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Abstraet

A refinement of Tamaki-Sato’s transformation of Prolog programs is presented. When
an initial definite clause program S, is transformed in sequence Sg, 5y, ..., Sy, We attach
a counter of natural number to each definite clause. Roughly speaking, when exzecution
of a ground atom in the minimum steps in 5; uses some definite clause with counter 7, it
guarantees that the minimum pumber of execution steps in 5; is 7 — 1 less than that in
Sp. Using values of counters, we can not only give the condition for folding again but also
characterize the class of improved execution, called rank-consistent proof, more precisely.
We prove that 5y and Sp are still equivalent in the sense of the minimum Herbrand model
semantics in our framework. Then we show several further refinements as well as a slightly
relaxed coodition for safe use of goal replacement rufe. We also discuza the source of the
reduction of computiation steps by program transformation.
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1. Introduction

In this paper, we present a refinement of Tamalki-Sato’s transformation of Prolog
programs [11]. When an initial definite clanse program 5, is transformed in sequence
Sa,51,..., 5y vsing Tamald-Sato’s transformation, each definite clause in S; is either marked
*faldable” or unmarked, which plays an important role to judge whether folding is applicable
or not. Houghly speaking, when execution of a ground atom in the minimum stepr in 5;
uses some definite clause marked *foldable®, it guaranteea that the minimum number of
execution steps in S; is less than that in Sp. Instead of the “"foldable™ marks, we attach
a counter of natural number to each definite clause. Roughly speaking, when execution
of a ground atom in the minimum steps in 5; uses some definite clause with counter -, it
guarantees that the minimum number of execution steps in §; is 7~ 1 less than that in Sp.
By using values of counters, we can not only give the condition for folding again but also
characterize the clase of improved execution, called rank-consistent proofs, more precisely.
We prove that 55 and Sy are still equivalent in the sense of the minimum Herbrand model
semantics in our framework. Then we show several further refinements as well as a slightly
relaxed condition for safe use of goal replacement rule. We alse discuss the sources of the
reduction of compuattion steps by program transformation.

This paper is organized as follows. Firet in Section 2, we give an intuitive explanation
of our basic method with least complication using a simple example. Then, we prove its
correctness in Section 3. In Section 4, we show [urther refinements of the basic framework.
Then, in Section 5, we show geal replacement rule and the condition whose applications are
safe even il combined with the wofold/fold transformation. Lastly in Section 6, we point out
that we can only expect Ofn) reduction of steps in the basic unfeld/fold framework discuss
the sources of the reduction of computation steps by program transformation.

In the following, we assume familiarity with the basic terminologies of first order logic
such as term, atom (atomic formula or goal in this paper), substitution, most general unifier
(m.g.u.) and o an. We also aszume knowledge of the semantics of Prolog such as Herbrand
interpretation: and minimum Herbrand models. (see [1],{3],[4],[9]). We follow the syntax
of DEC-10 Prolog [10]. Variables appearing in the body and not in the head of a definite
clause are called jnterpal variables. As syntactical variables, we use X, Y, Z for variables,
XY for sequences of variables, #,¢ for terms and A, B for atoms, possibly with primes and
subscripts. In addition, we use o, r for substitutions.

2. Basic Unfold/rold Transformation with Counters
2.1. Transformatlon Process

The entire process of our transformation proceed:s in the completely zame way as
Tamaki-5ato’s transformation [11] as follows.

Py :=the initia! definite clause program ; Do i = {};
set each counter of definite clause in Py to 1;
for i := ! to arbitrary JV
apply any of the transformation rules to obtain P and D; from Pi—y and D;_;

Figure 2.1. Transformatlon Process



Example 2.1. Before starting, the initial definite clause program is given, e.g.,
Pg : Cy [1]. append([ | M,M).
C; [1]. append([X|L],M,[X|N]) :- append(L M ,N].
The numerals in || denote the values of the counters. Dy is initialized to {}. This example
is used to illustrate the rules of trapsformaticn.

2.2. Basic Transformation Hules

The basic part of the transformation system consists of three rules, i.e., definition,
unfolding and folding.

Definition ; Let € be a defipite clause of the form (m2>0)
p(}{h]{;,. 5 .,J{n} - J!'u,.lﬂkz,. . ...Iﬁl.rn..
where
(a) pis an arbitrary predicate appearing neither in Py norin D;_y,
(b) X;,Xz,..., X, are distinct fresh variables and
{c) predicates of atoms in A;, Az, ..., A all appear in F.

Then let P; be Piwq |J{C} and D; te D;— J{C}. Let C have counter 1.

The predicates introduced by the definition rule are called new predicates, while those
in Fy are called old predicates.

Example 2.2.1. Suppose we have defined a relation adjscent without enough consideration
of efficiency as follows,

Cs [1]. adjzeent(,Y,LXYN) - append(L,[X,Y],LXY),append(LXY,N,LXYN).
Then Py=={C;,Cz,Ca} and D,={Cs}.

Unfolding : Let C be a definite clause in P;_, with counter 4, A be an atom in the body
and Cy,Cs, ..., Cy be all the definite clauses in P;_; whose heads are uniflable with A, say
by m.g.u.'s 7,,03,...,0x, and have counters 7y, 73, ..., Te- Let C be the result of replacing
o{A) in e;(C) with the body of a{{C;). Then let P, be (Pi—y — {CHIU{C},C%, .., Ci}
and D; be D;—;. Let each CY, have counter «; 4 o unless it is already in P;—, with lower
eounter,

Exzample 2.2.2. When Cj is unfolded at its first atom append(L,[X,Y], LXY') in the body,
we obtain Py = {C;,C3,Cy, Cs} and D;={C;} where

Cy [2]. adjacent(X, Y LXYN) :- append{[X,Y],N,LXYN).

Cs [2]. adjacent(¥X,¥ LXYN) :- append(L,[X,Y] LXY),append([Z|LXY],N,LXYN).
Then by unfolding C4 three times and Cs once, we obtain Pg = {C,,C3,Ce,Cr} and
Dg={C5} where

Ce [57. adjacent[X,Y,X,Y|L]).

Cr [3]. adjacent(X.Y,{ZILXYN]) - append(L,[X,Y],LXY),eppend(LXY,N,LXYN).

Folding : Let € be a definite clause in P;—; of the form
A= AyAz AR

with counter 7 and Cya14.s be a definite clause of the form
B - By,Bg,.. ., Bum.

such that

(a) Craider i3 3 definite clause in D;—; (with counter 1).

(b) 1<7.



Suppose there is a substitution ¢ and a subset {A;,, As,, ..., A} of the body of € such

that the following conditions held.

[-1-] "4'.! - H{B;} for .f =12,...,m,

(b) o substitutes distinct variables for the internal variables of Cyy4., and moreover those
variables occur neither in A nor in {4;, 43,.. ., 4.} — {4, Ay, .. oA} and

[e) m+1l<n+1.

Then let F; be (Pi—; —{C}HU{C"} and D; be D,—; where C' is a definite clause with head

A and body ({As, Az, .-, As} — {4, A4y, - A HU{e(B)}. Let €' have counter 7 — 1.

Ezample 2.2.3. By folding the body of 7 by Cs, we obtain Pr={C,,C3,Cs, C4} and
D7={C;} where

C% [2]. adjacent(X,Y,[Z|L]) :- adjacent(3(,Y,L).
Mote that the counter was decremented by 1.

Though we do not prove it in detail, it is eazy to see the following fact. Suppose that
a definite clause in P;|J D; is of the form
A - ""‘-l; ..ﬁ..gJ S, ﬁ..,.
and with counter 7. Then a4 =1 holds for unit clanses, n-~~ > 1 holds for other definite
clauses and 720 holds for all definite clauses. (It is trivial for Py |) Dy. For the definition
rule, n =721, since 7 = 1. For the unfolding rule, the value 4 4 of C is incremented by
the value n; -+ 7; — 1 of C,. For the folding rule, (n —m L 1)+ (v —1) > 1.)

2.2. Equivalenee Preservation Theorem

The definite clause program Pp given first is called the initial prosram. When the
transformation process is stopped at some NN, the program is transformed to definite clause
program Py and several definitions are accumulated in Dy. Then Py is called the fnal
program and Dy is called the definition set of the transformation process, sometimes denoted
simply by D.

Example 2.3. If we stop the transformation process at step 8, we reach the final program
and the definition set
FPg : C; [11. append(] |, M, M).
Ca [1]. append(IXIL]M,XIN]) - append(L,M,N).
Ce [6]. adjacent(3Y,X YIL]).
C5 [2]. adjacent(2(,Y,[Z|L]) :- adjacent(X,Y,L).
D : Cq 1] adjacent(X,¥,LXYN) :- append(L,[X,Y],LXY)},append(LXY N,LXYN).

The most important property to be praved in Section 3 is the following theorem.
Theorem 2.3, The minimum Herbrand model of Py|J D is identical to that of Py

But in the following discussion, it is convenient to assume that all definitions in D is
given from the beginning, To pretend it, for any transfermation sequence (P, Do), (P, D1),.. .,
(FPa, Dw), & sequence 5p, §y,. .., Sy is defined by §;="F; |J(D—D,) and called virtual trans-
formation sequence. (This is also due to Tamaki and Sate [11).) In particular Sy=F, |JD
and Sy =Ppy. Sioce the definition ruls is the identity transformation in the virtual trans-
fermaticn sequence, it is ignored when treating the virtual transformation zequence.

3. Preservation of Equivalence



Io this section, after introducing basic notions in 3.1. and 3.2, we prove th2 equivaience
preservation theorem along the same line as Tamala and Sate [11].

3.1. Proof, Rank and Rank-Ordering of Ground Atom

Let S be a definite elause program. A proof tree, or simply proof, of a ground atom A
in 5 is a tree T labelled with ground atoms defined as follows.

(a) T is a proof of Ain § when it is a tree consisting of a single node labelled with A, which
is a ground instance of the head of a unit clause in §. (The unit clause is said to be
used at the root.)

(b) Let Ty, Ta, ..., Ten be immediate subtrees of T and Ay, Ag, ..., Ay be their root labels.
T is a praof of A in S when the root label of T is A, "A :- Ay, A3,...,Am" i3 3 ground
instance of some definite clavse in § and Ty, Te,..., Tm are proofs of 4y, Ag, ..., Am IR
S, respectively. (The definite clause is said to be used at the root and Ty, T3, .., Ty are
called immediate subproofs of T.)

The et of all ground atoms that have proofs in 5 is exactly the minimum Herbrand
model of §. We denote it by M(5).

Example 3.1.1. Let append and adjacent be the predicates defined by So = Fo|JD in
Example 2.2.1-2.2.3, Then adjacent(2,3,[1,2,3,4]) iz in M(5;) and

adjacert(2,3,(1,2,3,4])
append[[‘-l.[‘s’ﬁ&.[i.ﬂﬁll EFPEﬂdEI;r243].[4];11.2-344!}
append(| L[2t3!-12=3JJ nppeﬂd{EEI.ELHL[EJ-*]}
*PPeﬂd{F;IrH],[E.i]l
nppﬂnd[E J,[4,[4])
is a proof in Sp.

Let A be a ground atom in M(S;). The rank of A is defined by the minimum size of
proof of A in S, and dencted by renk(A). Note that rank(4)>1.

Example 3.1.2. As was shown in the example above, the rank of adjecent{2,3,(1,2,3,4]) is
:i’. The rank of adjacent(2,3,[2,3,4]) is 5, because the following tree is the minimum proof
" adjacent(2,3,(2,3,4])
append(] | ,[2 ,:; 1,12,3]) append{?E,E], [4},12,3,4])
append[[ﬂl-]#l.[i!-ﬁﬂ
k
append(] |, [4],(4])

The rank ordering is a well-founded ordering < on the set of ground atoms M(Sp). Let
A and B be two ground stoms in M(Ss). A € B when rank(A) < ronk(B). One might
think that this definition is abuse of notation. This is for the generalizations in Section 4.

Example 3.1.3. adjacent(2,3,]2,3,4]) < adjacent(2, 3,1, 2,3, 4]) holds, because
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rank{adjacent(2,3,2,3,4])) = 5 < 7 = rank(adjacent(2,3,]1,2,3,4])).
3.2. Rank-Consistent Proof

Let & be a definite clause program. A proof T of a ground atom A in 5; is said to be
rank-consistent when it satisfies either of the following conditions.

(a) T iz a rank-consistent proof of A in 5; when it is a proof consisting of a single node
labelled with a ground atom A, which is an instance of a unit clause in 5,.

(b} Let T1,Ts,...,Tm be immediate subproofs of T, Ay, Aa, ..., Am be their roct labels and
C be the definite clanse used at the root of T with counter 4. T iz a rank-consistent
proof of A in S; when
(i) ranki{A) = renk(A,) + renk{Adz) + - + rank(A.) + 1,

(i) A2 Ay forall k (1<k<m) and
(i) Ty, Tz, ..., Ty are rank-conzistent proofs of Ay, Az, ... Am, respectively.
Note that the condition (ii) is redundant, becaunse
rank{A) > rank(A,)4rank{Aa)- - Lrank(A.)4y
2 rank{Ag)=+=(n — 1}
> rank(A.).
This additional condition is for the generalizations in Section 4.

Example 3.2. Let 5, be the definite clause program in Example 2.3, Then

adjacent(2,3,1,2,3 4])
i
adjacent{2,3,(2,3 4])
is a rank-consistent proof in Sa, since
rank(adjacent{2,3[1,2,34])) =7 = 5-1+2 = rank({adjacent(2,3,(2,3,4])) + 2.

2.2. Proof of the Equivalence Preservation Theorem

In this section, we prove the eguivalence preservaticn theorem. The following proof
iz, even textually, isomorphic to the one by Tamaki and Sato [11] (except the additional
invariant 13) intentionally in order to emphasize the role of the counters,

Now we prove the following theorem.

Theorem 2.3. Let §,,5;,...,Sx be the virtual transformation sequence. Then M(Sy) =
M(Sg).

The proof of the theorem consists of showing that the following invariants hold for each
i (0<i<N).

I1. M(S5) = M(8).

12. For each ground atom A in M(S,), there is a rank-consistent proof of A in 5,

13. For any ground instance A - A;, 4z,..., A," of a deflnite clause with counter 7 used
at the root of a proof in S5;, rank(4,) <+ rank(Az) + - - + rank{A,..) + 7> rank{A).

Base Case :

The first invariant I1 trivially holds fer i = 0. As for the second invariant 12, for any
ground atom A in M(Sy), the smallest proof of A is obviously rank-consistent. (Remember
Sa = Fy D and the counters of the clauses in Py and D are 1.) As for the third invariant

5



13, note that the rank is the minimum size of proof in Sp.
Induction Step :

The preservation of the invariants is proved in the four lemmas beiow.
Lemma 3.3.1. If the invariant I1 holds for S;, then M({Si4.) & M (851

Proof. Let A be a ground atom in M(S;;) and T be its proof in Sips. We construct a
proof T of A in §; by induction on the structure of T.

Let C be the definite clause used at the root of T and Ty, Tq,...,Tn (n>0) be the
immediate subproofs of T. By induction hypothesis, we can construct proofs T9,T%,..., T,
in S; with each T% corresponding to T;. If C isin §;, we can immediately construct T” from
C and the proofs T, T5,.. ., Th-

Suppose C is the result of unfelding. We can construct T from TY,T%,..., T, using
two definite clauses in S; of which € is the unfolded result.

Supposa C is the result of folding. Then for some §{1<;i<n), say § = 1, the root label
A, of Ty is an instance of the folded atom in the body of €. Because A, is provable in 5;
by T, it is also provable in Sp by the invariant I1. So there should be a ground instance
A, - By, By,..., Bn" of some definite clause such that B, B, ..., Bm are provable in Sp-
Again by 11, By, By, ..., Bm are provatie in S;. Let C' be the definite clause in 5; of which
¢ is the folded resuit. Owing to the condition of folding, we can combine the proofs of
By, Ba,...,Bm and proofs T4, Ty, ..., Ty, with ' to obtain T7, the proof of A in S:.

Lemma 3.3.3. If the invariants 11, 12, and I3 hold for 5, then M5 € M(Sis1)-

Proof. Let A be a ground atom in M(S5;). Then by the invariant 12, there is a rank-consistent
proof T of A in 5;. We copstruct a proof T' of A in S+ by induction on the well-founded
ordering 3=.

The base case where A is provable in Sp itzelf and A has an old predicate obviously
holds because then A should be a ground instance of some unit clause in Py which should
be in both 5 and 5;+;.

Let C be the definite clause in S; with counter - used at the root of T and T, 73,...7a
(n>>0) be the immediate subproofs of T. By the invariant 12, for each root label A; of T, A=
A; holds. So by the induction hypothesis there are proofs T, T5,..., T, of A, Aa,...,4n
in Sip1. If € isin S;yy, the construction of T is immediate.

Suppose C is unfolded inte C),C3, .. LCY in S;4, and assume that the root label
Ay of Ty is the instance of the atom at which C is unfolded. Let Tyy, Tig,..., 11s be the
immediate subproofs of Ty and Ay, A1z, - .., A1. be their root labels. Then again by [2 and
the induction hypothesis, there are proofs T, T, ..., Ty, of Agi, Agz, -, A, 0 Sizg.
Combining the proofs Ty, Tg, .- Thg T30 o Ty With some C! (1<i<k), we get a proof
T"of Ain Sl—i—l-

Now suppose C is folded inta €' in S;+,. Assume that ¢ and C' have counters < and
7 — 6(f = 1) respectively and the root labeis Ay, Az, ..., Ax of T1, T3, ..., Te (k<n] are the
inetances of the folded atoms in €. Let B be an atom such that *H - A4, 4,.. . PR
a ground instance of the definite clause {with counter § = 1) used in the foiding. Because
the definite clause used in the folding is in D, rank(4,) + rank(Az) + --- + renk(As) +
§ > rank(B) holds by the invariant 13 and 5 1s provable in 5, by the equivalence of 5 to Sq.
Because the condition () of folding is met, k + § < n + 7, hence

rank(A) > rank(A,) + rank(Ag) + -~ + rank(A.) + 7

> rank(B) + (7= &) + rank(Asyi1) + rank{Assg) + 0 F rank(A.,)

&



> rank(B) + (71— 1) + (n— )

> rank(B)
helds, which means A 3 B. Therefore by the induction hypothesis, B has a proof Tg iz
S;s1. Combining the proofs Tp, T ,,..., T}, with the definite clause C', we obtain the
proof T of Ain Sisy.

Lemma 3.3.3. If the invariants I1, 12 and I3 beld for S;, then I2 holds for S4.

Proof. We first note that in the proof of Lemma 3.3.2, T' is constructed in such a way that it
is rank-consistent. Thus every atom in M(S;) has a rank-consistent proof in S;4 ;. Because
M{Si+1) € M(5) by Lemma 3.3.1, 12 holds for 5;41.

Lemma 2.2.4. If the invariants I2 and I3 holds for S;, then I3 holds for Sy ;.

FProof, Let "A - A;, Aq, ..., A," be a ground instance of a definite clause ' with counter v
used at the root of a proof in S;4q. I € is in 5, the lemma is obvicus.

Suppose C is the result of unfelding. Then, by the induction hypothesis, there are two
ground instances of definite clauses in 5;

A - B, ﬂk..'._:“ ﬁ.j_.'.,:. sy .’Am.

B - Ay, Ag, ..., Ag.
with counter 7, and 5z such that

T="1 T+ 72,

rank(Bj-+rank(Ay 4y )+rank(Ay+2)= - +rank(A,. )+ 2 rank(A)

rank(Ayj=+rank{Ag)== - =+rank(Ay )93 > rank(B)
From these inequalities, I3 holds obviously.

Suppose C is the result of folding. Then, by the induction hypothesis, there are two
ground instancez of definite clauses in 5

A - .A.u,ﬁui,.. " .,ﬁ},;.ﬁ:,. B .,J‘.m.

J"Ll, - J‘.“, J'a;g,, . J!Lll.
with counter 4, and 7, such that

T=71— T2

rank(A;1)+rank(Ay2)+- - -+rank(Ay)+ rank(Ag)-+- - +rank(Am}+y; > rank(A)
By the invariant 12, there is a rank-consistent proof of A, in S;. Owing to the condition of
folding, we can select the graund instance in such a way that

rank{A;;)+rank{Az)+- - +rank(A )+ = rank(A,)

From these inequality and equality, I3 holds obviousiy.

This completes the proof of the theorem.
4. Several Reflnements of the Basie Unfold/Fold Transformation
4.1. Introduction of A Statie Ordering on Predieate Symbols

The basic framewerk presented in Section 2 has several limits in its application of the
transformation rules, even if the application does not loosa equivalence. One of them is
shown by the foliowing example.

Example 4.1. Let old-p be a predicate defined by
Cy [1]. old-p(X) - Ay, Az, .., A,

Suppose we have introduced a new predicate new-p by
Ca [i]. new-p[20) - Ay, Aa, ..., A..



Then we can't fold the body of C; by Cj.

First, we introduce a fixed ordering on predicate symbols. A predicate symbol p is
greater than a predicate symbel g, denoted by p = g, when p is an old predicate and gis a
pew predicate. Then, only the folding rule is modified as follows.

Folding : Let C be a definite clause in F;—; of the form
A - Ay Az A
with counter 7 and Cp.ig., be a definite clause of the form
B : ByBa,.. B
such that
(a} Croiger it a definite clause in D;—, (with counter 1).
(b) 1<7.
Suppose there iz a substitution o and a subset {A;,, Ay, ..., A )} of the body of C such
that the following conditions held.
(a) Ay, =e{H;}Tor3=12,...,m,
(b} o substitutes distinct variables for the internal variables of Cy,14.» and moreover those
variables occur peither in A nor in {Ay, Az, ..., An} — {4, Ay, ..., Ai_) and
(cllm4+1<n+gor
(e2Ym +1 =n +~ and p > g, where p and g are the predicate symbois of A and B
respectively.
Then let P be (Piy — {CHU{C"} and D; be D;—; where ¢ iz a deflnite clauze with head
A and body ({A;, Az, ..., As} — {Ai,, Ay, - A D U{e(B)}. Let C' have counter 4 — 1.

As before, it is easy to see that, for any definite clanse in F;|J D; of the form
A Ay, Ag, ., Ag
with counter 4, 1 + 4 >1 and 720 hold.

The proof of the equivalence preservation theorem goes in the same way except the
following peints.

{a) The defipition of the rank ordering is changed as follows : A 3 B when (i) rank(d4) >
renk(B) or (ii) rank{A) = rank(B) and p > g, where p and q are the predicate symbols
of A and B, respectively.

(b) The discussion to show 4 3 B in the proof of Lemma 3.3.2, ie,, M(5) C M{(S:,1)
when the invariants 11, I2 apd I3 held for §;, should be modified in accordance with this
modification of the definition as follows,

Proof of Lemma 3.3.2. The proof proceeds in the same way as before except the proof of
the case © is folded is modified as follows.
Now suppose C is folded into €' in S;5q. Assume that € and C' have counters 7 and
7 respectively and the root labels Ay, Az, ..., Ag of T1, T2, ..., T} {k<n) are the instancas
of the folded atoms in ©. Let B be an atom such that “B - Ay, Ag, ..., A" is a ground
instance of the definite clause with counter § used in the folding (v — § = 7). Because
B is provable in S;, it has a rank-consistent proof in S; by the invariant 12. Hence, by
the invariant 13, ronk(Ay) 4 rank(Az) <= - = ronk{4,) < § Zrank(B) halds. When the
condition (cl) of folding is met, k + § < n -+ 7, hence
rank(A} > rank(A,) 4+ raok{As) == -+ = rank{A,) <+ 7
> rank(B) + (7 —6) + rank(A, ) + rank(A,2) 4+ -+ <+ rank(A,)
> rank(B) + (71— 8 + (n— k)

g



> rank(B)
helds, which means A = B. Wien the condition (cZ) cf folding is met, k = n, § = 4, but
the addition of ordering on predicnte symbols means 4 > B. Therefore by the induction
bypothesis, B has a preef T in Siy.y in either case, Combining the proofs TB,T',‘+1_ cen TY
with the definite clause C', we obtain the proof T" of Ain 8,4 ,.

4.2, Introduction of Foiding by Programs and A Dynamie Ordering on Predieate Symbols

One might think that it is too restrictive that folding should be done only using
definitions, i.e., definite clavses in Dy 4.

Example 4.2. Suppose we have deficed a predicate sublist as an old predicate by
sublist(M,LMN} - eppend(L M,LM) zppecd(LM N, LMN).
and the predicate adjacent by
adjacent(30Y, LIOYN) - sublist{2Y],LXYN).
Then, afier the transformaticn similar to Ezample 2.2.1-2.2.3, we would like to Told
Cr [4]. adjacent{X,Y [Z|LIIYN]) - append(L, [X, Y] LXY),append{LXY, N, LXYN).
by the definite clause above to
C% [3]. adjacent(X,Y,[Z]L]) :- sublist([X,Y],L).

In order to permit folding by programs, we generalize the ordering in Section 4.1 to an
arbitrary ordering between predicate symbols and keep it during the transformation process.

Fy :=the initial definite clause program ;
Dy == {};
Ry :=any erdaring on predicate symbols appearing in Py
set each counter of definite claunse in Py to 1;
for i ;=1 to arbitrary N
apply any of the transformation rules to obtain P, D¢ and R; from P y,D;—y and R;—;

Figure 4.2. Transformation Process

Throughout the transformation process, we have an ordering relation R, on predicate
symbols appearing in P; and D, such that By C R, € - C R; C +++. We denote them by
a commem infix notatien . Tle initial ordering Ry might be empty. The final ordering
Iy depends on Ry, the arrangement at user’s dispesal in the definition rule and the history
of the applications of the {oiding rule. Following this extension, the definition rule and the
folding rule are modified as follows.

Deflnition : Let ©;,C3, .. ., Ci be definite clauses of the form (m >0}
pity,ta,.. -.T-n.] = ALALL L LAL
where
(a) pis an arbitrary predicate appearing neither in P, nor in D;—, and
(&) the beads of Cy, Cy,...,Cy are not unifiable each other.
Thenlet Py be Poy |J{C\,Cq,...,Cs}and Dibe D | C,,C3,...,C}. Let €, Cy, ..., Ce
have counter 1. Let R, be R, |J{ p > g or g > p | you wish to assume it for g } as far
as the transitive closure of R; is irrellexive.

Folding - Let € be a definite clause in %, of the form
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A=A A, . T
with counter 7 and Ceider be 3 definite clause in Piwy |JDi—y of the form
B - By.Bz,....Bm.
with eounter § such that
(al) Cyratder is a definite clause in D, or
(22) Cratder 15 @ definite clause in P;—; for which there is no other definite clause in P,
whose head is unifiable with B,
(b) §<7.
Suppose there is a substitution ¢ and a subset {A:, Ai,, .., A} of the body of C such
that the following conditions hold.
(a) A =ol(B;)ferj= 1,2,...,m,
(b) o substitutes distinct variables for the internal variables of Cy,14., and moreover those
variables oceur neither in A nor in {A1, Az, .., An} — {4, Aiy, - A} and
felym-§<ntor
(¢2) m - 6 = n <+~ and the transitive closure of R;_1J{p = q} is irreflexive, where p and
g are the predicate symbols of A and B respectively.
Then let P; be (P;—; —{C}U{C'} and D; be D,_; where C' is a definite clanse with head
A and body ({A;, Az, ..., A} — {4, Ay, .- Ai D U{e(B)}. Let C' have counter 7 — 4.
Let R; be Ri_; when the condition (c1) is met and let R; be Ri—y U{p > g} when the
condition (c2) is met.

As before, for any definite clanse in P, {J D; of the form
A - AIJ Jll':: B2y Aﬂ-'
with counter 4, n + 721 and 720 hold.

The proof of the equivalence preservation theorem goes in the completely same way as
in Section 4.1.

4.3. Introduction of Folding by Previous Programs and Negative Counters

According to the framework so far, we must fold by some definite clause in F;—; UDi—
and keep counters of definite clauses non-negative.

Example 4.3.1. Let us consider the transformation in Example 4.2 again. Suppose that a
predicate sublist is defined in Fo by
sublist(M,LMN) :- append(L M, LM}, append(LM,N.LMN).
and we have defined the predicate adjacent by
adjacent(X,Y,LXYN) - sublist([X,Y]),LXYN).
Then by unfolding at sublist([X,¥], LXY N), we have
C' 12} adjacent(X,Y,LXYN) :- append(L,[X,Y],LXY), append({LXY ,N,LXYN].
in P;. By continuing the same transformation as in Example 2.2.1-2.2.3, we have
adjacent(3,Y,[Z|LXYN]) =- append(L,[X,Y],LXY), append(LXY,N,LXYN).
I folding by C' in Py is allowed, we can immediately have
adjacent(X,Y,[ZILXYN]) = adjacent(XY,LIYN).

Example 4.3.2. Suppose that an old predicate old-p is defined in F;—; by
Eli Old-pr] - J’Ll, Az, . J\n, Bh Eg, - Bm.

new predicates pa and pb are defined in D, by
1] pa(X) - Ay, Az, .., An-
[1] pbi{X) = By, Bz, ..., Bm.

10



We can fold the body of old-p by pa(X) to zet
2] eld-p(X) - pa(X), By, Bz, ..., Bm.
But folding by pb(X) is not allowed, because the resulting counter is —1.

A close examination of the proof in Section 3 and Section 4.1 reveals that both the
condition that Craiger be in Py |J D, and the condition 72>0 are not crucial. Because
definite clauses in Dy—; always appear io some P; (7 < i), the condition of Cya14,, is unified
az follows,

Foldlng : Let O be a definite clause in F;_y of the form
A ApAg,.. . A,
with counter 7 and Cy,ige, be a definite clause in P; {f < ¢) of the form
B - E[,Bz,- ..JBm.
with counter § for which there is ne other definite clause in P; whose head is unifisble with
B. Suppoze there is a substitution ¢ and a subset {A4;,, A;,,..., A;_} of the body of C such
that the following conditions hold.
(a) Ay, =o(Bj)for j=1,2,..,m,
(b) o substitutes distinct variables for the internal variables of Crajder and moreover those
variables occur neither in A norin {4,, 4z,.. ., 4.} — {4;,, A;,,.., A} aod
[el}m 4§ < n—+ 7or
{2)m +§ = n+ and the tranzitive closure of R;—; |J{p > g} is irreflexive, where p and
g are the predicate symbols of A and B respectiveiy.
Then let F; be (F,_; — {C})|J{C"} and D; be D;_, where C' is 2 deflnite clause with head
A and body ({4, Az, .., An} — {Ai, Ay, -, A U{e(B)}. Let C' have counter 7 — §.
Let F; be R;_; when the condition {cl) is met and let R, be B, |J{p = g} when the
cendition (e2) is met,

New, for any definite clause in P;| D; of the farm
A=Ay Az, L A
with counter -1, n = 7> 1 helds.

The proof of the equivalence preservation theorem goes in the completely same way as
in Section 4.1.

3. Goal Replacement In the Reflned Unfold/Fold Transformation

In sur unfold/fold transformation system with counters, the goal replacement rule in
Tamaki-Sato’s framework can be considered a generalization of unfolding or feiding. It is
applied under a slightly relaxed condition very similar to those for unfolding or folding.

Let §; be a definite clause program and 3 X (ByAB3A---AB,) be an existentially
quartified conjunction of atoms without free variables. (By X we represent a vecter of
variables.] We say that the formula is provable in 5; and write

Si = IX(ByABA- - -ABy)
if there is some ground instantiation & of X such that every &(B,) {1<i<<n) is provable io
5. By

rank(ZX (BiAB2A---ABR))
we represent the minimum of rank(e(B,}) =+ rank{e(B3)} + - - + rank(c(B,)) for every
ground instantiation & of X.

Example 5.1. Suppose that append is defined as before in S;. Then
11



3 LM (append([1],]2],LM)nappend(LM,[3],[1,2,3]))
is provable in 5; and
rank(3 LM (append([1],[2],LM)Aappend(LM,[3],[1,2,3]})}) = 5.

Goal Replaeement : Let C be a definite clavze in F; 4 of the form
A - J'l.hﬁ.h. . .,Aj“ Bl,le. ..,B,,.
with eounter & and ' be a definite clause (not in P;_;) of the form
A=Ay Az A, E';,B'm. "!B'm'
Let X be variables accurring in By, Ba,..., B, and not in A;, Az, ... A, B, By,..., B,,.
Similarly, let Y be variables occurring in By, B%, ..., B} andnotin A;, Az,..., Ay, By, By, ..., B,.
Suppose that, for every ground instantiation § of A, Ay, Az, ..., A;, the following conditions
are satisfed.
(a) Pi—iUDi—1 —{C} I 3 X 8(ByABaA---AB) i and only if Py | Ds—1 —{C} |- 3
Y #(BLABLA---ABL),
(b) renk(SX8(B,ABzA---ABa)) > rank(3Y8(BYABLA---AB.,)) + & and
&) (y—8)+(k+m)>1
Then let P; be (P;—, — {C})J{C"} and D; be D;—;. Let C" have counter 7+ §. Let R
be Ri—1.

Example 5.2. Suppose that append is defined as before in 5;. Consider the following
existential quantified conjunctions.

3 LM (append(L M, LM)Aappend(LM,N,LMN)),

2 MN (appead(M,N,MN)Aappend(L MN LMN)).
Then, far any ground instantiation § =< Lsty, Misty, N=ty, LMN =ty >,

S,1— 3 LM (append(ty,tas, LM)Aappend(LM,tw,te sen)),
if and only il )

5.~ 3 MN (append(t ety MNIAappend(ty MN trarn)).
Hence, the eondition (a) holds. As for the condition (b),

rank(3 LM (append{ty tar, LM)Aappend(LM ta tr pen)))

> rack(append{tpr,ta MN)Aappend(ty MN toaen)) + 0.

Or, more exactly speaking,

rank(Z LM (append(ty,tar, LM)Aappend(LM ty te )

> rank({append(t ur,ty MN)Aappend(ty MNtpma)) + lengthity).

Consider a definite clause

rev2([X|L],N,M) :- reverze(L K), append(K,[X] KX),append(KX,N,M}.
with counter 2. Because the condition {c) holds (k = 1,n =2,m = 2,7 = 2,§ = 0}, we
can apply goal replacement to gat

rev2(TX|L],N,M) - reverze(L K), append([X],N,XN) append(K,XN M).
with eounter 2 {or, more exactly speaking, 2 -+ length(K), if such an expression is allowed).

The goal replacement itself preserves the minimum Herbrand model even without the
condition (b) and (¢). But it was peinted out by Tamaki and Sato [11] that the second
invariant 12, hence equivalence, might be lost, when it is used within the unfold/fold system
without these conditions. Because of the use of counters, the class of goal replacement
considered legal is larger than that in the original Tamaki-Sato's transformation system.

Example 5.3. Let the initial program Py be
Po : Cy f1]. q(s(X)) - a(X).
Cz [1]. gf0).
Cs [1]. #{s(X)) = £(X).

12



C. [1]. r{D).
Suppose we have defined
Cs [11. pUX,Y) - q(X),r(Y).
Ce [1]. p2(X,Y) :- g(X),r(Y).
Then we can replace g( X'} in the body of Cg with g{s(X)), becanse
{Cll C2,C5, Cy, cﬁ} |_ q{x} if {Ch C'Jrc'-?l Cs, GE'-} ]_ q{Sm]-
rank(q(X]) > rank(q(s{X]})—1.
Similarly, we can replace r(Y) in the bady of Cy with r{s(¥]). (In our transformation, these
goal replacement can be considered folding.) Hence, the following transformation sequence
is allowed,
Unfeid g{X) in Cs
Cy [2]. p1(DY) :- Y).
Cs [2]. pl{s(X),Y) - q(X),r(Y).
Replace r(Y) with r{s(¥])
Ce [1[. p1(s(X),Y) - q(X),x(s(Y)).
(Note that the counter is decremented by 1, because rank(r(Y)) > rank(r(s(Y))) — 1).
Urnfold r(Y) in Cg
Cio [2]. P2(X,0) - g(X).
Cy; [2]. p2(Xs(Y)) - q(X],r(Y).
Replace g(X) with g{s(X)}
Clz :1;" PE[}:JE‘{Y}] - "l'[’*':xnrl":"']
(Note that the counter is decremented by 1, because rank{g(X))=>rank(g(s(X))) — 1).
In order to show that unrestricted goal replacement looses equivalence when combined
with the unfold/fold rules, Tamald and Sato folded Cy and Cya here tc derive an inequivalent
rogram as follows.
Foid Cy.
Ciz [01. p1(e(X),Y) = P2{X,2(Y)).
Fold €2,
Cu4 [0]. P20X,(Y)) = pL(s(X),Y).
The resulting program contains infnite recursion and is not equivalent to the original one. In
Tamaki-Sato’s framework, this is because the goal replacement steps destroyed the invariant
I2. In our {ramework, the goal replacement step keeps the invariant 12 and the firet foiding
of Cy i3 allowed, becauze the condition (e2) it met. (m = 1,n = 1,7 = 1,§ = 1 and
m -+ = n-={ holds. Note that pl = g2 is added.) But the second folding of C,; is not
allowed even in our transformation, beeause adding p2 > pl viclates the irreflexivity of .

But, because felding by programs iz allowed in sur framework, additional care is
necessary for the folding rule. Application of goal replacement might destroy the invariant
13, which is neceszary for the definite clause used as folders. We must restrict the folder to
be goal-replacement-independent. [ntuitively speaking, a definite clause is goal-replacement-
indenpendent if it has no relation, either directly or indirectly, with geal replacement. More
formally, a definite clause is said to be goal-replacement-independent when it is oot goal-
replacement-dependent. A definite clause C is zaid to be goal-replacement-dependent when

{a) C iz a result of foldiog or
{b) C is a resuit of unfolding applied to a goal-replacement-dependent definite clause or
using a goal-replacement-dependent definite clause.

Mate that a definite clavse in I3;_; is always goal-replacement-independent.

Folding : Let C be a defipite clause in P, of the form
A - 2’!-1,4'!2,. . .,Jﬂkn.
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with counter ¥ and Cy,ig.r be a geal-replacement-independent definite clause in Py (5 < 1)
of the form

B - E‘lrE".h- . .,E-m.
with counter 6 for which there iz no other definite clause in P; whose head is unifiable with
B. Suppose there is a substitution o and a subset {A; , A;,, ..., 4, } of the body of C such
that the following conditions hoid.

(8) Aiy =o(B;) for j=1,2,...,m,

(b) o substitutes distinct variables for the internal variables of Cyy4cr and moreover those
variables occur neither in A por in {Aq, Az,..., A} — {4i,, Ay, .., A} and

(ellm 46 < n-+-gar

(¢2)m - § = n -+~ and the transitive closure of R;—1 [ J{p > q} is irreflexive, where p and
g are the predicate symbels of A and B respectively.

Then let B; be {B,—; — {CHJ{C'} and D; be D;_; where C' is a definite clause with head

A and body ({41, Az, ..., 4.} — {4, Aiy, - A U{o(B)}. Let €' have counter 7 — §.

Let R; be R;.., when the condition (c1) iz met and let R; be R;—y|J{p = g} when the

condition {c2) 15 met.

In general, if our conditions for goal replacement are observed, a rank-consistent proof
in 5; can be converted inte a rank-consistent proof in Sis1.

8. Source of Optimization in Unfold/Fold Transformation

What is the source of eptimization in unfold/fold transformation ? There can be two
sources as follows.

(a) One of the most prominent features of Prolog is its ability to describe nondeterminism.
Because such dezeription is allowed, we can expect that, programs are once writien in
nondeterministic way and then transformed to mere determiniztic efficient one. That i3,
program transformation reforms the search trees of the Prolog interpreter to the ones
with less OR-branching.

{(b) Program transformation sometimes reduces the steps to reach the solution even if the
initial pregram is deterministic. That is, program transformation reforms the search
trees of the Prolog interpreter to the ones with shorter paths to the solution leaves,

Example 6.1. Suppose that sort i3 given using the typical nondeterministic description in
Proleg as follaws,
sort(L, M) - permutation{L M), ordered(M).

This is a well-known example, in which the nondeterminitic program is converted to the
deterministic one. Deriving insertion-sert from such description is sometimes cited as a
program optimization from O(n!) to O(n?). But, note that, if the nondeterministic Prolog
interpreter always selects correct OH-branches, we can succeed in O(n?) steps even with the
program above, Hence the order of the rank of sort(s,t) is not changed.

Example 6.2. Let us consider the example in Section 2. There, the deseription of the initial
program of adjacent

adjaceat(X,Y,LXYN) - append(L,[X,Y],LXY),append(LXY N,LXYN).
is nondeterministic as well. Wote that the transformation sequence there actually reduced
the rack, but the order of the rank is O(n) both in Fy and in Py

Mow let us focus our attention to the latter source of optimization measured by the
rank. The precizeness of the uze of counters sheds light on an unexpected fact. As far as we
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are within the unfeld/feld transformation in Section 2 or Section 4.1, where the predicate
symbals are two-lavered, ie., there are only old predicates and new predicates and the pew
predicates are defined using only the old predicates, the reduction of the computation steps
is at most O(n), because the values of counters are constant.

Ezample 6.3. One might be suspicicus of this claim, because the derivation of rev2 of O(n)
{rom reverse of G[n:} is a well-known example. Why can we reach the O(n) algorithm from
the @(n?) one if the reduction of steps is O(n) ? The source is the use of goal replacement
3 LM (append(L M ,LM)Aappend{LM,N LMN])
= 3 MN (append(M, N, MN)Asppend{L ,MN LMN]}},
where the number of steps proportional to the length of L is reduced. By accumulating theze
reduced steps, we have the O(n?} reduction as a whole.

This fact means that the framework with two layers is far from satisfation and we have
to remedy it somehow.

One way is dividing the transformaticn sequence inte phases. After the k-th phase
is finished, all predicates io the final program Pm of the k-th phaze are considered old
predicates in the imitial program Pg"+1} of the (k -+ 1)-th phase. Then, starting from the
phase 1, the reduction of computation steps in the t-th phase is at most O(n*) compared
with the very beginning PL).

Another way is dividing the predicate symbols into levels as was done by Tamaki and
Sato {12]. The predicate symbols in the level k are deflaed using those with level less than
or equal to k. The predicate symbels in the level k are considered greater than those with
level less than k. Then, starting from level 0, the reduction of computation steps of the
predicate with level k is at most O(n*).

T. Diseuwssion

The result in this paper is just a refinement of the work by Tamaki and Sato [11]. Our
new contributions are the following three points.

First, we generalized the *foidable® marks to the counters of natural numbers 20 that
we can characterize the class of improved execution mere precizely. Our evaluation of the
wumber of reduced execution steps is very precise as far az we are within the unfold/fold
transformation (without goal replacement}. The uee of counters epables us to relax the
conditions for folding and goal replacement.

Secondly, we intreduced several generalizations.

{a) We generalized the rack ordering » by intreducing orderings cn predicate symbols.
Intuitively speaking, eritieal situations to loose equivalence by folding occur only if the
folding creates recursions. We keep an ordering /2; to check the possibility of generating
eritizal recursions.

(b] We made it possible to fold using definite clauses in program as far as the bead is not
unifiable with other heads.

(e} We allowed felding by programs in previous versions and definite clanses with negative
counters,

Now, we need no distinetion of old predicates and new predicates at all. We believe that
almest everything legal is allowed except a few exceptions.
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Thirdly, our approach would be a first step toward more precise evaluation of improve-
ment by program transformation. We expect that our definition of the rank iz suitable for
thiz purpose. Though one of the purpeses of pregram transformation iz improvement in
execution efficiency, we have not yet have enough tool to evaluate improvement by trans-
formation. Because the most drastic improverment in execution efficiency wsually occurs
when recursions are formed by folding, we need further work on analysis of such recursion-
formation-time behavier.

B. Conelusions

We have presented a refinement of uwnfold/fold transformation of logic programs, which
takes the number of improved execution steps and the possibilities of forming eritical
recursions into consideration more precizely. This method is being uzed in Argus/C, a system
for construction of Prolog programs under development [6],[7],]8].
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