
] ! i
Jr_.;_-'
'
.

0 —
0.1 1 10 100 1000 Problem Size

i=mec)

Figure €: Problem Size and Performance Improvements Ratio in Kabu-wake Method

PIM-R
Farallel Execution Mode! for LP:

Reduction
Top-down
Kabu-wake Parallel
Systern — > PIM -« = Software
y Architecture R h
Load Distribution esearc
Mechanism
Bottom-up
PIM-D
Parallel Hardware Mechanism for LE:
Data flaw

Fizure T: Research Approaches in the Initial Stage

many similar features in the parallel processing mechanisms of PIM-I and PIM-R. In
addition the concept of the Kabu-wake method can Le amalgamated with others as a load
balaneing method.

2.8 Subjects clarified in the initial stage

In the initial stage research for PIM models, we found that parallel processing iz applicable
to logic programming languages and logic programs. We also obtained various implemen-
tation techniques and know-how for implementing and accelerating processing clements’
performance. The following are the igsues in future PIM research.

The first is the cooperation with parailel software rescarch. This cooperation covers:

» large scale application programae,

» parallel algoritbms,

« operating systems for parallel inference machines,

e debugging methods for parallel software, and

« programming environments for parallel software.
As for the bardware architecture, we emphasize:

e increasing elementary processor performance,

e accumulation of implementation technigues, and

« implementation know-hows sufficient for using as hardware butlding blocks in future.
We plan to attempt:

« implementation of a netwark for over 100 modules,

« communication function in processing ¢lements,
¢ highly integrated implementation of elementary modules, and
» development of reliability and debugzing methods for parallel hardware,

5o that the PIM can work efectively with high performance. The above discussion clearly
illustrates the vital importance of emphasizing the architectural research from parallel
software viewpoint as well as the integration of the previous three kinds of architectural
research.

3 Intermediate Stage Plan

Parallel processing research should be performed as a close collaboration of the work oo
application fields and problems, algorithms and parallel processing systems. The parallel
processing systems must be a stable base for research, and have a consistent hardware and
software view.

PIM R&D in the intermediate stage, which started last year, 1s being performed ac-
cording to the following plans that integrates both the hardware and software aspects of
the research,

3.1 Bésin Philosophy in the Intermediate Stage

PIM R&D in the initial stage has clarified many problems associated with the development
of more practical experimental systems,

s Integration of Software and Hardware Research

In the degign of 2 total system architecsure, functions of she hardware part and the softwars
part of the system must be efficiently divided so that the hardware part can be optimized,
and thus simpler and faster. This requires study on the paraliel software system for static
and dyoamic resource allocation, parallel job meniroring, and also the implementation of
parallel lanzuage interpreter for KL1. Thus, the ntermediate stage plac includes such
parallel software research mainly aiming ac the development of the parallel operating sys-
tem (PIMOS). To encourage this research activity, the development of multi-PS! systems
is planned to provide software researchers with more realistic rescarch environments. Fig-
ure 8 shows the relationship between parallel software rescarch and the PIM architecture
rezearch.

= Copsistency through Hardware and Software

PIM research needs to give priority to software requircments, especially from PIMOS.
This i3 because the machine structure should be adaptabie for the PIMOS whick monitors
hardware resources and allocates joba. Additionally, £IM must have total pedforniance
sufficient to encourage the next stage software research. lo order to increase total perior-
mance, it is necessary that all hardware elements should balance with and enhance each
other.

» Contipuity to the Final Stage

Figure 9 shows research continuity from the intermediate to the final stage. In this, the
cooperative research between software and hardware iz the most importaut point. In addi-
tion to this, sccumulation of implementation techniques are also important to build faster

Research Base for the Final Stage

Application

Alporithms

Programming
Language

Instructinn Set
Architecture

Micrg Architecture

e e e e e e e e i i el |

N
. . R S b
Circuit —_—
Architecture Research g
Device

Figure §: Software and Hurdware Research Conperation

Intermediate Stage Final Stage
(1985~ 1988) (1985~ 1988)

PIM
Architecture PIN RETD Advanced PIM R&ED
Hesearch
Paralle
Software RED on multi P51 R&D on PIM
Research

Figure 9: Continnity from the Intermediate Stage to the Final Stage

and smaller hardware compouvnts and reduce labor for bardware debugging and mainte-
nance in the design of component hardware modules. Large-scale PIM systems require
stable and easy-to-handle hardware elements with software tools for simulators and de-
bugging tools. Thus, the intermediate stage plan includes an effort to find out appropriate
hardware building blocks and common software tools to make hardware development a
iittle more comfortable.

3.2 Research Subjects for the PTM Software and Hardware System

In the intermediate stuge, both hardware architecture and software systems will be de-
veloped for the PIM. The research subjectz in the intermediate stage are swmmarized
below.

(1) Large Scale PIM Architecture Research

The inter-PE parallel processing mechanism, in particular, a highly paralle! connection
network and its control mechanism, will be studied in cooperation with the PIMOS R&D.
The intermediate researck goal is an experimental machine PIM consisting of about 100
PEs on which PIMOS will run.

R&D of High performance elementary processor for PIM: First we will hegin by
studying the parallel processing mechanisms of KL1. Next, an eBeient virtual ma-
chine code, called KL1-B, will be desirned.

Building Blocks for PIM: The PIM research in the nitial stags reveaied cleariy that
commouly used hardwars elementa should be developed to enbance and to ease
the R&D of PIM. Experimental procsssors, parallel memory systems, and networks
will be designed in detaill, throngh developing commonly used elements, such as
multi-port page memory, packet send/receive hardware modules. and tag bandling
hardware.

Developing tools for PIM: The research euviroument plays an iimportant role in DiM
R&D. Researchers usuaily develop their own tools. such as software simulators, for
their own ohjects. Aithouph these tools have similar functions and struetures, they
are not alwavs passed around smoug rescarchers. PIM R&D will study several
alternatives. Therefore it seems valuable to develop commonly used software tools
as a development base,

{2) PIM Software Systemn Research

R&D of software development pilot machines: The [ollowing workbenches will be
develaped at an carly stage to study parallel software systems for PIM. They are
called multi-P5SI systems. The PSI[i0,17,20] iz a personal infereuce machine devel-
oped by ICOT and it is expected to be a prime candidate processor for parallel
software development systems here.

Pueudo-multi PSI: a simulator on 2 PSI machine,
e multi PST v.1 : -8 PSI system,
e multi PSI v.2 : 16-64 PSI-11° =ystem,

"The PSII is a new PSI system. whick is currenthy being developed. The PEI1-E0 will have better
performance than the present PSI with a smaller size

11

Pseudo-multi PSI and multi PSI v.1 will be available in the middle of 1986, and
multi PSI v.2 in the end of 1987. PIM applications as well as the following language
system and operating system will be developed first on these workbenches step by
step. Then they will be integrated on PIM.

R&D of the PIM language systems: Kernel language systems for PIM will be hier-
archically developed by extending GHC[18]. GHC i3 a logic programming language
enabling parallel programming. A high-level language for system programming,
called KL1-U, will have parallel object concepts. The PIM kernel language, called
KL1-C{P), will be a machine independent low-level language enabling pragmatic
control.

R&D of the operating system for PIM (PIMOS): PIMOS, the operating system
for PIM, will be developed to facilitate resource allocation and management from
the software. First, we will attempt to describe stream-based input/output facilities
and goal scheduling based on the locality of multi-PSJ system configuration.

4 KL1 and Parallel Software Development on Multi PSI
4.1 ELI1 Language Feature

As described above, KL1 can be regarded as a super-set of GHC. GHC has various unique
features. In view of logic programming lanmiage, clanses in GHC programs are selected in
pattern-driven manner as in Pralog, however unification of logical variables are performed
in single assignment manner. Parallel processing are described in GHC programs as fol-
lows: programmers can describe various processes of Hexible size in GHC, communications
among such processes are realized using logical variables, and CHC has simple language
principles for parallel process synchronization. We briefly show such langnage features
of GHC, before describing the design feature of the PIM machine language. A detailed
description of GHC can be found in {18].
A GHC program is a finite sct of guarded Horn clanses of the following form:

H:=Gy,....Gn|B, ..., Badm 2 0,n >0}

where H, G;’s, and B;’'s are called a clause head, guard goels, and body goals, respectively.
The operator ‘|’ is called a commitment operator. The part of a clause before *}" is called a
passive-part {or guard), aud the part after *|" is called an active-part (or body). A guarded
clanse with no head is a goal clause, as in Prolog.

The semantics of GHOC is quite simple. Briefly speaking, execution of a GHC program
proceeds by reducing a given goal clause to the empty clause under the following rules*:

Rule 1: Any piece of unification in the guard of a clause cannot instantiate a variable in
the caller.

Rule 2: Any piece of unification in the body of a clause canuot nstantiate a variable in
the guard, until that clause is selected for commitment.

Rule 3: When there are several clauses of the same head predicate {candidate clauses),
the clause whose guard is first succeeded is selected for commitment.,

Rule 1 iz used for sypchronization. Bule 2 guarantees selection of one hody for one
invecation, and Rule 3 can be regarded as a sequencing rule for Rule 2. Under the above
rules, each goal In a given goal ¢lause ean be reduced to new goals (or null} o parallel.

*These rules are informal. The formal rules can be found in [18).

12

Candidate Clauses Mool

Groard tady
piXis G [E=1a[Y]piY),
mXb - X=falYT JpeY.

" Guard Test {Bodv Execution

Suspend Resume New Goals

Scheduler [Goal Management |=f—

2. pi X0, giX).

Parailel Goal Poal

Figure 10: Processing Mechanism of KL1

4.2 Processing Mechanism of EL1

As deseribed above, it zeems to he natural to regard the processing mechanism of KL1 as
reduction, Figure 10 shows the execution feature of KLI. Assuming that there iz a zoal
clause with two goals® p{X) and g{X) in the goal-pocl, the scheduler picks up one of the
parallel goals in the goal-pool first. Then its passive part is checked. Both goais mav be
picked up. If the execution of the guard of p{X} ends successfully, its body is selected.
Then the variable X is instantiated to [a|¥], and a pew goal oY) iz generatsed. This new
goal Is returned to the goal-pool and registered within a kind of goal managing structure.

{ gl X)) is exeented before p{ X}, exesution of (X} is suspended. This is because the
unification of g{ X} with a candidare clause needs to instantiate the variable X Such a
goal, waiting for variabies to be instantiated, is called a suspended goal®. In the case of
Figure 10, the snspended-goal g{ X will be resumed by the execution of p(X).

4.3 KLI1 Lapguage System

KL1 s a hierarchical language system: KL1-U, KL1-C and KLI1-P, and KL1-B. as shown
in Flgure 11. The KL1 R&D gronp members are now specifying the each Janﬂuam speci-
fication and implementing on PSIs and some zonventionai machines.

KL1-C7 is a core language system. KLi-C is based ou flat-GHC with built-in predicates
and meta-calls. Flat-GHC is a subset of GHC, whose ruard goals are all buiit-in predicates.
This restriction makes its language implementation more «fcient keeping ite deseription
power. Meta-calls are special functions to enabie programmers to haudle the logical values
of zoals.

KL1-P® is the attached language functions to KL1-C such as job allocation aud goal

*These goals are called paraliel poals.

*It is natural to assume that these suspended goals are retarned to the goal-pool, waiting fur the variable
instantistions,

T3 i an abbreviation for ‘core’.

®F'is an abbreviation for ‘pragma’.

13

KL1-U

KL1-C KLI-P

KL1-B

Figure 11; The KL] Lapruapge Systems

priority control. KL-P may depend lower level hardware construction such ss the network
topology of PIM. 5o these functions exceed the logical framework of GHC, however they
arc necessary to describe the operating system (PIMOS).

KL1-U? iz a hich-level system programming language for system programmers. KL1-
C and KL1-P specify the overall language fupetions of KL1, Such functions arc included
in KLl with some modular programming concepts. KL1-IT wili he extended to have a
parallel object oriented.

KL1-B' is a virtuai machine code interfacing between the PIMand KLi. So KL1-B
can he regarded as a compiler target language of KL1-U and KLI-C with KLi-P. KLi-B
also includes some special functions to directly control and maintain the PIMhardware. In
an actual programming environment, most system programmers are expected to develop
using KL1-U, then the compiler systems from KL1-U to KL1-IF are wery important.

4.4 PIMOS and Process Allocation

Operating systems play an important role in recent computer systems, however paraliel
computer researchers have seldom considered them as main research issues. So we wil]
develop the experimental version of PIMOS on multi PSTeystiems Brei. Then the functions
of PIMOS will be stepped up.

The PIMOS research must solve many difficult probleme, such as:

» process allocation and load balancing, using localities,
= hardware resouree management,

s ohject program codes allocation and their management,
user task management, and

* input/output functions.

In them, process allocation is the most difficult research issue. We studied it only from
bardware architecture point of view in the initial stage PIM research. Then we found that
we should also solve this problem from PIMOS point of view. It means that program-
wets should design the parallel algorithms, considering their communication localities, and
describe programs with hints for suitable load allocation to PIMOS. Here programmers
should only assume the abstract image of PIM, which is a kind of homogenius processing
power plane with logical distance of communications. {See Figure 12) As shown above,
KLI1-P is used to present such hints. Then the PIMOS allocates processes corresponding

FU is an abbreviation for ‘aser’

198" i an ahbreviation for ‘hase’

14

processing power

load balancing by
programmer (pragma)

po-At (B-:C=}—.

SN NN NEN TN
I NEFN N EREE;
NN EN NN E YRR
ST 7T .;rr;,_,_-}f
I, i T /7 actual processor netwaork
! ; f i 54l
NN foid
¢ 8] 4

Figure 12: Process Allocation Strategy

to the given hints. Of course, the processing load may be unbalacced as execution goes
on. In such case, PIMOS re-allocates processes considering their lacalities.

4.5 Mnulti PSI Systems

Multi PS] systems are the workbeaches for studying paralie! software systems on PIM.
Peeudo-multi P51 is a simulator co a PSL It will be used to develon multi P51 svstem's
software and test them. Multi PSI v.1 is the 6-8 PSI system, connected via a network
hardware whose transfer rate is about 300K Byte/sec, as zhown in Figure 12 and 14.
The network bardware is installed in each PSI's CPU option slot. KLI1 is implemented
by ESP[1] on SIMPOS{16]. Then parallel unification and PIMOS will examined on it.
Mult: P51 v.2 will be the 16-64 PSI-1I system, more tightly connected than multi PSIv.1.
On this machine, KL1 will be fully implemented by firmware, so that parallel application
programs can be develop on PIMOS,

5 Overview of PIM Architecture Research

5.1 Target Machine Specification

Our target machine PIAM will consiet of about 100 processing elements. We set the perfor-
mance goal of the PIM at about 50-100 KLIPS per procesaing element and 2-5 MLIDPS per
system, so that we can get adequate performance for running the parallel operating system
(PIMOS). We also give weight to the accumulation of PIM hnplemeatation techniques.
The PIM hardware syatem must be atable enough for the parallel sofltware researck in the
final stage. We will implement the PIM maizly using gate-arrays and some custom L30s.

15

Figure 13: The multi PSI versico 1

/‘x"t*ﬁ “‘_’
/fﬁ; /

gpsn" 5|2,

Figure 14: Connection Hardware of multi PSI

16

5.2 PIM Machine Language

We are now designing the P/M machine language, called KL1-B, considering the above
execution features of KL1. In this case KLI-B can he regarded as a virtual machine code
and its interpreter. KL1-B should be designed putting emphasis on the following points.

(1) Synchronization and Scheduling

As described above, it is important to provide effective mechanisms for synchironizing and
scheduling parallel goals. The interpal structure of a goal should be examined first. Next,
several control structures such as a scheduling queue and a goal tree should be designed. A
goal tree is used to manage the logical relationship of parallel goals. To resume suspended
zoals effectively, it 18 necessary to provide a kind of bind-hook m-echarnism, and to use
multiple scheduling quenes with priceities. KL1-B has some synchronization primitives
for suspending fresuming and scheduling mechanisms.

From the viewpoint of processing element design, functions such as suspending, re-
suming, or scheduling goals can he rezarded as context-switching between goal reductions
Therefore it is necessary to support efficicnt context-switching as well as to provide an
effective stratepy to decrease their occurrence.

(2) Communication

Communication among processing modules is necessary for load balancing in the system,
remote data access o distributed unification. and resuming goals between procezsors. In
order to realize such communication efficiently, both shared buffer communication mech-
anisms and packet communication mechanism are being examined. In addition it is im-
portant to keep processing elements busy during communications latency. So we should
also consider low-cost context-switching mechanisms such as concurrent virtual machines
in each processing element to minimize communication overhead.

(3) Streams

Stream programming 15 one of the important paradigms im KL and shonid be supported
by low-level procedures. An eficient stream implementation technigue, such as CDH-
cading, and its primitives will be provided m KLI1-B.

{4) Locality in the Problem

Application programs for PIM consist of various sized activities {parallel processing com-
pooents). Some of them are lager than processing elements, and zome are smaller. In
general, the former may be treated as the problem of communications locality among pro-
cessors, and the latter as the problem of parallel processing granularity. Imitial stape PIM
L&D pursued rather fine-grained parallei processing. In the intermediate stage, large
sized graoules should be also considered In cooperation with the modulanty of programs.

Fine-rraiped locality will be treated as followsz. KLI semantics can express both fine-
eraiped activities and larce-grained activities, However, in practical proeramas, it seems
unnereszary to handle very fine-oramed acoivities just as they are. Therefore KL1-B should
be designed for internal execution in a processing element, azsuming optimising compilers.
For example, a S:L'ht:luliug method to execute a En:sl repeat P:“y m each prﬂce:siug element
i5 lntroduced in KL1-B. The machipe ipstructions will be designed at a low level like
Warren's code|[19] or even lower than that. The parallel cache mechanism 1s important for
the hardware mechaniam.

17

METWORK

‘[N-CNTL N-CNTL ? N-CNTL| |
P P ! = J
'| Cache Cache r Cache

: | [) i I -

! M-CNTL—‘ M-CNTL — M-CNTL —"
E LM \ LM ! lil- . LM J

i [sM-CNTL i

e |

I

Shared Memory

Cluster

Figure 15: The Hardware Construction Image of PIM (1)

As for the former locality, the imporiant izsue iz hardware architecture whose locality
can be easily handled in software (i.e. by PIMOS). We will design the machine language
with load distribution primitives. Then we will introduce the concept of clusters, and
study the paralle! memory and network system for shared buffer communication.

5.3 Construction of the Intermediate Stage PIM
(1) Overall design and clusier concept

Fipures 15 and 16 show the two overall construction images of PIM that we are now
designing. Both machines have cluster concepts. Physical shared memories form clusters
in Figure 15 and a global address space ia distributed in each proczssing element memory
to form clusters in Figure 16. In both construction images there are about 10 processing
elements in a cluster,

The concept of clusters wiil be introduced in two senses: the logical cluster and the
physical eluster, The logical cluster is a group of processing elements that have one address
space. These processing elements share their data space such as parallel goal cuvironments.
Thus some address tranaformation tables and their management will be necessary for inter-
logical-cluster communication. By introducing logical clusters, garbags can be collected in
each logical cluster. This is berause mter-cluster poioters are gathered in such tables and
their entries can be used as roots of inter-cluster referepces. The physical cluster is the
group of processing elements which are connected closely from the view point of physical
implementation. In such a physical cluster, each processor can communicate with eack
other faster than with processors in another physical cluster,

In Fipure 15, a ¢luster iz a group of processors connected with the same shared memory,
and the inter-processor network iz a two level network. These processors communicate with
each other using both an intra-cluster network (1.e. a lower-level network) and their shared
memory. The network response is more important than throughput for as intra-cluster
network communication. These clusters are connected with each other by a inter-cluster
network (a upper level network). High-throughput networks like cross-bar networks are

18

NETWORK

:]

. | i
B i
! :
F M P M P ™
7| 7| 7
| Cache | ! | Cache : : Cache | 1
I | : [
| M-CNTL —I M-CNTL J '; M-CNTL J
LM LM S LM
Gilin 1 GM
- LT J

Clusteri

Figure 16: The Hardware Construction Imsge of PIM (2]

suitable and available beczuse there are about 10 clusters in the PIA

In Figure 18, a cluster i3 a group of processors whose zlobal memories (GM) have &
same address space, So CM1 .. .CMn in the eluster; form one global address space.
The inter-processor network can be designed in one level petwork, However 2 two level
network is better to make the best use of the locality in applicstion programs.

(2} Memory system design

In the design of the PIM hardware confipuration, it is important to desigon the paralls!
memory systems such as private cache memories and global shared memories. Generally
parallel cache mechanisms have the =o-called cache coherence problem{3], so that we will
design effcient parallel cache hardware to overcome this problem. In addition te this, it
15 important how to properly wse such memories as cache, Jocal and shared (or giobal},
and how to reflect the localities of KL1 execution. So we are studying specialized memory
mechanism for KL1 execution and extending cache concepts to reflect the localities.

(3) Processor design

Important issues to design processiog olementy are tag architeeture for wuification, eficient
context-switching mechamsms, and interrupt handler for inter-processor communication,
The experience of PSI B&D helps us to design the tag handling mechanism in precessing
elements, In particular context-switching and icterrupt bandling are key issues te en-
able the communication between parallel goals. Countext switching will ocour buth iu goasl
suspension and in unification with remote data. The concept of concurrent virtual ma-
chines will be introduced to realize efficient context-switchine. Coneurrent virtual machine
mechanism can be regarded as a logical cache of of goal contexts.

1%

6 Conclusion

This report gave a research and development overview of PIM in the initial stage, tentative
plans for the intermediate stage, and the current research status. In the iuitial stage,
three basic mechanisms for PIM were studied with software simulators and experimental
machines. In the intermediate stage, we will study both parallel hardware mechanisms
and the parallel software system. Efforts to integrate them into 2 total PIM system will
start around the middle of the intermediate stage.

Acknowledgment

The research and development described in this article are being conducted mainiy by the
members of the PIM, multi-PSI and KL groups both in the ICOT Research Center and
the participating companies. We also wish to thank to ICOT Director Kazuhiro Fuci for
valuable suggestions and guidance.

References

[1] T. Chikayama. Unique features of ESP. In Proc. of the International Conference on
Fifth Generation COmputer Systems, Tokyo, 1084

(2] A. Goto and 5. Uchida. Current Research Status of PIM: Perallel Inference Ma-
chine. TM 140, ICOT, 1985. {Third Japan-Sweden workshop on Logic Programming,
Tokro).

[3] K. Hwang and F.A. Briggs. Computer Architecture and Parallel Processing, MeGraw-
Hill, 1984,

[4] N. Ito, A. Kishi, E. Kuno, and K. Rokusawa. The Datafiow-Based Parallel Infer-
ence Machine to Support Two Basic Languages in KLL In [FiP To-10 Waorking
Conference on Fifth Generation Computer Architecture, July 1985,

5] N.lto and K. Masuda. Parallel Inference Machine Based on the Data Flow Model. In
Proceedings of International Workshop on High-Level Computer Architecture, pages 431-
440, Los Angels, May 1984,

6] N. Ito, M. Sato, A. Kishi, E. Kune, and K. Rokusaws. The Architecture and Frelim-
inary Evaluation Results of the Experimental Parallel Inference Machine PIM-D. Iu

Proc. of the 15th Annual nternational Symposium on Computer Architecture, June
1986.

(7] N. Ito, H. Shimizu, A. Kishi, E. Kuno, and K. Rokusawa. Data-flow based execution
mechanisms of Parallel and Concurrent Prolog. New Generation Computing, 3(1}:15-
41, February 1985,

(8] K. Kumon, H. Masuzawa, A. Itashiki, K. Satoh, and Y. Schma. Kabu-wake: A New
Parallel Inference Method and its Evaluation. In COMPCON Spring 86, pages 168-
172, IEEE Computer Society, San Francisco, March 1986.

19} K. Murakami, K. Kakuta, R. Ouai, and N. Ita. Resgearch on paralle]l machine archi-
tecture for Fifth-Generation Computer Systems. IEEE Computer, 18(G), Jupe 1985

[10] K. Nakajima, M. Yokota, K. Taki, 5. Uchida, H. Nishikawa, A. Yamamoto, and M.
Mitui. Evaluation of PSIMicro-Tuterpreter. In COMPCON Spring 86, pages 173-177,
IEEE Computer Society, San Francisco, March 1956,

[11] R. Onai, M. Aso, H. Shimizu, K. Masuda, and A. Matsumoto. Architecture of
a Reduction-Based Parallel Inference Machmme: PIM-R. New Generation Computing.
3(2):197-228, June 1985,

f12] R. Opai. H. Shimizu, K. Masuda, and M. Aso. Analyss of Sequential Pralog Programa.
TR 048, ICOT, May 1584,

[12] R. Onai, H. Shimizu, K. Masuda, A, Matsumoto, and 3. Aso. Architecture and
Evaluation of a Reduction-Baszed Parallel Inference Machine: PIM-R. In Lecture Note
in Computer Science, Springer- Verlag, to appear.

[14] E. Y. Shapiro. A subsct of Concurrent Frolng and fte Interpreter, TR 003, ICOT,
1083,

[15] Y. Sohma, K. Satoh, K. Kumon, H. Masuzawa. and A. ltashiki. A New Parallel Infer-
ence Mechapism Based on Sequential Processing., In [FIP TC-10 Working Conference
on Fifth Generatton Computer Architecture, July 19835

(16] 5. Takagi, T. Yokoi, §. Urhida, T. Kurokawa, T. Hattori, T. Chikayama, K. Sakai,
and J. Tsuji. Overall design of SIMPOS. In Proc. of the Second International Logic
Programming Conference, Uppsala, 1984,

[17] K. Taki and et al. Hardware Design and lmplementation of the Fersonal Sequential
inference Machine {PSI}. In Proc. of the International Conference on Fifth Genera-
tion Computer Systems, Tokvo, 1984,

[18] K. Ueda. Guarded Horn Clsuses. TR 103, ICOT, 1385

[19] David H.D. Warren. An Abstract Prolog Jnstruction Ser. Technica: Note 309, Artifi-
cial Intellizence Center, 3R1. 1053

[20] M. Yokota and et al. A Microprogrammed Interpreter for the Fersonal Sequential
[nferepece Machine., In Pros. of the International Conference on Fifth Genesation
Computer Systems, Tokyo, 1584,

