ICOT Technical Report: TR-182

TR-182
Parallel Control Techmiques for
Dedicated Relational Database Engines

by
H. Itoh. M. Abe. C. Sakama (1COT)
and Y. Mitomo (Japan Systems Corp.)

June. 19806

CHORG. 1COT

Mita Kokusai Bldg, 21T N3} 456-3191~5

F[:D | 4-7% itz 1-Chome Telex ICOT J32984

Mmnato=ku TII:-'_nC_I.-'; 108 Japan

Insfitute for New Generation Computer Technology

Parallel Control Techniques for Dedicated Relational Database Engines

Hidenori Ttoh', Masaaki Abe”, Chiaki Sakama , Yuji Mitomo'

[ICOT Research Center
Tokye, Japan

Mav 31, 1086

Abstract
In thiz paper, we assume a back-end type reiational data base machine equipped with multiple
dedicated engines for relational database operations. Response characteristics are evaluated, and
some parallel control techniques are considered for improved response time by simulating the

database machine in executing relational datahase operations using these engines in parailel.

1 Introduction

The Fifth Generation Computer Systems(FGCS) project in Japan aims to develop a high level
knowledge information processing system including inference and knowledze base mechanisma. In
the first three-year stage (1982-84) of the project, personal sequential machine PSf was developed
from research on inference mechanism [Yokota 83] . For knowledpe hase mechanism, a back-
end type relational database machine Delts [Kakuta 85] | eompatible with logic programming
languages such as Prolog, was developed as the first step towards a kmowledge base machine.

Delta possesses the following characteristics,

1. Facts from logic programming languages are stored in relation.

2. The logical command interface with the host machines is based on relational algebra level

commands.

“lustitute for New Generation Computer Technology, Mita Kokusai Buildizg 21F, I-4-78 Mia, Misato-ku, Tokyo
108 Japan.

TJapan Systems Corporation. Nomura Duilding, 44-8 Chiyoda-ku, Tokye 102 Japao.

Jd. Assuming mass data processing, dedicated engines for relational database operations were

provided {or rapid execution of high-load vperations such as join.

4. Hierarchical memory is provided, consisting of a disk drive for mass storage, and a semicon-

ductor memory for inter-unit transfer buffer and workspace buffer volumes.

In this paper we assume a back-end type relational database machine equipped with multiple
dedicated engines {or relational database operations. Chapter 2 describes the confipuration of
the dedicated engine for the relational database operations(referred to as RE below), Chapter 3
and 4 describe the techniques of the relational database operations used in the RE, Chapter §
discusses parallel processing techniques where there are multiple RE utilized, Chapter 6 presents
the relational databuse machine model developed for research purposes and considers parallel
processing controll strategies for the RE, and Chapter 7 evaluates parailel engine utilization
to resoive relational operations through simulations using actual engine parallel operation, and
hierarchical memory system(referred to as HM below) measured and experimental data. Finally,
response characteristics and parallel control strategies to improve response are considered based

on these experimental results.

2 A Dedicated Engine for Relational Database Operations

Assuming mass data processing, operations such as join. selection and projection present high
processing loads when used on a relational database. The implementation of the join operation
in particular, which combines two relativus, Lias been cited as a major problem in relational
database research [Tanaka 84} [Kitsuregawa 84 . For the efficient execution of relational algebra
operations, it is often advantageous to sort the ohject rclations by key attributes in advance,
reducing the range of comparison aud simpliiying downstream processing © an approach which is
especially effective In join and zimilar operation.

Based on this concept. we developed the RE indicated in Figure 1 to provide increased speed
for relational algebra processing. The RE is composed of a sorter and a RAP U{Relational Algebra
Processing Unit} [Sakai 84] , where the sorter sorts the data as a stream by controlling stream
trapsfer time and overlan, and the RAPU is placed downstream of the sorter ta exernte relational
algebra operations oo the sorted streamw without deluy, Here the data transfer speed for the RE
13 3Mbyte [zec.

A pipelined Z-way merge aort agorithm iz used for serting [Todd 78] . When the number of

Engine

Controdler|

| w4 1/0
| Controi ler |

l F #

- P, M,

-

e

Sarter

H i

=3

! ! B 4k e g e | o e e e s s e i |

5 e sl e e e e e

|]

I I
Lu-uEHoRY | [-meroay |
| |

T —

RAPY

= e

=
=)
-3
L]
[n]

Fam— . P
%]
£a
=3
b |

HH 170
Cantral lar

— e r—

By ¢ ilh Proesssor of Sortes M; : Memory Tnil of ith Proczzaar

EAPU : Relaticnel Algedra Processing Unil ZM : Eierarchical Memory

Figure 1 RE Hardware configuration

1

records to be sorted is NV, this aleorithm can reduce the sorting order O(N x log: V) to O(N).
The sorter is composed of 12 levels of processors, each with dedicated memory space. The volume

of memory size, size{M;), increases with each higher level as :

size{M;) = 3lbytes

size(M) = 2{aize(M_;))

mize{ M- = 84K bytes

This means that the sorter is able to sort up to 84K byics of data at one time. Nmae, the

maximum number of records the sorter is able to process, 13 oiven by the following equation :

Nmoz = min(2Y% [stze{My2) [L)

where L is the record length of relation R. (maz(L) = 16bytes)

The RAPU consists of two memories{U-memory aud L-wemory) for storing sorted data, and a
processor{comparator) which selects cutput data satiziying the condition. Each of these memories
is 64 Kbytes in size. In addition to the above RAPU and sorter, the RE includes an I/O controlier

for relation storage in HM, and an engine controller for overall control operations,

3 Relational Algebra Procesging Techniques

This Chapter discusses the techniques for relational algebra processing used in the RE.

3.1 Join aperation

When B, and R- are relations with length [, and [, #-join on attoibutes Ay, A; of each relation

is denoted by

ar simply

where Ry is the resultant relation with jength I5,
If the two relation record counts are N; and Na, then a join operation without sorting is
O{Ny x Nz), but a join operation preceded by a sort operation ean executed in O(N; + N:).
Expressing the sorting of a relation R with length [as S{R(l}},or simply S{R), and the

resultant relation as R, the join operation is executed in the following steps :

stepl: Load relation R, into the sorter.
step2: Perform S{R,) in the sarter,
stepd: Store Rj into RAPU U-memory.
stepd: Load relation R, into the sorter.
steph: Perform S{R;) in the sorter.
stepB: Store Rz into RAPU L-memaory.

stepT: Once the first record of Rz has begun to be stored into the L-memory, the val{d:) of
that record, and the val{A;) of the first record of Ry stored in the U-memory are compared
by the processor. (Here, val{ A;) express the vaiue of 4;.) Records satisfying the condition
val(A, }fvai{ A1), the tuples are combined, or else the required attributes are picked up and
ousput. The above procedure iz repeated in FIFO arder for each record in the U- and

L-memaories.

3.2 Selection operation

It is possible to interpret the selection operation as a join operation between the value io the
condition (eguivalent to relation & of s single attribute), and the selection object relation Eo,

with no output of Ry records. Processing is the same as for the join operation.

4 Mass Data Processing Technigues

This Chapter discueses the processing techniques used for mass data exceeding 64K bytes in
length.
4.1 Sort operation for mass data

Where the relation with length [is 64 Kbytes < | < 128 Kbytes, the initial 64K bytes of data are

sorted by the sorter, and then stored into the RAPU U-memory. The re maining (! — 64 K bytes

of data are sorted by the sorter, and then stored into the RAPU L-memory. The records of the
U- and L-memories are then merged in the comparator to sort the entire data set,

Where § > 128K bytcs, sorting s accomplizshed as {ollows -

stepl: The data readied in the HM buffer BU F0 is received from the HM in 64K bytes multiplexed
blocks, and sorted by the sorter in the same 64K byfes units. The output is merzed by the

RAPW as 64 x 2 Kbytes units, with output alternately to BUF1 and BI7 F2.

atepS(§ =12.3,..., [loga{l | 128K bytes)] — 1): At the (5 —1)th step, the data sorted in 64 x 2°=!
Hbytes units is stored in buffers BUF1 and BIUF2. The engine receives a pair of 64 x 2*~!
Kbytes data blocks from BU F1 and BIUF2, merges them in the RAPU to sort 64 x 2° Kbytes,

and then outputs them in enits of that size to buffers BUF2 and BUF4, alternately,

step([loga(t [128K bytes)]): The data stored in the two buffers in the preceding step are merged,
with output to BUFS, which is the normal cutput buffer.

An exampie of processing flow for 64 x 5 Kbytes is indicated in Figure 2.
The total buffer capacity required for sorting a data with length [is, input buffer BIFFO,

working buffers BUF1 and BUF? (BUF2 and BU F4),and cutput buffer BUFS, that is 3[Kbytes
m all.

4.2 Join operation for mass data

Where both relations exceed 64K bytes in leagth, the following two techniques are possible.
{a) Both relations are sorted into 64 A'bytes units, and join processing is exeeuted in round-

robin patrings of the 64 K lytes units with the following algarithm.

for i =1 to |, [64K bytes]
begin
S1; 15 mmput from the HM. sorted in the sorter, and stored in the RAPU U-memory.
for 7 =11to [ls/G4Fbytes
begin
S-; 15 topue from the HM, sorted in the sorter,
and stored in the RAPU L-memnory, Qoee the frst record has

begun to be stored. U- and L-memories records are compared in

« First Sien

D4 K bytes
[—
BUFQ | : s I
l'-.-'-'-—-.-- T |
= - [v
S ~l 53 '1' sorter | |
= - angine
T . ' ey L
R | S, | S I e |
i
R | S., | Say k—

« Second Sien

BFt | S., | Ses
8UF2 FEH E—-'.: }_
BUFD s l —x engine
AapU |
HM I .
BUFS | Sugay 1‘“—|
BFE | Seamm _1"‘_[
Third Staa
[
. T
WFEE | Sq4a, —
i i _
WL [s — | i i
HM |k engine
- [! L omapu | 1
BFY | S P i |
U S y2mucera P ‘

Figure 2 Execution example for 64 x §Abytes sort operation

-1

FIFQ order, and those fulfilling the condition are output.
end

end

In this algorithm, 5;, represents the j-th sub-relation of relation B (¢ = 1, 2}, which is divided
into G4 K hytes units.

(b) Both relations are sorted all over at first, then joined in the RAPU through comparison.

In the above techniques, (a) is O(N7?) whereas (b) is O(N). Figure 2 indicates comparizons of
these two techniques in actual implementation processing, where the both relations record sizes
were 160ytes. As is apparent from the Agure, (a) offers superior efficiency when hath relations are
relatively short, but above about 380K bytes, (b} is more efficient. And in (a), if the length of one
relation l; 1s 64 Kbytes or less, [; is sorted and stored into the RAPU U-memeory, after which the
other relation 7 is sorted in 64 Kbytes units, stored into the RAPU L-memory, while comparing
with {; and outpmt.

For this reason, when join operation is executed, ordering of the sequence of operation, such
as placing selection operation frst, in order to reduce at least one relation to 64K bytea or less
enables significant efficiency improvement. The evaluations of the join operations presented below

were all performed using technigque {a).

Jegc
—— (a}
307 ——a—— (h)
2.0 ¢ /
1‘[] —_
._// h=t
64 128 258 512 Hbyte

Figure 3 Comparisons of two techniques in join operation

B

4.3 Unit performance

The performances for sort and join operations in the RE actually implemented are shown in
Figure 4. For these trails, object relations were stored at random in the HM, and all record sizes
were 1Gbytes. Thmes were measured from the RE command interpretation to response generation,
using an RE time measurement module. Figure 4 indicates that in the sort operation the doubling
of the data volume intervals at each level is due to the sort operation described in Section 4.1,
whereas the increase in the join operation in 64 A bytes units is due to the fixation of one data set
to 64K bytes while the other mass data set is sorted in 64 Kbytes units. In both cases, O{N) was

assured per engine processing unit.

sec
Sort
2.0
1..!]
:v""'/f
L
128 256 512 1024 [Kbyte
fes
Join
".-}_4 + i
l-—"-"--'-.
0.3 t —
--'—"'"-.
R R !1 54}{&'@':!’3
U - I .'..—--'-"-.I
—— Iy ba [y 128K bytes
Q.17
64 128 258 512 L Kbyte

Figure 4 Unit performance

5 Data Division Relational Algebra Processing Technigues

This Chapter discusses the parallel execution techniques by which multiple RE are used to

pxecute relational database operations in paraliel

5.1 Data division sart operation

When mass data is sorted, major decreases in execution time can be achieved by first dividing
the data into a number of data serments egual to the number of inactive engines, with each
segment then being assigned to an engine to be executed in parallel. This procedure is referred

to as the dote division sort operction, nud is executed in the following steps :

stepl: Where m be the number of wactive engines and { be the lensth of the data to be sorted,
then the data is divided into m data segments and each is stored into one of m buffers. The

size of each bufer 12 {/m.

step?: The data segments in the buffers created in atepi are assigned to m engines respectively,

then sorting is executed in parallel, with the results output to the m buffers.

step3: Sorted data serments are combined twe-at-a-time into P pairs, followed by merging on P
engines, which outputs P sorted data segments. This procedure is repeated until data length
[is sorted.

In general, when data of lenpth | is sorted w parallel by m engines, the required HM bufier
size is 3 x [, the same us for o sinrle engine. The number of engines operating at each merge level
is half the number of the preceding level, aud input dats is twice the quantity of the preceding

level. This situation i= lndicated in Figure 3, whers the operating cogines are shaded,

Daiz division inic 4 parts

engine

Figure 5 Data division sort operation

|

T

time

5.2 Data division join operation

For two relations with lengths /) and l3, the join operation {y w3 can be executed in parallel

by m engines by dividing one of the relations into m data segments, and Lifm 2[5 i3 exceuted by

a single engine. This procedure is referred to as the data divisson join operafion and is executed

in the following steps :

stepl: The relation with length /) is divided into m data segments, and each data segment is

stored into one of m HM buffers. The data leagth of each buffer is I/m.
step2: The join operation [y /m b |2 i3 executed in parallel by m engines.

atep3: The execution results from each engine are output to the output buffer.

5.2 Data division subcommand tree

The data division sort and data division join operations are converted into snbeommands with
tree structures and then executed. We call these trees data division subcornmend tree. The data
division subcommand tree for data divided into m data segments is abbreviated as m-DDST or
simply DDST. The j-th node at depth ¢ is expressed as D;;.

For example of Figure 2, a binary tree is formed by the 4-DDST of the sort operaticn
S(8Mbytes), as indicated below :

Nodes D3y ~ Djq correspond to S(2Mbytes), and nodes Day and Das carrespond to the merge
processing for the already-sorted pairs of 2Mbytes data bundles. Dy corresponds to the merge

processing for the already-sorted pair of 4Afbytes data bundles.

i1

The 4-DDST of the join o.eration) w0 [; is given by the following tree.

Dy, is 5 dummy oode for syechronization, and Day ~ [., correspond te /4 = [; processing.
The m-DDST aperation is executed from leaf to root, and parallel processiog of nodes at equal
depths is possiple. Execution at a pode i3 oot initisted until the processing is complete for all
podes at levels above that node. In general, m-DDST depth for the sort operation is logzm and

for the join operation is 1.

6 Helational Database Machine Model

The relational database machine taken as the basis for this paper is a back-end type for a
host machine. This Chapter discusses the internal execution control mechanism of the database

machine in responce to the host machine inquiries, and engine parallel control strategies.

6.1 HRelational database machine control mode]

The conceptual diagram of the relational database machine is indicated in Figure 6. It consists
of the interface unit, contrel unit, schedule umt, HM control unit, and m engines. The interface
unit, the control unit and the HM control unit assume to be a single CPU, with engines attached
processors. In addition, the HM control unit will include an external disk drive (HM disk] for

mass storage of relations. The individual units are described below.
1. Interface Unit (IU}

The 1U receives a query command from the Lost mackiue, aud sends it to the control unit
quene. If the [U receives the proressing complete notice for that command {rom the control
uniz, the [U directs the output of resuitant relalions to the HM, and then outputs them from

the HM to the hest machine.

(o
b=

Host Machine

]

«]N

HM

] B4 Concrailer

Schequle
Unit

Figure 8

2. Control Unit (CU)

The CU takes commands from the queue in FIFO order,
them into relational algebra internal commands. It outputs these commands to the schedule
unit queue to instruct the staging of object. relations from the HM disk to buffer memory, and.
the HM to prepare the output relation buffer. If all processing complete notices are received

from the schedule unit, then a processing eomplete notice is sent to the IU.
3. Schedule Unit (ST)

The ST takes internal commands from the queus in
coatrol strategy. By mornitoring the state of active aod jnactive sngines, the 5U determines
whether to divide data or not for the internai

is requred, it determines the number of segments for each command, directs the HM to

Homnmy

7 ! i Burier

[

|
|
|

—_— dacs dow

Engire 1|

Wy
3

n

13

Bleck diagram of relational database machine

command taken from the queue. If division

controi Dow

interpreta them, and converts

accordance with the engine parallel

divide the data, and cooverts data into DDST. The 5T determines which selected commands
and execution-enabled nodes will be assigped In what sequepce to which engines. It sends
execution directions to the assigned engines accordingly. If the SU receives the root processine

completion notice for the internal command from an engine, it passes the notice on to the

CU.

4. RE

The engines wxecute the internal commands and the nodes in DDST under direction of the

5U. Durng execution, [/Q inquines for the object relaticns and the results are sent to the
HML

. HM Control Unit

&n

The HM control unit handles the staping of object relations from the disk to the buffer
space, divizsion processing, and preparing buffer memory for resultant relations. The replace-
meat algerithm between the disk and the bufler memory utilizes the LRU {Least Recently
Used) algorithm [Kaouth 73]

6.2 Engine parallel control strategy

We consider three engine control strategies for the schedule unit as discussed below. At a

given time t, the number of inactive eagine is my, apd the total pember of engines s mg.

4. Data nen-division / allacation

All commands are executed by one engine each, without data division. mg commands are

taken from the 35U gueue on an FIFO basis, and perfarmed by mg engines in parailel.

b. Data m, division [allocation

At time t, least recent command € is removed from the SU queue, converted to m-DDST,

allocated to my engines, and parailei-processed in nodes corresponding to my-DDST leaves.
e. Data my division [/ allocation

The same a3 §. above, axesot that £ is converted to mp=DDST instead.

14

8.2 BStaging timing
The HM control unit functions include the staging of object data from the disk drve to the

buffer memory, and the allocation of data to enmnes. Two staging timings are considered :

{1) Allocation to engines after staging to buffer memory completed.
(i} Allocation to engines prior to staging to buffer memory.
The former method gives priority to the engines, aiming at increased engine utilization effi-

clency, while the latter takes increased memory utilization efficiency as its goal.

6.4 Objective functions
The following objective functions are considered -
1. Average response time

The average time interval from the arrival of a query command © from the host machine at

the TU until the response is output.
2. Average engine availability ratio

The percentage of time that my engines are operating.
3. Averzge HM memory utilization volume

Average memory volume needed in the HM for engine command execution.

T Ewaluations and Copsiderations

This Chapter discusses the response characteristics and multiple-engine efects for parallel

engine processing on the above-described relational database machine.

7.1 Multiple-engine effect

The multiple-engine effects for join and sort operations are indicated in Figure 7. The ac-

tual results are utilized for up to 4 engines, while results for § ~ 16 engines were determined

experimentally through processing described above in Sections 5.1 and 5.2. The processing time

indicated is the processing time of both RE and HM, and does oot include overhead for the Iu,

CU, or SU. It is clear from the graph that there is a major effect for up to 8 engines, after which

the effect drops off quickly..
Jez

200 ¢

200 ¢

i.m-‘\

wmor L= .

Y | 16M
_ ¢ . 16M
1.“‘_:1_"‘-—-—___‘_ A ‘\\-\.:\"‘%- | BAM
_ - — iM ——— =AM
12 4 8 "16 engine 12 4 8 16 engine
Sort Join
S(R()) [:4M ~ 32Mbytes lyosaly [, : LMbyte

Figure 7

ly 14 M ~ 3ZMbytes

Multiple-engine affect

16

7.2 Simulation analysis

A simulation of the above-described relational database machine yielded the response charac-
teristics presented below. The simulation parameters are a3 foilows.

1. Resource parameters

= The IU, CU, SU and HM control unit are located on a single CPU with a SMIPS
proceasing capacity. The engines are attached processors.

o There are 4 engines,
= HM buffer memory size is 64Mbytes.

o The trapsfer speed between the HM memory and the engines, and between the HM disk
and the HM memory, is 2Mbyte sec.

2. Processing time parameters

The processing time below are the actual time measured on Delta.
s Execution time for a relational algebra operation on one engine.

= Parallel execution time for a relational algebra operation on 4 engines.

= Staging time for an object relation from the HM disk to the HM bufier memory, relation

division time, and time to prepare a buffer for the resultant relation.

The processing time below are estimated from actual measured tiwe, or from dynamic step

counts,

* Processing and control strategy determination time in the CU and IU.
« HM disk I/0O time.
Other processing time i3 ignored,
3. Host machine query command parameters
» Command arrival is assumed to be Poiszon-arrival.
= Object relations are of random lengths from 1 ~ 16Mbytea,
4. Simulation evaluation
Under the above conditions, the following stmulativus were made.
« Simulation where sort, join and selection operations arrived with equal frequency.

» Simulation where only sort nperations, or only juin operations were received.

= As above, with altered staging timing.

17

7.3 Observations

1.

=]

The above thres simulation results are dizeuszed helow in detail,

Traffic density

Figure 8 indicates where sort, join and selection commands arrive with equal frequency.
From the response time characteristies, it is clear that there is a trafic width where each of
the strategies 1s advantageous. That is, ¢ 1s best for low traffic, # for intermediate levels, and
a for high traffic densities. The results indicate the need for dynamic alteration of strategy

in accordance with operation type, reneration characteristies and traffic load.

. Qperation type

Figure 2 indicates that for the sort operation, sparse traffic results in the response time
ordering ¢, b, 4, from best to warst, reflecting the order in which data division increases. With
increasing trafic density, the order reverses, and b approaches a. As described in Section 5.1,
the sort operation uses only haif the number of engines at a given step as the number in the
previous step, so that for high trafic densities, § is always allocated to a single engine. At
a certain threshold, ¢ shows a jump in response time, this is because the operations such as
deep command tree processing which utilize the results of the above levels, when distribution

increases, memory processing load increases accordingly.

For the join operation, the response time is best in order of ¢, &, a, for the same reasons as
sort’s case, As traffic density increases, the order changes to a, ¢, b. This is because the join
operation command tree depth is 1 as deseribed in Section 5.2, so that all engines are freed
at once in dummy node. This means static data division ¢, is more efficient than dynamic
data division b, considering the scheduline overhead. The difference between ¢ and g is the

division overhead.

. Memory [/ Engtoe priority

Whether the engines or the memory are given priority as system resources depends on the
balance of the two in a system involved. It is also conceivable to schedule by operation type.
Fizure 3 indicates memory-priority scheduling would seem to offer hicher eficiency for deep
commend tree processing, such as zort operaticn, and engine-priority seheduling for shallow

command tree processing, such as join operation.

18

e ba

2 2

A\

(#2fqpy) srunjoa wolieziyn I 9Brraay

' ' o
8 e
—

(228) swyy ssuodesy afetany

tio (/10min)

50

Average arrival ra

)

50
Average arrival matie {/10mis

Response characteristics (1)

oo
£

o

=

100 i
50

(35) epres Lpae smiBus adeaany

50
Average arrival ratio (/10min)

19

11)

S

(i}

30

40
Aversge amival miis (/ 10rmin)

&0-

w
=]

a0
[

40
dversge amival regia [10men)

stamnp timing

km

m
N
VRS

e - ——

n
20

8 8 8 g g 5
“u:" sy ssuodess sBeiaay T__.._..._E__.“_E.:,_:_., HolpeR| i pygg eBersay {22) oned &pppae 20 Bua nivanay
(=] .._lu.. gt " - 1” L W
" E " | = B u o)
= o i *
_— i T {
= ot [
o i 28 i
-_— i Mo i \ F
[P— -5 T - - o __.
—_— - . o
— L
—— / g w / . - m__ _./7_.___.
H __._ : =5 M. T
e T L " = ‘ DY
e LY U L
: S i _. m., VA
" - L b
A A 3 a3 R Y
EA /f f M
; h, /
] //.f.._..
H 4 v L.:I p— m e
g 8 .8 g q 3 g g 3 2

(226} wutjy sanodeat sBeiaay {182y) sumjon aoperlin Jyq eBeiaay (52) opes Appae augfus sdaasay

i0

i

=l i [lemi'n',‘

Join

Zge

AYErS

=n
-

eristics {2}

20

ry

Hesponse charac

ia

6
ure 4

g

40

Sart

8 Conelusion

There have been many discussions on improving processing efficiency for relational algebra
operations in relational database machines, such as scheduling strategies for operation execution
sequences and so on {Smith 75

Here we showed by simulations that when processing massive data velumes in parallel, other
factors such as traffic density, operation type, physical resourse memory [engine priority allo-
cation and relation size must be reflected 1 vanous contrel strategies. In this simulation we
assumed a relational database machine based on Delta, but we think the simulation results can
be applied to a general back-end type database machine with dedicated engines for relational
algebra processing.

Future investigation is planned for the parallel control techniques for dedicated unification

engines in the knowledge base machine that is to be developed in the second four-year stage
(1984-87) of the project [Yokota 85| .

Acknowledgments

The authors wish to express the appreciaticn to the cooperation of Toshiba and Hitach Ltd,,

and the manay personnel invalved for their assistance in the development and evaluation of Delta.

References

[Yokota 83] Yokota, M., Yamamoto, A., Taki, K., Nishikaws, H., and Uchida, S., " The Design and
Implementation of Personal Sequential Inference Machine: PST", New Generation Computing,
vol.l, no.2, pp.125-144, 1983.

[Kakuta 85] Kakuta, T., Miyazaki, N., Shibayama, 5., Yokota, H., and Murakami, ., “The
Desien and Implementation of Relational Database Machine Delta”, Proceedings of the Inter-
national Workshop on Datolose Macfidnes 'S5, March 1985,

[Tanaka 54| Tanaka, Y., "MPDC: Massive Parallel Architecture for Very Large Databaze”™, Fro-

ceeding of International Conference of Fijth Generation Computer Systems 1084, pp.113-137,
Movember 1984.

[Tanaka 84] Tanaka, Y., "MPDC: Massive Parallel Architecture for Very Large Database”, Pro-
ceeding of International Conference of Fifth Generation Computer Systems 188, pp.113-137,

November 1984,

[Kitsuregawa 84] Kitsurcgawa, M., et. al, = Architecture and Performance of Relational Algebra
:['&-‘I:-3|.1"_.|:|_'-|]'_'L:.'II fn:._::rn.ﬂh'anﬂf C{_?'r.l.f:n:ncﬂ on Paralle! F:rnv.ttsn.ﬂg', 1084,

[Sakai 84] Sakai, H., Iwata, K.. Kamiya, 5., Abe, M., Shibayama, 5., and Murakami, K., "Design
and Implementation of the Relational Database Engine”, Proceeding of International confer-

ence of Fifth Generation Computer Systemas 1984, pp.419-426, November 1984,

[Todd 78] Todd. S., " Algorithm and Hardware for a Merge Sort Using Multipie Processors”, IBM

Journal of Research and Development, 22 1978,

[Kauth 73] Kouth, D. E., Pundamental Algorithm, The Art of Computer Programming, vol.1,
1973,

{Smith 75] Smith.J.M.,Charg, P.Y., Optimizing the Performance of a Refational Algebra Database

Interface, Communications of the ACM, ppi68-372, October 1975,

[Yokota 85] Yokota, H., and Itoh, H. , "A Mode! and Architecture for a Relational Knowledge
Baze™ JOOT Techntcal Report No. TR-144,1085.

22

