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Abstract

A method to construct logic programs based on gereralized vafold /fold rules iz dezeribed.
Though the methed itself is not novel, we prove its correztness, that is, when a definite clanze
program Py is constructed from a definile elause program Fp introdusing definitions D of
new precedures o some class of formulas, the minimum Herbrand model of Py is identi-
eal to that of Py{JD. This is a generalization of the equivalence preservation theorem for
Tamaki-5ate’s transformation as well as a partial justification of the methed presented by
Clark. We also prezent splitting rules as an ezample of safe augmenting rulss, uze of which
still preserves minimum Herbrand models even if combined with the unfeld /fold rules.
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1. Introduction

The unfold/feld rules were advocated as basic transformstion rules for functional pro-
grams by Burstall and Darlington (3], It was not clear whether and when combinations
of unfoiding and felding preserve the equivalence of furctional programs, which was later
investigated theoretically by Kott [13] and Scherlis [20],[21]. The unfold/fold approach was
alse extended to Prolog programs by Clark [5]. He permitted more general first order for-
mulas as initial specifications, of which program transformation can be regarded as a special
case. The preservation of equivalence in Prolog program itransformation {in the sense of the
minimum Herbrand model semantics) was investigated by Tamald and Sato [24].

Suppose we kave an initial Proleg program Fp and some specification D of new proce-
dures in some class of first order formulas and we can well-define the completion ([4],11])
and the minimum Herbrand model of Py {JD. In general, eonstruction of a Prolog program
is to derive a set of logical consequences Py from Pyl D, which is the theoretical basis
of the approach by Clark [5; and Hoggzer [10]. But there can still hold various relations
between Py |)D and Pp. The tightest relation is the one that the completion of BUD
and that of Py are legically equivalieni. Though such construction still plays an important
role, the most ipteresting cpuimizetions wsually loose the eguivalence of completions, The
loosest relation between Pyl D and Py is the one that we can say nothing more than that
FPa ) D is stronger than Py. But in such a case, we have to check whether the constructed
Prolog program actually computes the specified relation exactly after havizg constructed it
(see [5] p.97,pp.102-105,[8] p.16). The result by Tamaki and Sato {24] is located between
them. They proved that every ground atom which iz provable from axioms Py [ D is also
provable from axioms Py, That is, the minimum Herbrand model of Pyl ] D is identical to
that of Py in their Prolog program transformation, though it does not necessarily prezerve
the equivalence of completions.

In this paper, we show a canstruction method based on generalized unfold/fold rules,
which includes Tamaki-Sato’s transformation and is included in the class of construction
presented by Clark {51, Though the method itzelfl is not novel, we prove its correctness along
the same line by Tamalki and Sato. That i3, when a definite ciause program Py is constructed
from a definite clauze program Fp intreducing definitions D of new procedures in some class
of fermulas, the minimum Herbrand model of Py is identical to that of Py |JD. Thisis a
generalization of the equivalence preservation thecrem for Tamald-Sato’s transformation as
well as a partial justiication of Clark’s method.

This paper is organized as follows. After preparing preliminary materials in Section
2, we show our construction methed using a simplest example in Section 3. In Section 4,
we define two noticrs, rank ordering apd rank-consistert proof of ground stcms, based on
a well-Toundad ordering oo multisets of formular in some class, Uszsing them, we prove the
equivalence preservation theorem, which is the main purpose of this parver. In Section 5,
we show splitting rules as an example of safe augmenting rules, use of which still preserves
minimum Herbracd models even if combined witk the unfold,/fold rules. Finaily in Section
6, we discuss the relaticos to other works,

2. Preliminaries

In the fellowing, we assume familiarity with the basic tarminologies of first order logic
such as term, atom (atemic fermula), positive and negative literals, formula, substitution,
mest geperal uaifer (mg.u) and so on. We alse assume knowledss of the semanties of
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Prolog such as completion, minimum lerbrand model and transformation T of Herbrand
interpretations (see [1],141,[5],[7),[14]). We foilew the syntax of DEC-10 Proleg 7. As
syntactical variables, we use XY, Z for variables, s, ¢ for terms, A Bforatomsand 7,5, ¥
for formulas, possibly with primes and subscripts. In addition, we use o, 7 for substitutions,
Fg{¥) for replacement of all oecurence of a subformula G in a formula 7 with ¥ and Tgl¥]
for replacement of an occurence of a subformula G in a formula 7 with X.

2.1. Proof Tree of Ground Goals

A definite clause program is a finite set of definite claunses. Variables appearing in the
body and not appearing in the head of a definite clause are called internal variables of the
definite clause. Atoms containing no variable are called ground atoms. Finite multisets of
(ground) atoms are called (ground) atom sets.

Let S°' be a definite clause program. (The meaning of the sufix “old” is explained
later.) A proof tree, or simply proof, of ground atom Ain §°9 js a tree T lebelled with
ground atoms defined as follows.

(a) T is a proof of A in 5°'% when it is a tree consisting of a single node labelled with A,
which is a ground instance of the head of a unit clause in 5°4, (The unit clause is said
to be used at the root.)

(b) Let T1,Tz,..., Trm be immediate subtrees of T and A;, Aa, ..., A, be their root labels.
T is a proof of A in 5°/¢ when the root label of T is 4, “A:- Ay, A, ..., A" iz a ground
instance of some definite clause in §%% and Ty, T3, .., Trm are proofs of A, Az,.. o Am
in §°¢ respectively. (The definite clause is said to be used at the root and Ty, T2, .- Tm
are called immediate subproofs of T.)

Example 2.1. Let common and member be predicates defined by
common(X,L,M) - member{X L) member{X,M).
member(U,[U|L]}.
member(U,[V|L]) - member(U,L).
Then the tree below is a proof of common(3, (2,3],(3,5]) containing 4 nodes.
common(3,(2,3],[3,5])
! A
member(3,]2,3]) member(3,[3,5])
I
member{3,[3!)

The set of all ground atoms for which proof trees exist ia denoted by M(S5°¢). It is
exactly the minimum Herbrand model of 5% Let T be any proof tree of A in 5ol which
contains the minimum number of nodes among the proofs of Ain 5§ ¢td The definite clause
€ used at the root of T is going to play & very important role in 4.2.

2.2, Terminating Atom

Let §°% be a defimite clause program and As be a atom set. Then a search tree of As
in §°% js a tree defined as follows [15].
(a) Each node of the tree is a atom tet (posubly empty).
{t) The root node is As.
{e) Let {A,, A3,..., A} be a node in the tree and suppose that A; is an atom, called
a selected atom, in it. Then, this node has descendants for pach clause “By - By, B2, ..., Bm”
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in §°'% such that A; and By are unifiable, say by an m.g.u. o. The descendant is
F({A'Ip---r-"ll'—*laBer'zl---rE"hAi-i-h“':Aﬂ-}}'
{d) MNodes which are the empty atom set have no descendant.

The empty atom sels have no descendant, as is defined in {d) above, and are called
sucrcess nodes. Some nop-empty atom fets may bave no descendant, for which the selected
atom has no clause with a unifiable head in §°'%, and are called failure nodes.

Example 2.2.1. Let As be a sinpleton set { common(2,2,2],/3,5]) }. Then the tree below
is a finite search tree, in which all branches end in faiiure nodes. The underlines indicate
selected atoms.
{ common(2,2,3],13,51} }
|
{ member{2,|2,31) member(2,13,5) }
! Y
{ member(2,[3,5]) } { member(2,[3]},member(2,[(3,5]) }
[ |
{ member(2,5i] } { member{Z,[ ]},member(2,[3,5]} }
I
{ member(2,[ ]} }

An stom A is said to be terminating when there is no search tree of {A} containing
an infizite branch frem the root. In defining the semantics of pure Preleg, we employ a
ncodeterministic prool procedure in order to avoid the incompleteness due to the specific
bekavior, i.e. depth-first search with backtracking, of the actual interpreter. When atom A
is terminating, such care is unnecessary. The actual interpreter either stops with success or
fails fnitely for A

Example 2.2.2. Let true-or-loop be a predicate defined by

true-cr-loop(X) - is-true.

true-or-loop(X) - loop(X].

1s-irue.

locp(X) - laop{X),
Though true-or-loop(X) ia tautologically true, it is oot terminating and there is an infinite
branch from the root {true-or-loep(t)}—{loop(t)y—{loop{t)}—{loop(t)}—- -

Thouzh there are koown several suficient conditicns for guaranteeipg that ao atom
A is termizating, we do not refer the details in order not to make the explanation of the
construction rules in Section 3 too complicated.

2.3, Gaoals

In this section, we generalize usual atoms to goals. Now on, we assume about constant,
fubciicn and predicate svmbols as follows.

{a] The ser of constant and function svmbels iz Sxed so that we have a fized Herbrand
univarse,

(b) The set of predicate symbels is divided into two dizjoint sets. One iz a set of predicates
called oid predicates. Ansther is a set of predicates called new predicates.

The old predicates are defined by & fixed defnite clause program S$°. The new
predicates are defized by a defnite formula program 5™Y being intreduced in 2.4. Atoms
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with the old predicates are called old atoms, while those with the new predicates are called
new atoms.

First, we introduce polarity of subformulas. The positive and negative subformulas of

a formula 7 are defined as follows (see Prawitz [18],Murray [16],Manna and Waldinger [15]).

{(a) 7 is a positive subformula ef 7.

(b) When —§ is a positive (pegative) subformula of 7, then § is a negative (positive)
subformula of 7.

(¢} When GAX or GV X is 2 positive (negative) subformula of 7, then & and X are positive
(negative) subformulas of 7.

(d) When G DX is a positive (negstive) subformula of 7, then § is a negative {positive)
subformula of 7 and ¥ is a positive (Degative) subfermuia of 7.

(e) Whes ¥X G or X 5 is a positive (negative} subformula of 7, then Gx(t) is a positive
{nezative) subformula of 7.

Example 2.3.1. Let 7 be VY (member(Y,L)DX < Y). Then member(Y,L) is a negative
subfermula of 7.

Let 7 be a first order formula. Variables not quantified in 7 are called globai variables.
When ¥X G is a positive subformula er 3X § is a negative subformula ef 7, X is called free
variable of 7. In cther words, free variables are variables quantifed universally when 7 is
converted to prenex normal form.

Example 2.3.2. Let 7 be ¥Y {member(Y ,L)DX < Y). Thea X and L are giobal variables,
while Y is a free variable.

Goals, dencted by F, G, H now on, are defined as follows.

{(a) A new atom is a geal. Varizbles in such an atom are global variables.

(b} Let 7 be a formula which consists of only old atoms and contains no variable other
tkan global variables and free variables. A fermuls G obtained from such a fermula 7
by leaving global variable X as it is, replacing free variable ¥ with 'Y and deleting all
quantifiers is a goal. (Note that 7 can be uniquely restorable ftom G )

Goals containing no global variable are called ground goals. Note that goals in the case
(b} eonsist of only old atoms. Henee if the minimum Herbrand medel M{S5°'9) is fixed, the
sot of all ground goals true in M{S?%9), denoted by BF{5%9), is also fixed, because we assume
a fixed Herbrand universe over which free variables range. Multisets of (ground) goals are
called (ground) goal sets.

Example 2.3.3. Let less-than-all be a new predicate and list,member and < be old predi-
eates. Then less-than-all(X, L) is a goal, whera X, L are global variables. [ist{L] 13 oot oaly
an atom with an oid predicate bui alse a goal, where L 15 a global variable. In general, usual
{ground) atoms are (ground) goals without {ree variables. member('Y, L)DX <!Y is a2 goal
representing VY (member(Y L1DX < Y). member(lY,[5,3))22 <'¥ is a ground geal.

2.4, Deflnite Formulas

In this section, we gemeralize definite clauses to definite formulas and define the new
predicates assumed ip the previous zection by a set of definite fermulas S7°%,

A formula iz called defipite formula wien it is of the form {m=0)
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A - GI.I G:,. ":Gfﬂ
where 4,52, ..., (G m are goals withaut common {ree variables. Definite formulas represent
formulas convertible to prenex normal forms

VX Xa, Xa 3Y LYo, Y (SiAGzA- - ALm T A)
where X;, X3, ..., X, are all globa! variables, ¥,,Y;,.. ., ¥s are all free variables and &, , &3, ..
Gy are quantifier-free formulzs. A fnite set of defnite formulas is called dednite formula
program. Variables appearing in the body and net appearing in the head of a definite formula
are called internal variables of the definite formula.

Example 2.4.1. A formula
less-than-ail(X,[Y;LI) - list{L), X <Y, [member('Y,L) DX <Y).
is a definite formula representing
¥ XYL (list(LAX < YA(Y' (member(Y' L) DX <Y')] Sless-than-all{X.L})

Note that definite formulas include definite clauses as well as general forms of definie
clause programs 4
VR X, XA [EyWE2V- - wEy DplEy Xa,. )
where each E; is of the form
2 Y.L,Y2,. . Y (K=uaXe=teh AKX =ta AB1AB2A - -ABm
and ¥y, Yz, ..., ¥, are all variables in &y, 80,.. ., 80, By, Ba, .o, B

Example 2.4.2 The follawing definite clauzes
less-than-all[X,] |}
less-than-all{X,[YIL}} - X <Y less-than-all(X(L).
are definite farmulas representing
¥ X less-than-all(X| }).
¥ XYL (X<YAless-thap-all[X, L} D less-than-ali[2{ Y ILI)}.

Exemple 2.4.3. The general form of the definite clause program of member
¥ x,L{Ex[,L]_ {X=X1f‘x[.=:}(1ﬂ..1'|}v
ZHo Yo Lo (X=XonL={YL: Amember{X;,L:)) D mexber(X,L))
is represexted by a defnite formula

member(X, L] - =X, AL=7X, L,[Iv{X=XzAL=[Y:|L:]Amezber(X;,Lz]).
2.5, Manipulation of Goals

In thiz section, we introduce three netions about goals, which are uzed intenzively in
the sequel.

The first one means istuitively that some subformulas must be true and scme must be
falce when the whole formula is tree. The must-be-frue and must-be-false subformulas of 3
goal F are defined as follows (cf. positive and negative part by Shitte [22)).

{a) F iza must-be-true subformula of F.
{b] ¥When - is a must-be-true (must-be-false) subformula of F, then G is a must-be-lalse

{must-be-true) subformula of F.

{c) When GAH is a must-be-true subformula of F, then G and H are must-be-true subfor-

mulas of F.

{d} When GvH is a must-be-false subformula of F, then & and H are must-be-Talse

sublormulas of F.

{e) When G2OFH is 3 must-be-falze subformula of F, thea & is a must-be-true subformula
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of F and H is a must-be-false subformula of F.

Those subformulas are related with the polarity, ie., must-be-true subformulas are
always positive and must-be-false subformulas are always negative.

Example 2.5.1. lict(L) is a must-be-true subformula of itself. In general, usual atomic goals
are always must-be-true subformulas of themselves. member (1Y, L) is neither a must-be-true
nor a must-be-false subformula of member(!Y ,L}DX <Y,

The second one is applications of classes of substitutions. A substitution ¢ for a goal G
is called a positive substitution when ¢ instantiates no free variable in G and o(X) contains
po free variable for any global variable X. A substitution e for G i3 called a pegative
substitution when o instantiates no global variable in G.

Example 2.5.2. Let G be the second goal in the body of the definite formula.
less-than-all{X,[Y[L]) - list(L),(member(Y,[YIL]) 2 X <IY).

One of the most general unifier of member(!Y,[¥|L]) and the head of the first definite

clause defining member is a negative substitution e=<'Y =Y >. #(G) represents a goal

member(Y,[YIL} DX < Y.

The last oge is a reduction of geals with the logical constants true and folse. The
reduced form of 8 goal G, denoted by G |, is the pormal lorm in the reduction system
defined as follows.

=true—s falase, = false—true,
truerAG—G, folseAG— false,
GAtrue—(, GAfalse— falze,
truey G=sirue, JolseyG=0G,
Gyvirue—true, GV false—G,
true G —G, Jalse DG —true,
G otrue—true, G2 felse—0G.

Example 2.5.3. Let F be folseDX <Y, Thea F | iz trus. Lot G be true DX < Y. Then
GlisX <V,

3. Unfold/Fold Construetion of Logie Programs
3.1. Coostruction Process

The entire process of our construction proceeds in the completely same way as Tamaki-
Sato’s transformation [24] as follows.

Py :==the initial definite clanze program ; Do := {};
mark every clause in Py *foldable”;
for 1 := 1 to arbitrary N
apply 2oy of the censtruction rules to obtain P, and D, from P, ; and D;_y;

Fipure 1. Construetion Process

Example 3.1. Before starting, the initial defnite clause pregram is givern, e.g.,
Pg @ Cy. list{] |).



Cy. list([X[L]) - list{L}.
Ca. 0<sue(Y).
Cao zuelX) < sue(Y) - X<Y.
Cy. member(U,[UIL]}}.
Cgs. member(U,[V|L]) - member(U,L).
and [Dp is initialized to {}. This example is used to illustrate the rules of construction.

3.2. Basie Construction Rules

The basic part of our construction system consists of four rules, i.e., definition, positive
unfeiding, negative unfolding and folding. In the fellowing, we implicitly assume that a goal
is always deleted from the body of definite formulas when it is the logical constant true acd
a defnite formula is always deleted from the set of definite formulas when some goal in the
body is the lagical constant false.

Deflnition : Let € be a definite formula of the form p(Xy, Xa,.. ., X.) = Gy,Ga,...,Gm
where

{a) pisan arbitrary predicate appearing neither in P, nor in Di_,,

{b) X;,X;z,..., X, are distinet global variables and

{c} predicates of atoms in Gy, Gz, ...,Gm all appearsin P,

Then let F; be P,y (J{C} and D, bte D, J{C}. Do net mark C “foldable”,

The predicates introduced by the definition rule are called pew predicates, while those
in Fy are called old predicates.

Example 3.2.1. Suppose we need a relation meaning that some X is less than any element
of a list L. Then we introduce it by the following definition.
Cs. less-than-ali(X L) - list(L),(member('Y L) DX <'Y).

clauzes.

Positive Unfelding : Let € be a definite formula in Pi—; defining a new predicate and A be
a positive atom withk an old predicate p of some geal @ in the body, where

(Py) it is terminating when all global variables in A are instantiated to ground terms or
(Fz} Ais a must-be-true atem of G.

Then

{a) If there is no definite clanse with unifiable head, then let C! be the definite formula
obtained frem C by repiscing G with G4[false] L.

(b) If, for all the definite clauses in P;_; whase heads are unifiable with A, say Oy, Cg, ..., Gy,
they are unifiable with A by pasitive m g.u.'s 0y, 03, ..., 04 and the bodies of 7, (Cy), 3(Ca),
-+ Tx{Cy) contain no free variable, let G, be the reduced form of oG} atter replacing
£i{A] in £,{G) with the body of ¢,{C,) and €' be tke definite formula ohtained frem
a,(C) by replacing 0,{G) with G;. {Wken the body is empty, teplace with true. New
variables introduced from C, are global variables in G;)

Thea let P, be (Py—y — {C}){J{C},C%,...,C} and D; be D;_y. Mark each C’ *foldable”

unless it is already in Py ,.

Regretiably, the conditions for oy,03,..., 0% are slightly messy. Intuitively, these
conditions are for guarzoteeing that the resnlting formulas fall in the class of deficite
formulas.



Example 3.2.2. Whea Cr is unfclded at its first atom fst(L) in the body, we obtain P,={C,, C3,
ﬂ, Cs . Cﬂ., Cq_, r‘ﬂ} and Dg_i{l':T} where
T T less-than-all(X,] ) - (member(!Y,[ ) DX <'Y).
Cy. lezs-than-ail(X,[Y!L]) - fist{L), {member("Y, VL) DX <IY).

Nezative Unfolding : Lot C be a defiite formula in P;—; defining a new predicate and A
be a pegative atom with an old predicate p of some goal G in the body, where

(N} it is terminating when all global variables in A are instantiated to ground terms.

If, for ail the definite clawses in P,y whose heads are unifiable with A, say Cy,Cz, ..., Ck,
they are unifiable by negative m.g.u.'s 01,02,.. Tk, let Gp be the reduced form afler
replacing A in G with false and let G, be the reduced form afier repiacing 0;(A) in 0y(G) with
the body of #(C;). (Wken the bedy is empty,replace with true. New variables introduced
from C, are free variables in G;.) Then let ¢ be the definite formula obtained frem C by
replacing G in the body of € with Go, Gy, Gz, - . Gy. Thea let P; be (P;—; —{CHU{C"}
and D; be D;—,. Mark C' *foldable” unless it is already in FPi1.

Example 3.2.3. When Cy is unfolded at its alom member(!Y,[]) in the body, we obtain
P3={C;,Cz,C5,Cs,Cs,Cy, Csl} and D3={Cr} where

Y. less-than-all(X,[ ) - (false X <IY)L.
that is,

CY. less-than-all(X,[ ]).
becanse member(1Y, 1) is unifiable with no clause defining meméber. Similarly, when Cyg is un-
folded at its atom member(1Y, VL] in the body, we obtain Py={C}, C3,C3,Cs,Ca, U’g.ﬂ'_f».p}
apd Dy={C+} where T

C}. less-than-ail(X,[Y[L]) =

list(L}, (false DX <Y)|, (trueDX<Y), (member(!Y, L) DX <IY)L.

that is,

CY. less-than-all(X,[Y|L]) = list{L),X <Y, (member(1Y,L) 2 X <TY).

Folding : Let € be a defnite formula in Pi_y of the form A = Fy, Fa, ..., Fa" defining a

new predicate and Crgiger be a definite formula in D;_, of the form "B - G4,G3,...Gm -

Suppose there is a substitution ¢ and a subset {F,,Fi,,..., Fi .} of the body of C such that

the following conditions hold.

(a) Fiy =0(Gy)for j=12,...,m,

(b) o substitutes distinct variables for the internal variables of Cyoider and morecver those
variabies cccur peither in A nor in {Fi, F2,.- o Fa} — {Fi,, Fiy, .., Fi } and

(¢} C is marked *foldable” or m < n.

Then let P, be (P,_y — {C})U{C'} and D; be D;—; where C' is a definite formula with

head A and body ({Fi, Fa,.. Fa} — 1Fi Fisreen Fi.WU{e(B)}. Let C' inberit the mark

ef C.

Example 3.2.4. By foiding the body of Cg except X < Y by C7, we obtain P;.={§_L._C'_=..£_a_.§;~
Ce,Cy, Cy} and Ds={C+} wkere
Cjy. less-than-ali(X,[Y|L]) = X <Y less-than-all{3ZLL).

3.3, Equivalenes Preservation Theorem

The definite clause program Py given first is called the initisl program. When the
construction process is stopped at an arbitrary N, the program is traneformed to Py and
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teveral definitions are accumulated in Dy . Then Py is called a firal program and Dy is
called a definition set of the construction process and sometimes denoted simply by D.

Ezample 3.3 If we stop the construction process at step 5, we reach the final program and
the deficition set
Ps 1 Cy. list{[ ).
Co. list{GLI) o~ list{L).
Ca. D<suc(Y).
Cyq. mue{X) < sue(Y) - XY,
Cs. member(l,[UL]}
Cs. member(U [VIL]) - member(U,L).
Cs. less-thap-all{X,[ ]).
Cy. less-than-all(X,[Y[L]) - X< less-than-all{X,L}).
D : Cq. less-thaz-all(X L) - list{L),[member('Y L) S X <1Y).

TLe most important property being proved in Section 4 is the following theorem.

Theorem 3.3. The minimum Herbrand model of the initial program plus the definition set
Fy | D is identical to that of the Sral program Py.

But in the {ollowing discussion, it i3 convinient to assume that all definitions in D are
given [rom the beginning. To pretend it, for any construction sequence (P, Do),(P1, D1, . o,
{Pn, D), a sequence $5,5),..., Sy is defined by 8;=PF;|J(D — D;) and called a virtual
construction sequence. {This is also due to Tamaki and Sato [24].) In particular Sg=F,{J D
and Sy =~>Fpy. Since the definition rule is the identity in the virtnal construction sequence, it
is ignered when treating the virtual construction sequence. Moreover, for simplicity, we have
restricted the unfoldings to those on old atoms in definite formulas defining new predicates.
Hence definite clauses defining oid predicates in S, are kept fixed during the construction
process and the definite formulas defining new predicates ie the only changing part. We
dezote the former by 5°'¢ and the latter by 57¢*.

4. Preservation of Minimum Herbrand Models
4.1. Semantics of Deflnite Formuls Programs

In this section, we show kow to give semantica to definite formula program §°/¢ ) 5™,
mode! thecretically and proof theoretically.

Suppose we have 3 [ixed set of constant symbols and function symbols, hence a fixed
Herbrand universe H. Fer a given zet of old predicate symbols and a deflnite clause program
§°!¢ defining them, we have a mizimum Herbrand medel M(5°'%), hence a corresponding set
of ground goals M{5°™) true in M(£9). Now suppose we have a definite formula program
S7¢% defining the new precicates. We can conzider various Herbrand interpretations [ such
that J ie identical to M(5°'%) as to the cld predicates and interpretes the new predicates
somebow. Some of them are models of 52| 5™“, but these models are not necessarily
minimum ja the zeneral sense.

Example 4.1.1 Let even be a predicate defined by
even(0),
even{sue{suc{X])) - even{X).
even(X) - even{suc{suc{X).



and our Herbrand universe H be {0, suc(0), suc{suc{0)),...}. Because of the third additional
defizite clauze, there exist two Herbrand models
Mo = { even(0),even(suc{suc(0))),. . ,evenfsuc*'(0})....},
M, = { evea(0),even(suc(0)),.. ,even(suc’(0)),. . .}.
Suppose we have defined a new predicate conditional-double by
conditional-deubie(Y) - evea(X) Dadd(X X)Y).
The Herbracd model correzponding to My is
Mp U{conditional-double{suc{0}); § EN},
which is not included in the Herbrand model correspending to M,
M, |J{conditional-double(suc®*(0}}| § EN}.

Because of the restriction we imposed on geals, we can still exjoy a kind of medel
intersection property. We csll Herbrand models whose interpretations are identical to
M{S°) as o the oid predicates Herbrand models on M(5°').

Lemma 4.1.1. Let A, and M; be two Herbrand models of §etd| ) g™ on M{5°¢). Then
M, ] Mz is also an Herbrand model of $°/4{J 5% on M(5*%).

roof, We prove the lemma for a more general ease such that goals may include positive new
atoms. Consider any grournd instantiation ¢ of all free variables in a ground defnite formula
plti,tz,..ytn} = Gy, Ga,...,Gm. Suppese that the interpretation of e{G,) in My [ My is
true. Because the interpretation by Mj, Mz and M; [ M; are identical on atoms in (G}
except that My or Mj may includes more (possibly zero) positive new atoms in o(G;) which
is not in M) () Mz. Consider all atoms in #{G;) that has the commen interpretation and let
F be a formula obtained by assigning true or false to the atoms according to it. Because the
atoms with the different interpretation are ail positive in ¢(G,) and pesitive atoms in F are
also positive in F | if they appear in F |, the result of reduction F | is exactly the logical
comstant true, hence @(G,) are also true in M, and M3, Then, since this holds for all § and
M, and M are both Herbrand models of $°/¢| ) §™¢¥, p(ty, t2,.. ., ta) is included in both M,
and Ms, hence in M, [} M, when G, Gz, ..., G are tree in My ] M. Because this holds
any ground instance of definite formulas, M, [ Mz is an Herbrand modei of Sold| jgnew,

Collorary 4.1. §°4|J 5™ has a minimum Herbrand model in the class of the Herbrand
modeis on M(5°'4).

Proof. Because M[S®9) | {p(ty, t2,...,ta) | pis a new predicate and ty,f3,...,tn € H} s an
Herbrand model of §°9() §7¢%, there exists at least one Herbrand model of §°¢[J 5™ in
the class. Then the intersection of all these Herbrand modeis {7 M is the minimum Herbrand
model we want.

We can still enjoy a kind of continuity as well. Let us define the transicrmation T of
Herbrand interpretations on AM(57¢) as follows.

T(I) = M(599) | J{p(t; tz,.. . ta) | p is a pew predicate,
plty, t2, .. ta) - Gy, Ga,. .., Gm 133 ground instance
of a definite forwuls in §™**% and

all Gy, Ga,..., G are either in M(5%%) orin I }.

Lemma 4.1.5. U™ TYM(5°¢)) is the minimum Herbrand medei in the class of the

1= 0

Herbrand models on M{5™'9).
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Proaf It is proved similarly to the proof for usual dafinite clavse programs. See {1 or [7].

Let §7'¢ and §™* be as before. A proof tres, or simply proef, of a ground goal G in

Seid| J 5 is a tree T lebelled with ground goals defined as follows.

(a] T isa proof of G in §°°|}5"™Y when it is a tree consisting of a single nede labelled
with a ground gezal G in M(S°9).

(b) Let T\, T, ..., T be immediate subtrees of T and Gy, Gs,..., G be their root labels.
T is a procf of G in §°'¢|J 5™ when (7 is a ground new atom A, the root label of T
is A, "A:- G, G, ..., Gn" it a ground instance of some definiie formula in ™% and
T1,T2,...,Tm are proofs of Gy, Ga,...,Gm in §%4|) 5™ respectiveiy. (The definite
formula is szid to be used at the reot and Ty, 7o, ..., T\, are called immediate subproofs
of T.)

Example 4.1.2. Whez less-thon-cil is defined by
less-than-all{X L} :- list(L),member{Y, L) DX <Y,
the tree below is a proof of less-than-all(2, (5, 3]).
less-than-all(2,!5,2])
/ "
lisz{(5,3]) member(!Y,[5,3) D2<1Y

Example 4.1.3. When less-than-all is defned by
less-than-all(X,] ]).
less-thag-all(X,[Y|L]} - list(L), X <Y member{'Y,L) DX <'Y.
the tree below is a proof of less-than-all(2, 5, 3]).
less-than-all(2,[5,30)
! i kS
list({3]) 2<5 member('Y,3)02<!Y

Example 4.1.4. Wher less-than-gll is defzed by
less-than-all(X,[ 1).
less-thap-all{X,[Y|L]] - X <Y less-thap-all{X,L).
the tree beiow ir a proof of less-than-all{2,]5, 3]).
less-than-all{2,/5,3])
! )
2«5 less-than-all{2,[3])
PN
2<3 less-than-all{2,! ]}

Lemma 4.1.3. The set of all ground atoms that have procfs in S°¢[ ) 5™ is identical to
the minimum Herbrand model oo M{5°9).

Froof. Trivial from the continuity of T shown by Lemma 4.1.2.

Befere intreducing a well-founded erdering, we notice about validity of goals in unfold-
ing.

Lemma 4.1.4.

(a) Let Gy, G,,. ., Gy be goals obtained from a ground goal G by positive unfolding. Thea
G is in M(5°9) if and only if a ground instance of some G, [1<i< k) is in M{5°%).

(b) Let Gp, Gy, Gy,..., Gy be ground goals obtaied from a ground goal & by negative
unfolding. Then @ is in X{5°") if and only if all G, (0<i<k) are in M(S5°'9).

11



Outlige of Proof. Note that M(5%%) is a model of the completion of §%¢ and that
replacement of equivalence with equivalence using the completion of §¢!d kepps validity.
Suppose an unfolding is done at a ground old atom A

As for (a), it is easy to show that G is in F(5°'%) if and only if GVGaV---Gy it in
Husaid}.

As for (b}, G is in M(5%4) if and only if ADG and ~ADG are in M(5°'¢). The former
goal is in M(5*) if and only if Gy, Gz, ..., Gk are in M(S79). The latter goal is in M(54)
if and ooly il Gg is in M{5%¢).

4.2. A Well-Founded Ordering on Ground Goal Sets

In this section, we define a siightly complicated ordering =< pr on ground goal sets true in
M(5°4), i.e., the multizet on B{5°'¢), which plays a basic role to introduce two important
notions, rapk and raok ordering, in the next section.

~ on M(5°%%) is the minimum transitive relation satisfying the following conditions.

(P,) When G' is a ground instance of a goal obtained from a ground geal G by positive
unfolding at a terminating atom A tkea G' < G.

(P;) When G' is a ground instance of a goal obtained from a ground goal G by positive
unfoiding at a must-be-true atem A using the definite clause used at the root of the
minimum proof of A, then G' < G.

(N) When G' is a ground geal obtained {rem a ground goal G by negative unfolding at a
terminating atom A then G' < G.

Example 4.2.1. Let 5% be P in Example 3.1 defining list, member and <. Then
2<5 < member(!Y,[5,3)22<"Y,
member(!Y,[2])D2<!Y < member(!Y,[53])D2<"Y,
list([3]) = list([5,3]).

Lemmasa 4.2.1. = iz a well-founded ordering.

Proof. 1t is enough to prove that there is no infinite decreasing sequence Fp = Fy > F3 >
cev = Fn = -oo. Let us call o{ByAB2A---ABm) descendant of A when A in F; is replaced
with o{ByABzA- - -ABm) in Fiy. Note that free variables in such an infinite sequence are
instantiated only by negative substitutions in megative unfoldings. Hence,any sequence of
descendants of  negative ground atom A in Fp is a branch of a search tree of {A} or part of
it. When A is terminating, such a sequence is finite. Hence there cccurs only finite oumber
of nezative unfoidings in the sequence. Let the resuit of the last negative unfolding be Go.
Now,it is enough to prove that there is no infinite decreasing sequence Go »= Gy > Gz =
e = G, > ---in which all the > relations hold by positive unfoidings in the definition
above. Again, any sequence of descendants of a positive ground atom A in Gy is a branch
of 4 search tree of {A) or part of it. (Free variables in A act as if they were new constants.)
Because of the eonditions of positive unfoidings, we can say again that such a sequence is
finite.

<, on the multiset of M({5°'¥) is the multizet ordering over = i.e., the minimum
transitive relation satisfying that Gs' <, Ga when a ground goal set G4' is obtained by
replacing some ground goal G in a ground goal set Gs with (possibly zero) ground goals les:
than & by the ordering <.

Example 4.2.2. Let §°'* be as before. Then
{tist([3]),2 < 5, member('Y,[3])>2 <!Y}
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< pg {lizt(13]), member(!Y,[5, 3]} 22 <V}
<z {list(}5,3]), member(!Y,[5,3]) 22 <!Y).

Lemmsa 4.2.2. = 5 i5 a well-founded ordering.

FProof. In general,a multiset ardering over a well-founded ordering is always a well-founded
ordering. See Dershowitz and Manna [8] p.46T.

4.3. Rank and Rank Ordering of Goals

The raok is a mapping renk from the set of all ground goals true in M{S‘“"USE"‘}
to the set of all ground gozal sets true in M(5°%), i.e., rank ; M(S"14 ) 57°%) — PLe(Cha }
defind as follows,

(a) rank{A) = {G:,Ga,...,Gm} when Alsaground new atom, where *A:- Gy, G3,...,Gm
is a ground instance of the dedinite formula defining the new predicate in P3** used at
the root of the minimum proof of A in 54| 53¢®.

(b) rank(G) = {G} when G is a ground goal consisting of old atoms.

Example 43.1. The rank of 2 < 5 is {2 < 5}. The rank of less-than-all(2,][5, 3]} is
{lss2{[5, 3]}, member('Y, [5,3])22 <'¥}.

The rank crdering is a well-founded crdering < on the set of ground goals M{5°!4| ) 52¢*).
Let A and B be two ground goals. A -2 B is defined as Tollows.
(a) A< B when rank{Ad) < rank(5).
{b) A< B when ronk{A) = rank{B) and the predicate of A is old and that of B is new.

Example 4.3.2. Let 5%% and 5™ be as before.Then
less-than-alif2,]3]) < less-than-all{2,[5,3]),
because
rank(less-than-all(2,[3]))={ list({3]), member('Y [3]) S 2<!Y }
< ar { list({3]),2 <5, member{1Y,12]) 22<!Y }
< ar { list({5,3]),2 <5, member('Y,[3])>2<!Y }
< pe { list(]5,3])),member{!Y,[5,3]) 22<!Y }
= rank(less-than-all(2,]5,3])).

4.4, Rank-Consisient Proof

Let 5, = §%%| | §2¥ be a definite formula program. A proof T of a ground geal G in

5y 13 said to be rank-consistent when it satisfes either of the following conditions.

(a) T is a rank-consistent proof of G in §; when it is a tree consisting of a single node
labeiled with a ground goal G in 3(5°%).

(b} Let Ty, Tz,..., T be immediate subproofs of T, G, G3, ..., Gm be their root labels azd
C be the definite formula used at the root of T. T is a rank-consistent proof of G in
S; when (1) G iz a ground new atom A, (ii) rank{A) >y rank(G;)|renz{Ga) -
Urank(G,,) with equality holding only when C is not marked “foldable” (iil) G > G,
for all k (1< k<m) and {iv) T4, T;,..., T are rank-consistent proefs of G;,Gz,...,Gm
respectively.

Example 4.4.1. Let §2°% be a defizite formula program
less-than-all(X,[ 1).
less-than-all(X,[Y{L]} - X <Y less-than-all{X{L).
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Then the proof of less-than-all{2,[5, 3]) below
lese-than-all{2,[5,3])
/ N
2<5 less-than-zll(2,[3])
/ !
2<3 less-than-all(2,[ ])
is rank-consistent, because
rank(less-than-all(2,]5,3])) = { list{[5,3)), member(!Y,[5,3])D2<!Y }
> ae { list([3]),2<5,member(!Y,[3]) D2<!Y }
= rank{2<5) |J rank{less-than-all(2,[3]}],
rank(less-than-all(2,3])) = { list{[3]), member{'Y,[3)) D2<1Y }
> ar { list{] ]),2<3,member(1Y,[}22<!Y }
= rank(2<3) |J rank{less-thaz-all(2,] ]}).

4.5. Proof of the Equivalence Preservation Theorem

In this section, we prove the equivalence preservation thecrem. The following proof
is, even textually, isomerphic to the one by Tamaki and Sato [24] intentionally in order to
emphasize the role of our ordering. We prove the following theorem.

Theorem 4.5. Let §;,5z,..., 5y be the virtual tracsformation sequence. Then M(Sy) =
M{5q).

As was noted, we assumed for simplicity that $°'¢ js fized. Hence we only need to prove
the theorem as for new predicates. The proof of the theorem consisis of showing that ihe
following iovariants hold for each 1 {0<{i<N).

1. M(5) = M(5).
12. For each ground atom A in M(S;), there is a rank-consistent proof of A in 5;.

Base Caze :

The first invariant 11 trivially helds for ¢ = 0. As for the second invariant 12, far any
ground new atem A in M{S5g), the proof of A is only one using the defnition of the new
predicate in D, which is obviously rank-consistent. (Sp = Py {J D and the clauses in Fg are
marked “foldable” while those in D are not.)

Induction Step :
Tke preservation of the invariants is proved in the three jemmas below.
Lemma 4.5.1. If the invariant 11 holds for S;, then M(Si1) © M(S)).

Froof. Let 4 be a ground new atom in M(S,4) and T be its proof in 5;+ ;. We construet
a proof T of A in S; by induction on the structure of T.

Let C be the definite formula used at the root of T and T3, Tx, ..., Ta [(n=>0) be the
immediate subproofs of T. By induction hypothesis, we can construct proofs T4, T%,..., T,
in S;; with each T cerresponding to T.. I! C is in S;4,, we can immediately censtruct
T' from C and the preefs T, T4,.... T',.

Suppose C is the result of positive unfolding. Then for scme 7 {1 <j<n), say 1, the root
label Gy of Ty iz a ground instance of a goal obtained frem G' by the positive unfolding.
Because G' is true in M(S*4) if Gy is true in M(599) and G' itsell is a proof T}, we
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can construet T frem T, 7%, ..., T, using the defnite fermula C' in 5; of which C is the
unfclded result.

Suppoze C i3 the result of negative unfolding. Then for some f1, 52, .. dm (1 < =n),
sa¥ 1,2,...,m, the root labels Gy, G2,...,Gm of Ty, T3,..., T, are ground goals obtained
from G by the negative unfciding. Because G' is true in M(S5*'4) iif Gy, Ga,..., G, are true
in M(5°9) and G,,Gg,...,Gm themselves are proofs T',T%,..., T}, we can construct 7'
frem T4, 7%,..., T, usiog the defnite formula €' in 5; of which C is the unfolded result.
Suppoze  is the result of folding. Then for some 7 (1< 7<n), say § = 1, the rcot label
Ay of Ty is ap instance of the folded geal in the body of €. Because A; is provable in §;
by TV, it is also provable in Sy by the invariant 11, So there should be a ground instance
*A=-G,,G,. .., Gn" of :ome definite formula in D such that G, Gy, ..., Gy are provable
in 55. Again by 1, Gy, Gs, ..., G, are provable in §;. Let ©" be the clause in §; of which
C is the folded result. Owicg to the condition of folding, we can eombine the proofs of
G1,G2,..., G and proefs 7L, 7%,..., T with C' to obtain 77, the proof of A in 5.

Lemmsa 4.5.2, If the ipvariants [1 and [2 hold fer §;, then AM(S;.) 2 MI(S,).

Proof Let A be a ground new goal in Af(5;). Then by the invariart 12, there is a rank-
consistent proc! T of A in S;. We construct a proef T¥ of 4 in S;4; by induction on the
well-founded erdering .

The base case where A is provebie in &y itsell and 4 has ap old predicate ovbiously
bolds because then A should be a ground instance of seme unii clause in Py which should
be ia both 5 and S+ g.

Let C be the definite clause in S; used at theroot of T and Ty, Ta, ..., Ta (n>>0) be the
immediate subproofs of T. When a root label G; of T; consists of old atems, G, itself is a
proof T.. When G, is a ground new atom, by the invariant 12, A % G, holds. So by the
induction bypothesis there are proefs T4, T%,..., T, of G1,Ga,...,G, in Si4q1. T Cisin
8;11, the construction of T' iz immediate,

Suppese C is positively unfolded into €Y, C5, ..., C} in Si1, and assume that the root
label G, of Ty is the instaoce of the goal at which C is ucfoided. Let Gyy,Gis,.... G
be the ground ipstaceces of the goals to which 7, it unfolded. Becausze some (o is true
In M{S%)}if Gy is true in M(S®9), Gy iz itsel! a proof TY, in M(S;5:). Cambining the
proofs T4, T4, ..., T, with some C7 (1<I<k), we get a preef T" of 4 in 5,4;.

Suppose C is negatively unfoided into C* in S;4; and azsume that the root labels G; of
T, is the instanee of the goal at which C i3 unfolded. Let Gyp,Gqy, ..., Gix be the ground
geals to whiek G, is unfolded. Because all Gyp, Giy, ..., Gx are true iz M{5°9) if G,
iz true in M(8°4), Gig, Gy, ..., G1x are themeeives prosfs T Thar - Thy in M(Si)
Combining the preefs T, T, ..., T\, T%,..., T, with the definite clanze C', we get a
preef TM of Ain 54 ;.

Now suppose C is folded inte C' in §,. ;. Assume that the root labels Gy, Gz,..., Gy
ef Ty, T2, ...,Ti (k< n) are the instances of the foided geals in C. Let B be a goal such that
“B - Gy,Gg,..., 3" is a ground instance of the definite clanse in 2 nzed in the falding. By
cefnitien, rane{G)Urank{G) -+ |Uran&{G:) > uw reni{B). By the condition (¢} of
folding, either C is marked “foldable”, which means rank{A) = o rank(Gy) U rank(G2) - -
Urank(Gy), or k < n. In eitker case, rank{A)} > ronk(5) holds. Moreover, by the equiv-
alence of §; to S5, B is provable in 5,. Therefore, by the induction hypothesis, B has a
preef Tp in S;y. Combining the proofs Te, Thoy, ..., T. with the definite clause &', we
ebtaiz the preof T" of A in S, '

Lemma 4.5.3, If the invariants 11 and 12 hold for §;, then 12 halds for 5, b1

15



Proof. We first note that in the proof of Lemma 2, T' is constructed in such a way that it
is rank-consistent. Thus every goal in M (S} has a rank-consistent proof in 5;4 ;. Because
M(8;5+1) € M(S;) by Lemma 4.5.1, 12 holds for Sig1-

This completes the proof of the theorem.
5. Splitting Rules

In order that our comstruction system can obtain definite clause programs as its final
results, we need several augmenting rules, In this section, we only show the simplest ones
for splitting, which are unnecessary in Tamaki-Sato’s trapsformation system but necessary
in our system because of our gemeralization to definite formulas.

5.1. Positive Splitting

We have three splitting rules corresponding to positive subformula of goals of the forms
HjVH}V' ' 'VH}, HlﬂHzﬁ.' * ."'\Hi_ H-II.d H;DH;.

Positive v Splitting : Let € be a definite formula in F,—; and G be a goal in the body.
When H is a pesitive subformula of G of the form H,VHaV- -WHy (k > 1) and each free
variable !X appearing in H; appears oniy in H; (1 <i<k), let €}, C3, .., C', be the results of
replacing H in C with Hy, Ha,..., Hy respectively, ie., Cy|Hil,Cu|Hza), . ,CxiHsl. Then
let P, be (P —{CHUACY, €L, ..., CL} and D; be Di—y. Mark each C'; “foldable” unless
it iz already in Fi—:.

Example 5.1.1. If the member relation is defined by its general form
member(X,L) - =Xi1AL=[X, LL:]]V{X=I-;J"|.L=[Y1|L2]nmtmh:r{xg,Lg]}.
we can apply the pesitive V splitting to the body and have
mem‘bef{K,L] - ]{=X1:"-.L= [:(llLi;
member(X,L) - X=X,AL=[Y3|L;]Amember{Xa,L3).

Positive A Splitting : Let C be a definite formula in P, and G be a goal in the
body. When H is a positive subformula of G of the form HyAHapn - -AHy (B > 1), let
G, Gh, ..., G be the results of replacing H with By, Ha, ..., Hy respectively, ie., Gg{H1]
GylHa),...Gu|H} and C' be the resuits of replacing G in € with Gy,Gg,...,Gs. Then
let P, be (Pi_y — {CHU{C'} and D; be Di—y. Mark ' “foidable® unless it is already io
Fi—1.

Example 5.1.2. After the positive Vv splitting in Example 5.1.1, we can apply the positive A
splitting and bave
member(¥,L) - X=X, L=X,]L,|.
member{X, L) - X=Xz L=[Y;|La}member(Xz Lz}
from which we can obtain the usual definition of member
member{U,[UIL}}.
member(U,[VIL]) :- member({U L}
by positive unfoldings on the equations of the bodies.

Positive = Splitting : Let C be a definite formula in P;—; and G be a goal in the bedy.
When H is a positive subformula of G of the form Hy D H; and each [ree variable appearicg
in H, appears only in H, (1<i<2), let ', and C% be the results of replacing H in C with ~H,
and Hs respectively, i.e., Cgi~H,| and Cy[Hz]. Then let Py be (Pi—y — {eHU{c). CL}
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and D) be D;—;. Mark each C} “foldable” unless it is aiready in Fi—;.

Exampie 5.1.3. Let not-lost be a pradicate defined by

not-lost{Chess-Board) - be-checked{Chess-Board)} Descapable{Chess-Board).
Then by applying positive O splitting, we have

not-iost{Chess-Board) :- =be-checked{Chess-Board).

not-lost{ Chess-Board) :- escapable{Chess-Board).

5.2, Negative Case Splitting

Again we have three splitting rules correzponding to negative subformula of zoals of the
forms HywHaV- -V Hy, HiAHzA- - AHy and H1 2D Ha.

Negative vy Splitting : Let © be a definite formula in Py, and G be a goal in the body., When
H is a pegative subformula of G of the form HyvHaV---VHy (k > 1), let G, GL, ..., G, be
the resuits of replacing H with Hy, Ha, ..., Hj respectively, i.e., Gg[H1|,Gu|Ha|,....Gu[Hi]
and €' be the result of replacing @ in C with &y, Gy,...,Gx. Then let P; be (F_, —
{CHU{C'} and D; be D;_,. Mark C' “foidable® unless it is already in P;_,.

Megative A Splitting : Let C be a definite formuia in P,—; and G be a goal in the body.
When H is an outermest negative subformula of the body of the form H AHA---AH,
(k > 1) and each free variable !X appearing in H,; appears only in H, {1<:<k), let

4 €%, ..., Ch be the results of replacing H in € with H;, Hz, ..., Hy respectively, i.e.,
Cy|H\),C|Ha),....Crr[Hi). Then let P; be (Piy — {C})UICY, CY, ..., C\} and D; be
D 1. Mark each C *foldable® urless it is already in Pi—;.

Negatlve = Splittlng : Let C be a definite formulal in F;—; aod G be a goal in the body.
When K is an cutermeost negative subformula of some goal & in the body of the form
Hy 3 Hjz, let G acd G5 be the resulis of replacing H with Hy and =H3 respectively, ie,
Gg[-H,] and Gy[Hz) and €' be the result of replacing G in € with G and G5. Then
let P be (Pi_; — {C}U{C"} azd D; be D;_;. Mark €' “fcldable” unicss it is already in
Pi—-]-

5.3, Safety of the Splitting Rules

Tamaki and Sata [24] discussed about various augmenting rules as well. As was noted by
them, replacements of goal sets with its equivalent ones do not necessarily preserve minimum
Herbrand models when they are combined with the unfold/fold rules. The augmentiag rules
which preserve minimum Herbrand models are said to be safe by them. In this secticn,we
show that our splitting rules are alwayy sale, which suggests a general way to discuss the
salety of another augmentizg rules.

Theorem 3.3. Splitting rules are safe.

Outline of Proof. Suppese, in general, that a definite formula € is replaced with a definite
formula O, where C' i3 obtained by replacing a goal set Gs in the body of C with another
geal set G#'. Then it is enough to show that Ga’ = py Ga. As to the splitting rules, we add
the following to the deflnition of =.

(5) Whezn G is obtained from & in any of the aplitting rules, G' < .
Then the proof in 4.5 goes in the completely same way using the new ardering <.
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6. Diseussion

Unfold/fold approaches are well-known and have been studied by many researchers.
Our new contributions in this paper are the following three.

(i) We have extended the class of formulas permitted 23 definitions.

Our theorem is a generalization of the equivalence preservation theerem by Tamaki
and Sato {24]. They focused their attentions on transformation, where the definition rule is
always done by definite clauses. Sato and Tamald [19] have also studied program synthesis
from mere general specifications and developed a technique called double negation [19]. Our
approach unifies their transformation and a part of their syothesis by extending the class
of formulas permitted as definitions and generalizing the unfeld/fold rules as well as by
introducing splitting rules to cover some of their synthesis metheds.

Clark [5] permitted a more general class of formulas as definitions, where goals in
our paper are any first order formulas. We have restritced the goals to be two-layered,
i.e.,comaining giobal and free variables because of two reasons.

One reason is that, even with such a restriction, defnite formulas are fairly effective
considering its easiness to implement. One might say our definite formulas are too restrictive
to use as definitiens of predicates to be constructed. But, a fairly lot of examples published
in literatures can be defined by definite formulas (with slight medification). Iz addition,
because we have only global and free variables, we oniy needs distinetion of two Hod of
wariables and a little care of unification.

(i1} We have clarified the importance of “terminating” and “must-be-true”.

Another reason of our restriction on goals is its simplicity to present the theoretical result
without too mueh complication. Though Clark discussed deduction based construction of
Prolog pregrams from more general class of formulas, it has been open whether and when
his construction preserves equivalence. It is not very dificult to extecd our goals to full
frst order formulas and present the method with explicit quantiflers, as was done by Clark,
and indeed it will eliminate some unnatural cocditions on free and internal variables in our
positive unfoldings. We expect that, even if such an extention is done, our discussion still
holds. But we are afraid that it makes it slightly hard to see the preservation of minimum
Herbraod medels.

Here we explain more why thesze restrictions are necessary by examples. Why must
atoms in positive unfoldings be terminating when they are not must-be-true?

Example 6 1. Let loop true-and-loop and fs-true be pracicates defined by
loop(X) - loopiX}.
true-and-loop(X) - is-true true-and-loop(X).
is-true.
Supose we have defined vacantly-true by
vacantly-true(X) - loop(X) Dtrue-and-loop{X).
Then,we cbtain
vacantly-true(X) - loop(X) Dtrue-and-loop(X).
after positive unfoldings on true-and-leop{X) and is-frue. We should not mark the definite
formula “foldable”, because, if we did, we wouid have
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vacantly-true(X) - vacantly-true(X).
by folding, whose minimum Herbrand model is different from that of the initial definition
of vacantly-true. One might think that it werks if we adopt a positive unfolding rule such
that it does not mark *foldable” and inherit the mark when it is done on non-termipating
atoms and mark “foldabie” only when it is done on terminating atoms. But the exampie
above iz against it

Why must atoms in negative unfoldings terminating? It is already obvious from Example
6.1. This suggests that finite-failure sets are not preserved in Tamaki-Sato's transformation
iz general.

Exampie 6.2. Let us redefine the tautelogically true predicate true-or-locp in Example 2.2.2
using definite formulas as foilows.
true-or-loop(X) - ={is-falze Aloop(X]).
loap(X) - loop{X).
Of course, leop is not terminating. Thea by unfolding on loep{X) and folding, we have
true-ar-loop(X) - true-or-loop(X].
for which no ground goal true-cr-loop(t) succeeds. This example is obtained from the
foilowing example due to Tamaki [23] showing that Tamaki-Sato’s transformation dees not
aiways preserve fnite-failure sets.
faise-and-loop(X) :- js-falze loopiX).
loap(X) :- loap(X).

Oune may wonder why acy instance of A must be terminating whez all global variables
are instantiated to ground terms.

Example 6.3. Let our Herbrand universe be {0, suc(0), suc{euc{0}),...} and number and
is- false be predicates defined by

number{().

number{suc{3}] :- oumber{X).
Suppose we have delined

true-or-aot-number{X) - =(is-faiseAnumber{’Y7}).
The predicate truc-or-not-number is intended to be tautologically true. If we had oot the
condition, we would unfold co numéer(!Y) as foliows.

trug-or-not-number(X) :- —(is-falseAnumber(0}), —(is-falsepAnumber(!Y]).
The first goal would be reduced to true by unfolding is- false. Thus, by folding by true-or-
not-number{ X}, we would have

true-or-not-nnmber{X) - true-or-not-oumber(X).
for which no ground atom succeeds,

{iil] We have devised a more atstract definition of the rank,

The definiticn of rank by Tamaki and Sato i3 mere conerete, The rank of a ground
atom A in their proof is a mappicg rank @ M(Sy) — N defined as follows.
(3) rank(A) is the minimum zize of the proof of A when A has an old predicate.
(b) rank(A) is the minimum size of ihe proof of A minus one when A bas a new predicate.

We geoeralized it to more abstract one based on the ordering - ar on the muitiset
of M(5%¢), The intuitive meaning of our orderings is as follows. When we unfcld at an
atom in a gosl, these unfoldings contribute somehow to know whether the goal is true or
oot except two cases. One is the case in which whether the goal is true or not does not
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depend on whether the atom is true or not. Another is the caze in which usual one-step
S1LD-resolutions in execution do ot advance us closer to know whether the goal is true or
those in the *Negation as Failure® [4] do not advance us closer to ¥now whether the geal is
false. The mechanism of marking definite formulas “foldable” or ipheritting them, with the
conditions of unfolding, guarantees that fcidings are done only afler we get strictly closer
samhow to the conseqguences.

We expect that this abstract definition of < still works even if the definition of our
goals and unfoiding rules are extended.

7. Coneclusions

We have presented a method to construct logie programs based on generalized unfold/fold
rules. This method is being used in Argus/C, a system for constructicn cf Prolog programs
under development [11],[12].
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