ICOT Technical Report: TR-188

TR-18E

A Framework for
Interactive Problem Solving
hased on Interactive Query Revision

by
M. Ohki. AL Takeuchn
and k. Turukawa

June. 1486

ClYnG, JCOT

Mily hokusai Bldg. ZLF 031 456- 3191 -5

]GDT 4-8 Mita 1~Chome Telex 1COT J32064

Minate-ku Tokvo 108 Japan

Institute for New Generation Combufér Technology



A Framework for
Interactive Problem Solving
based on Interactive Query Revision

Masaru Ohki, Akikazu Takeuwehi and Koichi Furukawa

ICOT Research Center,
Institute for New Generation Computer Technaology,
Mita Kokusaj Eldg, 21F, 1-4-28, Mita,
Minato-ku, Tokyo, 108, Japan

Abstract

Logic programming hag been widely used because
of the clearness of its semanties and its extensibility.
Many inference systems have been proposed using a
logic programming {ramework. But few of these
have studied logic based man-machine interaction,
apart from systems based on incremental gquery
[Emden 18985). Tncremental query allows users to
enter a4 part of gqueries inerementally instead of
entering the whole query at once, asin Prolog. In
this paper we investigate essential concepts of
interactive  problem  solving and  generalize
incremental query further. And we propose a new
query model for logic programming, which we call
interactive guery revision. Interactive query revision
allows a user to modify queries and hvpotheses and
to act as a part of the inference engine, in addition to
entering queries incrementally., We apply interactive
query revisicn to an interactive LEI layout system.

l. iatrodwetion

It has been claimed that legic programming
provides a pewerful framework for building inference
srsiems. The theorem-proving capability of logic
srogramming languages is the starting point  for
ivgic-based inference systems. The methodolopy for
vepiizing inference in  =n  expert system by
somputation in logie programming languages was
aiscussed in an early work on a logic-based expert
svetem [Clark 1082,

Basically, an inference system consists of an
inference engine and a rule base. An  inference
sngine is the kerncl of the system performing basic
imizrence. A rule base is a database of inference
reies.  The important characteristics of inference
systems are usually all realized in  their inference
engines. They are the explanation facility, handling
of eertainty factors, query facilities used when some
informetion is missing, multiple rule buses, frames
and 50 om.

Logic programming has provided new concepts
not only for basic inference mechanisms but alse for
such extended features as those listed above, which

1

are essentinl  in  inference systems. In APES
[Hammond 1383], explanation farilities are realized
by meta-level operations on the proof tree. Shapira
proposes an efficient debugging method for rules
[Shepiro 1983a] and a meta-interpreter to handle
certainty factors [Shapire 1983bl. Sergot [Serpot
1883] introduced an open world assumption in his
logic-based expert system in order to realize query

facilities naturally if inference fails without
additipnal  information, Several researchers
{Wakashima 1882, Pocle 1985, Bowen 1985]

introduce multiple theory models to form bases for
hypothetical inference. Frame-based representation
of knowledge in a logic programming langnage was
introduced in CIL [Mukai 1985], based an situation
semantics. Partial evaluation of logie programs
[Takeuchi 1985] made possible customization of
inference engines and rule compilativons,. Emden
introduced a new ecomputation model called the
query interaction model, facilitating a mixed
languages environment [Emden 1984],

These are just smne of the meny proposaiz for
inference engines. However, aimost all of them are
related to logic-based inference mechanisms and, as
yet, apart from [Emden 1984], no studies have
directly confronted the problem of logic-based models
of environments including man-machine interaction,
Emden introduced a new standpoint fram which
logic can be seen as on interaction lanpuage and
his concept of the ineremental guery represents a
new type of gquery for logic programs. Emden alsp
proved that incremental query can be a strong basis
when building universally accessible interfaces for
logic programs such as spreadsheets (Emden 1285]

In practical applications, many problems cannoi
be given as a set of goals al ones. To model the whaole
humen problem solving task, it has to be considered
in two modes, horizontal and vertical modes. The
harizantal mode represents the top-level tasze of
problem solving such as detailed specification of the
problem, only roughly  specified at first, and
examination of the solutions under several variations
of the original problem. It ofien happens that the
problem o be solved is too weakly specified. A user
has to specify the problem in more detail in order o



solve the probiem by computer. Since there are
many possibilities in describing the details of the
problem, the user bas to try to specify the problem in
various ways. Furthermore the problem to be solved
changes over time as the user ohserves the
soluticns under several variations of the original
problem and  comes o betler understand the
properties of the problem. In fact, problems people
have in mind are very vague and can only be
specified weakly. This is where the horizontal maode
of problem solving comes into play. At the moment
thiz phase is performed by the users themselves,

The vertical mode of prohlem solving involves
solving a problem that is well specified in the
horizantsl mode. Many concepts have been invented
tn model this kind of problem solving task in the
computer, such as common sense reasoning,
ambiguous reasening using certainty  factars,
hypothetical reasoning, default reasoninggualitative
reasoning and 50 Oh.

As stated above, there are many contributions
from logic programming to the vertieal mede of
problem solving, but only a few address the
horizental meode. When a transformed problem
cannot be solved or its solution is not satisfiable, the
user hae to change the detail of the problem
specification added during transformation. Thus,
the problem specification task is still the heavier
task, even if the computer assists users in the
vertical mode. We believe that "logie for problem
solving” has to be extended to logie for
intzractive problem solving.”

Tn this paper, we present a new query model for
logic programs Lo assist users in the horizontal made
of problem solving and establish ideal man-machine
interaction for inieractive problem solving. Our
new query model is called interactive query revision
model, It is based on the previous work, incremental
query, of Emden et al. [Emden 1984, 19851, They
suggested that incremental query could use for
interactive problem solving. But they did not
investigate interactive problem solving in detail
becawse ineremental guery aimed at  the
implementation of spreadshest. We investigate
pssential concepts for interactive problem sulving
and we propose interactive query revision medel,
which realizes the concepls.

In Section 2 we describe the difficulties of current
problem salving systems from the wiewpoint of
interaction between man and machine, In Section 3,
we introduce the interactive query revision model for
Frolog {Bowen 1982] and outline an implementation.
Section 4 shows how interactive query revisivn is
applied Lo an interactive LS1 layout system and how
it solves the problems described in Section 2.

3. Difficulties of problem selving and new
concepts to solve them

i1) Observation 1:
The user does not know exactly what he wants in
the solution.

In EEI:EI-"&L users oo not know what tht? want
exactly, however, they do know what they de not
want. It is difficult for users to fully specify the
problem, but easy for them to say "noe” when they
see unacceptable ‘solutions’. For cxample, when a
user starte to lay out an LSI, he does not often know
the detailed specificntion and he determines these
details as he goes along. If he found the LSI
unsatisfactory, ke may design it over again or add
new constraintz, In order to support such users, we
need the concept of “open constraints” allowing
ueers to add mew constraints incrementally. The
ineremental guery model is the first to realize open
constraints. In the incremental query model, when
the solution obtained based om  the constraints
entered up to a given point is unsatisfactory, the
user can add constraints that exclude the solution
proposed at that point as new increments.

{2) Ohservation 2:
The user wants to know the relation between
golutions and constraints’hypotheses.

There are two ways in which a problem is said to be
weakly specified. The first is that the goal to be
solved is vague. The second is that the rules and

facts are incomplete and contain hypotheses. If the

problem initially given is weakly specified, the
solutions of the problem conceptually form a set, each
elernent of which is 2 solution of the strictly specified
version of the original problem. There iz no way to
obtain the whole set of sclutions for a weakly
specified problem, since computers can  only solve
strictly specified problems. For example, in the case
of LI layout a user may want to design the best LSI
among thogse satisfving the weak specification.
Instend of directly solving the weakly specified
problem, we propase the concept of “variation al
solution” to allow the user to see the variations in
solutions resulting from slightly modifying parts of
constreints  or hypotheses and select the most
desirable from among them. Now, even if the user
has only 2 vague problem in mind, he can examine
enlution varintions with respect to several constraints
or severa!l hypotheses and find the most acceptable
eandidate in the set of solutions.

[8) Observation d;

The user does not periorm a function as part of the
inference engine.

The inference engine is usually incomplete. In fnet, it
is impoesible to build the perfect inference engine
baged on current technology. For example, a system
for laving out LSls may not include information on
their zale conditions. But this is often important to
designers, Instead of making a perfect inference
engine, we propose & concept of the "combination of

o o—



computer and man” [t provides a mechanism 1o
allow users fto act as a part of inference engine,
Even when the system fails to solve a part aof
problem, appropriate action by the user can keep
the system poing until it suecceds in solving the
problem. This mechanism is convenient when the
problem to be solved partially exceeds the ranpe of
the rule hase, OFf course, even if the user has the
opportunity to act as a part of the inference engine,
he may not solve the relevant part of the problem.
Nevertheless, it is clear that a mechanism to add
the power of the human brain will significantly
enrich the system.

3. Interactive Query Revision
1.1 Interactive Query Hevision Model

A guery of Prolog is a set of goals such as the

following:
T p,...a.

When this is entered, the Prolog system solves it and
replies yes with answer substitution if the goals
succeed, or no if they do not. A user cannot interact
with the Prolog system in the course of computation
except at inputioutput, an extralogical feature of the

Prolog system.

The incremental query meoedel expands the Prolog
guery model so that queries can be incrementaily
added. The idea of incremental gquery is that instead
of entering the whole goals, a user is allowed to enter
parts of the goals incrementally as he sees the
intermediate solution{substitution) of some of the
gueries entered so far. The incremental queries are
of the [ollowing form: (777" is the prompt for the
incremental queries.)

M p.
< answer substitution for "p" =
- q.
< answer substitution for “p and g™ >
Wi-r,
< answer substitution for "pand qand r">
where "p","q" and "r" are gueries entered by Lhe
user and < answer substituon>>'s are responses
tfromm the svstermn. These queries are equivalent the
Frolog goals "pagr".  <answer substitutien for "p
and q and "> is equivalent to  the answer
substitution of Prolog for the goals "pgr". In
Incremental query, when a new query, Qi, is given,
the current {last) answer substitution 5i-1 iz applied
to Gi. The resultant query, (@1)S:i-1, is then solved
and the updated answer substitution, 51, is returned.
if the guery GQi cannot be solved with the current
substitution 3i-1, backtracking occurs. The system
tries to find alternative substitution 5'-1 by re-solved
@i-1 with 312, s0 that (@131 can be sueceessfully
solved, A variant of Incremental query allowing the
user to cancel parts of the queries already entered is
given in [Emden 1585], and its implementation in
Frolog is also described.

w

The interactive query revision model carries the
idea of incremental query a step further. It allows a
user to enter a query incrementally, insert a new
query between previous gueries, remove parts of
gueries or partially replace them. It also allows the
user o add hypotheses to the program, and remove
them or replace them in the program incrementally,
These functions realize two of the concepts stated
in Section 2, "open constroint” and “veriation of
solution.” Whatever queries or hypotheses parts are
modified. the logical validity of the solution is
preserved in Lhe interactive query revision maodel,
Suppese the following queries

e p, TH—ng. 7771,

{GQueries are written in the same line.)

have been given. If a user replaces the query "q" with
"ql", the above queries change as follows:

777 p. P70 gl PPk,
They are selved as if equivalent to Prolop goals
"malr”. I a hypothesis is added o the program
after the gueries "p" and "q" are solved:

M7~ p. M7—q. 77— <added hypothesis>,
the solution of these queries i equal o the solution
of the Prolog goals "p.q" in the program to which the
hypothesiz is added.

We  introduce  the  special eommand,
“user__interaction,” to realize the third concept,
“combination of computer and man.” It allows users
to help the system by giving a selution for a part of
the problem in the form of queries, and allows them
to mct as part of the inference engine. Assigning a
solution to an unbeund varigble, which cannot be
determined by the system, is an example of an
interaction with a user. Onee the mechanism
recognizing the user as a part of inference engine is
introduced, it is obviously necessary that interactions
with & user are treated in the zame manner asather
logieal constructs.  This means that on backtracking
the svstem needs to be able to query the user for
alternatives of the previous interaction. Thiz kind
of interaction with the users is logical and entirely
different from conventional inmputioutput, which is
extralogical. When the "user intersction” command
1= entered, & user iz asked for the queries he has in
mind at that moment, Suppose the following
sequence of queries:

297 p. TP7- user_ interaction. V7,
where "gl" and "g2" are  entered at
"user_ interaction.” It is handled as if equal to the
following sequence of queries:

207 p. 177 (q;q2), 7T,
These goals,"q1" and "g2", are connected with
disfunction, so the user can give alternative choiees
or instructions to the system. These alternatives
are seiected one by one when backtracking vccurs. 1F
all alternatives are exhausted, the user is asked to
enter other alternatives, If the user replies with
another alternative, say "g3", the query seguence is
Lhen as follows:

T-p. ™ iglig2:q3). -r.



If the user wants to backtrack  beyond
"user__interaction,” it is possible to pass to enter an
alternative.

Interactive query revision is independent of
inference systems since it assists users in the
horizontal mode of problem solving. Thersfore, we
can use various inference systems operating in the
vertical mods with the interactive query revision

model.
3.2 Implementation

We have implemented the interactive query
revision model based on the incremental query
maodel, First we briefly describe an implementation
of ineremental query [Emden 19851

The key point of the implementation of
incremental gquery is the stack of elements consisting
of =an incrementally-entered query and ils
environment. The environment is a sst of pairs of
variable and value before the guery iz executed. The
stack iz used to simulate the backtracking
mechanism 30 that incremental gquery can be
processed just as in Proleg. An example of a stack is
given in Figure 1. When a new guery is added and
feils under the current envirenment, the system
starts to simulate backtracking. It moves back along
the stael one by one, gets poals, and makes new goals
by combining the previous goals and the current
query. The new goals are solved as the Prolog goals.
If the goals fail, the system resumes backtracking.

Incremental Stack

queries token forms environments
X=1 =1 [¢¥X._)
Y=2 Y= | CRLLY, )
=3 (Z'=3 XL )

Figure 1  Anexampleoflincremental queries

the conient of the stack

We have enhanced incremental guery o
implement interactive query revision. We added the
following mechanisms to madify queries: (1) editing
a stock to insert, remove and replace queries, (2}
recalculating modified gqueries, (3) reforming a new
stack. Muodifieation of hypotheses is eurrcntly
implemented by modifving the program in the global
database of Prolog. When hypotheses are modified,
for example, when a hypothesis is added to a
program, all queries must be recaleulated because it
is diffieult to know which queries can use the
hypathesis.

The user _interaction” command takes in
solutions inferred by the user in guery form. When
hackiracking occurs. the user interaetion 15 also
redone, If all solutions {nferred by the user have

been  tried, the user is asked to enter other
alternatives. The user can enter one of the following:
(1) anew alternative
Add 8 new alternative to current alternatives,
(2) pass
Leave the set of alternatives asit isat that
moment and propagate backtracking beyond
the "user _intersetion” command,
{3) temporarily elose
Leave the set of alternatives as it is during
execution of the current guery and propagate
backtracking beyond the command.
4] close
Leave the set of alternatives as it is and
propagate backtracking beyond the command.

4. Application of interactive query revision to an
LSI lavout system

An LSI chip layout is a tvpical example of problem
solving using computers, The system considered
here lays out three kinds of component blocks,
CPUJ, ROM and RAM, on LEL a2 shown in Figure 2.
It is written in CIL [Mukai 1985] and has twe types of
knowledge. One is the knowledge to lay out an L3I
and the other is the knowledge about the component
biocks. CIL is a legic programming language.
Compared with Prolog, it iz sugmented with the
"freeze” primitive  [Colmerauer 1982] and an
association list. An association list is denoted by
ALV AR VAL, where Al is an attribute name
and Vi iz its associated value, Unification of two
association lists only succeeds if the values of their
common attributes can be unified, in which case their
attributez are merged. Otherwise, unification fails,
Aeccess to an attribute A of an assoclation list X is
denoted by the primitive function "X!A", The
“freeze" primitive suspends goals with respect to &
variable until the wvariablefcalled the frozen
variable) becomes instuntinted. A gquestion mark, ™7
" igattached to a frozen variable,

R | R
0 Cru A
M M

Figure 2 Anexample of L51 chip
lavout

The rules for L3I layout are described as
constrzints using the "fresze” primitive of CIL, One
of the rules for laying three component blocks on an
L81 is shown in Figure 3. An LSl chip is deseribed
as an association list containing T.5T type, right,
center and laft component, width{w) and length(l) of
the L8, and its cost. The width and icngth of a
component block are determined by constraints in
"arrangementd] _constraint.” It eXpresses
conditions such as, if the length of the left component
is not given - is set equal to the length of the LSL If

_4_



arrangement{LSI,[A,B,C]) :-
!, arrangementi{LSI.[A.B,C]).
arrangement3rL31.EA.B‘C ) oi-
L5 = {type/ls
costiTost,W H,[Right, Center,Left]),

arrangei([A,8,CT [Right.Center,Laft]),
31, right/Right center/Conter, left/Left w/W,1/H, cost/Cost),

arrangementdl_censtraint{Right . Center, Laeft W, H).
arrangement3l_constraint{Right Center, Left W H) :-

constraint_ge(H,Left!l},
constraint_ge(H,Center! 1],
constraint_ge(H,Right!1),

constraint_add(W,Center!w, Right!w,Leftiw).

Figure 3 Part of the knowledge for L5I chip lavout

ram{RAM} -
Type = ramd, Access =

200, PerSpace = 6, PerCost = 2,

template_ram{RAM,Type Access,PerSpace.PerCost).
template _ram(RAM, Type Access.PerSpace, PerCost) -

RAM = {type/Type.w/Wl,1/Hl, capacity/Capacity,

r_cepacitysR_Capacity, access_timo/Access.cost/Cost},

(W17} > D, [H1?) >0,
or_freeze{[{

([Capacity,W!

Cost :== (R_Capacity?} * PerCost,

H1.W1],rami{Capacity,H1,W1 R_Capacity,PerSpace}},
[ Capacit_-.r.l-iq. ramZ(Wi,Hl Capacity, R_Capacity,PaerSpace)),
cramZ{HL Wl Capacity R_Capacity.PerSpace}}]),

Figure 4 Part of the knowledge on RAM

it is specified, its value ischecked to make sure it is
less than or equal to the length of the L3I The
widths of components and the L3[ are determined
by the constraint that the width of the LSI is grester
than or equal to sum of the widths of components.
Figure 4 shows one of the rules for a component
RAM. A RAM (s also described a5 an association
list containing RAM type, width and  length,
requested copacity and actual capacity, access time
and cost. The reason why a BAM association list
contains actual capaecity as an attribute iz that
actual capacity is not always egual to requested
capacity, because its shape  is restricted to a
rectangle. If any two of the values for width, length
and requested capacity are specified, the rest is
determined from them. The cost of the RAM can be
determined il actual capacity is given,

Let us startto lay out an LSI chip, even though
we do not completely know all the constraints. The
constraints for L8l layou! we have at first are as
follews:

(1) The size of the LEI chip is roughly 30mm wide

and Z0mm long.

| - ig.

{2) The LEI has at least CPU and ROM,

{3) The most efficient layout should be produced.
The scenario in which we lay out an LST chip is as
lollows:

(1) First, CPU and ROM are arronged on the LSI
with 30mm wide and 20mm jong.

RAM is then placed in the remnoining space,
The LSI layout system does not possess
knowlecge on the reasonable eost/performance
ralin, which is one of sale conditions of the LI,
50 we pose it to the svstern by “user
interaction.”

2)
(3

(4) If'a propesed layout fails, we iry to hypothesize
a new type of ROM,
(8] Using the new type of ROM we continue to lay

out by trial and error to improve the desipn

Now let us lay out the LSI chip. Some
configurations of L8I are shown in Figure &5.
Statements begun by "%" explain lhe course of
design, and statements parenthesized by "{" and ""
are other comments.

%OFirst we try to set the width and the length of LSI to 30mm

Rand 20mm respectively.
T7- L3Itw=30,L5I11=20.
LET = {w/30,1/203

]

'ljt }" is an asscciation list.)
{Figure § {I) shows the chip at this point.)

% Arrange two compeonants, CPU and ROM, on the L3I,

?72--  arrangemant(LSI,[CPU.ROM]).

% As.s‘ign'
wrespectively.
?77--  cpu{CPU}, rom{ROM},

(A display of values of variables is omitted. }
substiantial CPU and ROM tu variables CPU and ROM

{Figure 5 {2} shows the chip at this point.)
¥ Attempt to et AOM capacity te 300 bytes.

o



Fi7== ROM!Icapacity=300.

LSI = {w/30,1/20,cost/3200, type/ 1512, right/{epul}, Teft/ {roml}}
CPU = {cost/2000.w/1,1/20, type/cpul, perform/ 100} )
ROM = {cost /600, capacity/300,access_Limes100,w/15,1/20, type/roml, r_capacity/300}

% The first verzion of layout was obtained.
%What is the space-utilization efficiency of the LSI?
7?7-= space{l5l,Space).

Space = 53 .
{Figure § {3) shows the chip at this point)
% Space=utilization effic1enc¥ iz 53 %, it is very low.
%It is necessary to redo the layout. First, let us take a look at
%all gueries so far using the listi_gueries command.
777-- list_gueries,

o e
R e e

e e

[3] arrangement{LSI,[CFU, ROM]}

(4] LaIlw=30,L511%=20
% Attempt to change the capacity of RCOM. This attempt is an example
%of “variatien of solutions.”™ It is performed by the "replace_guery”
“command. We replace an cid guery ROM!capacity=300 by a new guery
%ROM!capacity=500. The argument of the command indicates
%the number of the query in the gueries 1ist above.
%When the guery is replaced, ail queries after that query are
%re-soived. That is, [1] and [0] in the above Tist are solved again.

?77-- raeplace_guery(l).

»» Emter a guery : ROMlcapacity=500.

Space = B6
P % There is stil1] space left. Now let us try to place RAM on the LSI.
%We replace "arrangement{LSI.[CPU,RCMT)}" by
Ararrangement{LSI,[CPU, ROM, RAM]}".
T¥T-- replace_query(3).
*» Enter a query : arrangement(LSI,[CPU,ROM,RAMT).

% Assign substantial RAM to a variable RAM.
777--  ram{RAM).

% Add a constraint specifying reasonable cost/performance ratio
%from the point of view of expert designers
%whefore we specify the RAM capacity. Definition of the reasonable
“ratio differs with designers and over time, and this system
%does not have such knowledge. Enter constraints using
%"ueser interaction” so that we can add alternative constraints
%on backiracking.
7?7-- user_interaction.
»» Enter comment for user interaction :
‘reasonable cost/performance ratio’
»» Enter user interactien guery(or closespass/temp_close} :
CFUIperform=100, ge({RAMlcapacity, 1003, 1e{LS1 cost 4500),
("ge" is "greater than or egual to,"
and “le” is "less than or equal to.")
*» Enter user_interaction guery(or clesefpass/temp clese)
CPU!perform=150, ge{RAM! capacity.50),le(L5I cost,7000),
*» Epter user_interaction guery{or closefpass/temp close)
pass.

% Mow make the RAM capacity 100 bytes.
777-- RAM!capacity=100.

Space = 9G
{(Figure & {4) shows the chip at this point.}
% A layout s completed. 83ut there is s5ti11 space left. Since we
%should use the L3I space efficiently, we Lry to increase
fthe RAM capacity.



?77-- replace_querviC}.
>» Enter guery : HRAM!capacity=200.
% Backtra-king 1s invoket because the replaced gqueries Fail.
%AL "user interaction,” we are asked whether we have other
“alternative constraints. We enter an alternative constraint as 9t
deccurs to us just now looking at indeterminate solutions.
** Comment of user interaction = reasonahle cost/performance ratio
3% Enter user interactien query(or closefpass/temp_close) :
CPU!perform=130,ge(RAM! capacity,200),Te(L5T1cost, 5000,
¥Backtracking eccours again and we are
%asked still mere for alternative consiraints, bul we lempouracily
%“=lose interaction because we do not have any alternatives.
wBacktracking propagates io queries before the "user_imteraction."
s* Camment of user intaraction = reasonable cost/performance ratio
»> Enter user_interaction query{or clese/pass/temp _clese) :
temp_close.

LSI = wgao11;zn,cn51fdﬂa¢,typef1si&l,cunteriéruml},rightf{ramz].center!{ruml}}
CPU = {cost/2000,1/20,w/1, typescpul,perform/ 100}
poM = {cost/1000,capacity/B00, access_time/100,1/20,w/25,

type/rami, r_capacitys500}
RaM = [cost/480,capacity/200,access_timas100,1/20,w/3, typelran?  r_capacity/240})
Space = 96

% The L5I layout system seiected another type of RAM. There is
%space Teft yet. Attempt to iscrease the RAM capacity further.
T?7-- replace_quaery(0).
»» Enter ouery : FRAMIgapacity=400.
% Backtracking oaccurs, but we do not have any alternative
%conditions. Clese interaction.
** Comment of user_interactien = reasonaple cost/performance ratio
»» Enter user_interaction query{or close/pass/temp _close) :
close.
LET = wf3ﬂ,1fzﬂ.cnstfﬂﬁﬁﬂftypeflsial,centerréraml},r1ght#{cpul},1eftf{ram4}}
LPU tcnstfaﬂﬂﬂ,IIEﬂ.wfl.typefcpuliparfunmﬁi 0}
RO cost/1000, capacity/500, access_times100,1/20. . wr25,
type/raml, r_capasity/500}
RAM = [cost/960,capacity/400, access_times200,5/20,w/4, typesramd, r_capacity/480}
Spacea = 100 -
(Figure 5 (B} shows the chip at this point.)
% We try ta improve the layout.

(Savers] gueries are omitted.)
% First, we attempted to reduce the size of the LSI to ZZmm widse
“and Z20mm long. The system 1aig out LSI using other
hwcomponents. S0 space® was generated. We tried to increase the RAM
%capacity to 500 bytes. There was siti11 space left.
WwWe also tried to wncrease the ROM to 800 bytes, But the access time
unf RAM becams 200rs. The access time must be tess than
“or cqual to 100ns.  So owe addsd a new constraint for the access lime,
Wwa did not know the detailed specificatioa relating to the
haccess time at first, but it was clear that the solution was
Runsatisfactory. We removed the unsatisfactory solution by
%¥adding a mew constraint. Mow ROM access time became 200ns also.

%We add & mew comnsiraint that the access time of ROM must be less than
%or agual to 100ms.

TTi==- le(ROM!access time, 100},

I cannot solve the following queries.

[3] user( CPUlperform=100,ge{RAM !capacity, 100}, le{Ls]llcnst, 4500);
CPU perform=150,ge{RAAM!capacity, 50). Ye{LSIlcost,7000);
CPU parform=100, ge{RAM ! capacity. 200}, 1e(L3Icost,5000) )

et



[9] usitw=2Z,LSI!1=20
% The layout failed. But, we want to know how the layout changes
%if we provide a new type of ROM. We add the new type of ROM
%as a hypothesis using the "add_hypo" command.
777--  add_hypo.
%» Enter hypethetical clause {or endg :
rom{ ROM} :- template_rom{RCM, rom0.100,3.1].
% We use a template clause for ROM to define & new ROM.
uwhose Lype, access time, capacity per space and capacity
%per cost are romd, 100ns, 2 and 1 respeclively.
»» Enter hypotheticel clause (or end) :

end.
LST = {w/22.1/20,center/{romd}, cost/4160,type/ 15131, right/{epul} left/{ramZ}}
CPU = [eost/2000,1/20.w/1,typescpul, perform/100}
ROM = {cost/600,capacity/600,access_time/100,1/20,w/10, type/rom0, r_capacity/600
RAM = :ﬂstfllzﬂ,capacity!ﬁﬂﬂ.a:cess_tim&f10ﬂ,1f20,wf?,typefram2.r_t&pa:ityfﬁﬁﬂ}
Space = B1
(Figure 5 (B) shows the chip at this point.)
% Attempt to reduce the cest of the LST.
???-- le{L5I!cost,4000).
Space = 90
{Figure § (7) shows the chip at this point.)
% Attempt to reduce ts cost further.
777-- le(LSI!cost,2800).

1 cannot solve the following gueries.

% The layout Tailed. How would it be if we reduced the size of
%the LSI.

T17-= replace_guery(11).

3y Enter query : L5I!w=22,15I!1=18,

LST = {w/22,1/18 center/{romd},cost/2752.type/1si31, rignt/{cpul},left/{ram2}}.
CPU = [eost/700,1/18 /3 typescpul  perform/100%

ROM = Jcost/B48,capacity/600,access_times100,1/18,w/12, type/roml, r_capacity/B48
RAM = [cost/1008, capacity/500,access_time/100,1/18,w/7, type/ram?, r_capacity/504
Space = 100

(Figure 5 (&) shows the chip at this point.)
Y We may try to get a far better L5I while changing conditions,

iSEvera1 queries are omitted.)
wWa tried to reduoce the cost and the size.

%a better LEI than the previous one,
“We ought to be content with the previous layout.

But we camnot get

We have completed a L3I lavout, though we did
not know the full detailed specification for the L5 at
first. CPU and ROM were laid out first on the L3I
chip, but we found that there was space left. So we
placed a RAM on the LSL Next we meodified the
constraints while looking at the intermediate
solutions to get a better LSL Modifieation was eazy
uging interactive query revision. We also wanted ta
take account of the cost’periormance ratio, but the

using a new type of ROM,

syetern did not have, such as
cost/performance ratio.

added one hypothesis to know how solutiens varied
Finally, we got a
satisfuctory LSL  If we had not used interactive
query revision, we would have had to enter many
sets of goals to the LSIchip layout system and we
might not have besn able to include knowledge the

system does not have such knowledge because it
differs with designers and over time, We inputit io
the system using "user interaction” keeping an eye on
intermediate solutions, It might be difffeult for even
an expert designer to find it without considering
the intsrmediate solutions, When o lavout failed, we

It may not beeasy to see the output of varinbles
in this example. But it can be easily enhanced by
comnecting a special ouiput subsystem, like the
incremental query system connected to the
spreadsheet interface described in [Emden 18830



20
an 20
(1} LSlchip
a0
15 II
ROM CPU
ap | |wpe=oml type = 20
cupacity = cpul
A0Nhyees
(3}15E.=53% LS1 chip
S0
4 5 !
| RAM ROM || i
ap | rpe= type = Toml | CPU a0
ramd capacity = type=
capasgity= 500bytes cpul
400byees [‘
(515E =100%  L3Ichip
22
7 0] 3
RAM [ [ROM | _
a0 |l wee= l typem romi | CPU 18
rEmI capucly = H vpe=
! cEpoetly = | B00E g ‘ | cpul
| EG0bvias | I_I
(TS.E.=90% LEI ehip

v i CPU
. ROM pe=
1~.\ !a’ cpul
(2 L3I chip
30
1 I4
EaM ROM
bype = type=roml CPU
raml capacity = type=
capacity = 300k yias cpul
100kyies
{4) 5. =08% L3I chip
22
7 10 1
RAM ROM
iype= type =Tomi CPU
rama capasty = =
Eapatity = RCOkvias ml
SOdsyues
(GS.E.=86% LSl chip
22
7 1% 3
EAM RHOM
Ve = tvpe = romil CPU
rama chpasily = | Lype=
enpagity = &00byies epul
A00byteE o
(B15.E.=100% LSl chip

5.5, =5pace-utilization Efficiency

Figure § LSI Configuration

. Conecluding remariks

In this paper we discussed the contribution of logie
programming to inference systems snd pointed out
that one phase of problem solving has been ignored,
whizh iz guite indizspensable from the viewpoint of
interaetive problem  solving,  The limitations of
current problem selving systems are obtained from
the fellowing obscrvations: (1) The cser does not
exactly know what he wants in the sclution, (2} The
uger wants to know the relation between solutions
(8] Tha user does
perform 2 function as part of the inferenze enpine.
An alternative query model called the interactive
query revision model wasintrocuced to resslve these

and r:ur'.st.rni:!i_'-'.mypuLhe':i-.w.. not

8

izsues. Using an LI chip layoui system, it was
shown how our guery model has achieved man-
machine interaction in a satisfactory manner, and
how it can solve a problemn interactively under
cooperation between the user and the computer.

We developed our gquery model on a Prolog
gyetern. Sinee thiz guery model iz general, we plan
to combine it with a powerful inference system that
can performs various inference functions suen  as
camunon sense reasoning, ambiguous reasening using
certainty factors, hypothetical reasoning, defouit
reasoning, qualitative reasoning and so on.



Acknowledgment

We wish express our thanks to Prof. M.H. van
Emden for intreducing us to this research field. And
we wish express our thanks to Hazuhire Fuehi,
Director of ICOT Eesearch Center, who provided us
with the opportunity of deing this regsearch in the
Fifth Generation Computer Systems Project at ICOT,
We would also like to thank Kuniaki Mulkai, whno
patiently taught us CIL, and the ICOT research staff.

References

[BEowen 1982] D.L.Bowen, L.M. Pereira,
F.CMNPereira and D.H.D Warren: User's puide to
DECsyetem-10 Prolog. Dept of Artificial Intellizence,
University of Edinburgh {1982),

[Bower 1985] K. .Bowen, T.Weinherg: A Meta.Level
Extension of Prolog, Technical HReport CIS-85-1,
Syracuse University {1985),

[Colmerauer 1522}  A.Colmerausr:  Prolog IL
FReference Manual and Theoretical ModelInternzal
Report, Groupe Intelligence Artificielle, Universite
d'Aix-Marseille II, (1982).

[Emden 1984] M.H.Emden: Logic as an Interaction
Language, Proc. of 3th Conf. Canadian Secc. for
Computational Studies in Intelligenece (1984),
{Emden 1983} M.II.Emden, M.Ohki, A.Takeuchi:
Spreadsheet with Incremental Queries as a User
Interface for Logic Pregramming, ICOT Technical
Heport (1985).

{Muleai 1985] EK.Mukai, H. Yasukawa: Complex
Indeterminates in Prolag and its Application to
Discourse Models, New Generation Computing, 3,
pp4dl-466 (1885,

[Makashime 1882] H.Nakashima: PrelegER -
languages features, Proc. of the First International
Logic Programming Conference, (1982),

[(Paolel D Pools, R Aleliunas, R.Goebel: Theorist: a
logical reasoning system for defaults and diagnosis,
Waterioo University (1985).

[Sergot 1983] Marek Sergot: A Query-The-User for
Logic Programming, Proe. of the European
Conference on Integrated Computing Systems, P.
Degano and E. Sandewall (eds.), MNorth Haolland,
1883,

[Shapiro 1%83a} E.Shapiro: Algorithmic Program
Debugging, The MIT Press, 1883

[Shapire 1983b] E.Shapiro: Logic Programs with
Unecertainties: A Tool for Implementing Rule-based
Systems, Proe. of LICAI'S3, 1983

[Takeuchi 1985] A Takeuchi, K.Furukawa: Partial
Evalusation of Prolag Programs and ite Application to
Meta Programming, Pree. of Logic Programming
Conference'85 (Tokyo), (1885). .



