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Abstract

Soundness and completeness of extended execution devised for proving properties of
Prolog programs are presented. Extended execution is a generalization of the execution of
FProlog. It is applied to a class of first order formulas, which is called S-formulas and includes
both universal formulas and wsual execution goals. It iz proved that an S-formula § is
provable by extended execution if and only if S is a logical consequence of the completion of
program P in the sense of Clark. This result is notl only a generalization of the completeness
of the SLD-resolution but aizo that of the “Negation as Failure” ruie.
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1. Introduction

The intimaey of Prolog to first order logic is expected to bring advantages to various
manipulation of Prolog programs. We have developed an extension of Prolog execution
for a class of first order formulas, which is called S-formulas and includes both universal
formulas and usual execution goals [9]. It is actually used for first order inference in our
verification system for proving properties of Prolog programs with computational induction
[10] to show that a specification in S-formula is valid in the minimum Herbrand model of a
El¥vel program.

In this paper, we prove soundness and completeness of our extended execution. That is,
an S-formula S is provable by extended execution ¥ if and only if § is a logical consequence
of the completion P* of a given program P in the sense of Clark. This result is not only a
generalization of the completeness of the SLD-resolution (van Emden and Kowalslki [5], Apt
acd van Emden |1]) but also that of the “Negation as Failure” rule (Jaffar et al [7]).

After preparing ceveral notions in Section 2 and summarizing extended execution in
Section 2, we prove its soundness in Section 4 first. Then in Section 5, alter introducing
some class of extended execution, we prove the completeness theorem by showing existence
of a model of P~ |J{—=5} for any universal formula § not provable by the class of extended
execution. Lastly in Section 6, we discuss the implications of the soundpess theorem and
the completeness theorem.

2. Preliminaries

In the following, we assume familiarity with the basic terminology of first order logic
such as term, atom (atomic formula), positive and negative literals, formula, substitution,
most general unifier (m.g.u.) and so on. We also assume knowledge of the semantics of
Frolog such as completion, minimum Herbrand model and transformation T of Herbrand
interpretations (see [5],[1],(4],112],13],[7]). We follew the syntax of DEC-10 Prelog [17]. As
syntactic variables, we use X, Y, Z for variables, a,¢t for terms, A, B for atoms, L for literals,
C for definite clavses and 7, G, ¥ for formulas, pessibly with primes and subscripts. In
addition, we use ¢, r, 4, v, § for substitutions, F¢(¥) for a replacement of all occurences of a
formula § in a formula 7 with ¥ and 75(¥] for a replacement of an occurence of a formula
G in aformula 7 with ¥,

2.1. Polarity of Sublormulas

We generalize the distinction of positive and negative goals. The positive and negative
subformulas of a formula 7 are defined as follows {see Manna and Waldinger [15], Murray
(18], Prawitz [18]).

{a) 7 is a positive sublormula of 7.
(b} Whken —-& is a positive {negative) subformala of 7, then § is a negative (positive)

subformula of 7.

{c) When GAX or S X s a positive [pegative) sublormula of 7, then & and ¥ are positive

[negative) subformulas of 7.

(d) When G2 X is a positive (negative)} subformula of 7, then & is a megative {positive)

t In aur previous papers [@),[10], we used the term *5-formulas® for a larger class of frst order formuias and
copjectured the completeness of extended execution for it. Theuwgh the result of this paper shows that che
conjecture is wrong and ihe completeness kolds only for a slightly smaller class of Aret order formulas, i is
still large enough in practice. (See Example 6.2.)



subformula of 7 and ¥ is a positive {negative) subformula of 7.
(e) When VX G or 3X G is a positive (negative) subformuia of 7, then Gx({t) is a positive
(negative) subformula of 7.

Example 2.1. Let T be

¥ B,U,A,,V,A (reverse(B,[U[A, |)Aappend(A,,[V],A) D3 Aj (reverse(B,Az)Aappend(Az,[V],[U|A))))
Then 3Az(reverse(B, Az)nappend(Ag, (V], [U|A])) is a positive subformula of 7, while reverse(3, [IV1A4,])
is a negative subformula of 7.

2.5, S-fermulas and Goal Formulas

We introduce a clars of first order formulas, which are called S-formulas and inciudes
the class of all universal formulas. S-formulas are represented by goal formulas.

Let 7 be a closed first order formula. When ¥X G is a positive subformula or 3X§
is a negative subformula of 7, X is called a free variable of 7. When VY ¥ is a negative
subformula or 3Y ¥ iz a positive subformula of 7, ¥ iz called an undecided variableof 7. In
other words, free variables are variables quantified universally and undecided wariables are
those quantified existentially when 7 is converted to prenex normal form.

Example 2.2.1. Let 7 be
¥B,U,A,,V A (reverse(B, [UjA; ]| Aappend(Ay,[V],A) 33 Az (reverse(B,Az)Aappend(A,[V],[U]A]))
Thern B, U, A;, V and A are all free variables, while Az is an undecided variable.

A closed first order formula 5 is called a specification formuia {or S-formula for short)
when

(81)no free variable in 5 is quantified in the scope of quantification of an undecided variable
in § and

{(S2) each undecided variable appears only in some positive conjunction of atoms Ay AdaA: - -Adx
{E=1).

In other words, S-formulas are formulas convertible to prenex normal form VA, Xg,..., X,
2¥y, Y2, ..., Y 7 and each Y| appears in some positive conjunction of 7. (Hence none of
Y1, Ys,..., Y appears among the negative atoms of 7.) Note that S-formulas include usual
execution goals 3Y,,Ya, ..., Y (Arndg A ondy).

Example 2.2.2. Let § be

¥ B, U, A,V A (reverse(B, [U|A;|)Aappend{A, ,[V],A) 23 Aj (reverse(B,Az)Aappend(A2,[V]IU|ADN
Then § is an 5-formula, because free variables B, U, A;,V and A are quantified outside 34,
and Ay appears ozly io the pozitive conjunction reverse(B, Az)Aappend{Asz, [V, [U]A]). An
execution goal

3 C append([1,2],13],C)
i3 also an S-formula.

A formula & obtained from an S-formula S by leaving free variable X as it is, replacing
undecided variable ¥ with 'Y and deleting all quantifications is called a goal formula of 5.
Nete that § can be uniquely restorable from G. In the following, we use goal formulas in
stead of original S-formulas. Goal formulas are denoted by F,G, H,I,J.

Example 2.2.3. An S-Tormula
¥B,UA, VA {reverse(B,[U|A, [ Aappend(A, ,[V],A) 23 Ag (reverse(B,Az) Aappend(Az,[V], [UIA]))
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is represented by a goal formula
reverse(B,[U[A, )Aappend(A,,[V],A] Dreverse(B,’Ax)Aappend(TAz, [V],[U]A]).
An execution goal
2 C append([1,2],[3],C)
is represented by a goal formula
append(]1,2],[3],7C).

An S-formula S is called a universal formula (or quantifier-free formula) when § has no
undecided variable. We use universal formulas and their goal {ermulas indistinguishably.

Example 2.2.4. A universal formula
7 AB [reverse(A B) Dreverse(B A))
is an S-formula and represented by a goal formula
reverse(A B) Dreverse(B A).
A goal formula
reverse(B,[U]A;)Aappend(Ay,[V],A) Dp(B,V,U,A)
corresponds to a universal formula
¥ B,UA,, VA (reverse(B,[UIA [)Aappend(A,,[V],A) Dp(B,V,U,A)).
This universal formula is cbtained from
reverse(B,[U|A;])Aappend(Ay,[V],A) Dreverse(B,'A; JAappend(Az, [V],[UIA])
in the example above by introducing a definite clause
p{B,V,UA) - reverse{B,A;) Asppend(As, [V],[UIALL
and replacing the conjunction reverse(B, 14a)Aappend(1Ag, [V, [U|A]) with p(B, V', U7, A).
This conversion of an S-formula to a universal formula on the surface i3 wzed in the proof
of the completeness theorem in 5.5.

2.3. Manipulation of Goal Formulas
Lastly we inlroduce two manipulations of goal formulas.

Ouone is an application of a class of substitutions. A substitution & for & is called a
deciding substilution when ¢ instantiates no free variable in G. We use ¢ and g for deciding
substitutions, while r, v and ¢ for instaptiation of free variables,

Example 2.3.1. Let § be

¥ A,B U ((list{A) D3C append(A,B,C)) >(list(A} 2 3C append([U]A],B,C)))
Then the goal formula of S is

(list{A) Dappend{A,B,C})) >(list(A) Dappend{{U|A],B,’C))
The most general common instance of append([{U|A], B,?C) and the head of the second
delinite clause for append is obtained by a deciding substitution o= <1C&{U|IC"] >. o{G])
represents an S-formula

YV ABU ({list{A) 2=C append(A,B,C)) 2 (list{A) 23C' append({U|A|,B,[U|C']}})

Apother maunipulation iz a reduction of goal formulas with the logical constants frue
and folse. The reduced form of a goal formula &, denoted by @ |, is the normal form in
the reducticn system defined as follows.



<true— folse, ~falae—true,

trueAG—G, falae AG— false,
Ghatrue—G, GAfalse— false,
true\ G —true, JalaeyG=—(3,
Gytrue—true, GV false—=G,
true 2 G—G, folse DG —true,
G Dtrus—irue, GO false—=G.

Example 2.3.2. Let Gy and G be
(true Dreverse{N,L)) Ditrue Aappend(N,[X],M) Dreverse(M,[X|L]))
(false Dreverse(N,L)) D{false Aappend(N,[X],M) Dreverse(M,[X|L])).
Then G, | is reverse(N, L) D(append{N, [X|, M) Dreverse(M, [X|L])) and Gz | is true.

Lemma 2.3. Let H be a goal formula and A be an atom in H.

(a) When Hutrue] | is true, A is a positive subformula of H.

(b) When H,[true] | is faise, A is a negative subformula of H.
(c) When H,[false] | is folse, Ais a positive subformula of H.
(d) When Ha[false] | is true, A is a negative subformula of H.

Proof. By induction on the structure of H {Murray [16] p.72). We prove (a) and (b). Other
cases [c) and {d) are proved similarly. Supose Hatrue] | is either true or false.

When H is an atom, it must be A and H[truej | is true. Hence, the lemma is trivial.

When H is of the form —H', H', [true] | is false if Haltrue] | is true. By the induction
hypothesis, A is a negative subformuls of H’, hence positive subformula of H. The case
H,|true] | is false is proved similarly.

When H is of the form H,VHa, Haltrue] | and Hy.[true] | are true if Aisin H,. By
the induction hypothesis, A is a positive subformula of Hy, hence positive subformula of H.
The caze A is in Hy is proved similarly.

When H is of the form H,AHz, Haltrue] | and Hyaltrue] | are folse if Aisin Hy. By
the induction hypothesis, A is a negative subformula of H, hence negative subformula of
H. The case A is in Hy is proved similarly.

When H is of the form Hy D Ha, Haltrue] | is true and H,4[true] | is false if A s
in H,. By the induction hypothesis, A is a negative subformula of H,, hence a positive
subformula of . Similarly, Ha[true] | is true and Hoa[true] | is true if Alsin Hy. By the
induction hypothesis, A is a positive subformula of Hz, hence a positive subformula of H.

3. An Extension of Execution

Our extension of execution comsists of the following seven inference rules. (See the
following explanation for their notations.) Each rule says that the subgeals in S-farmnlas
above the line are generated from the goal in S-formulas below the lice. We assume that
variables in the S-formulas are renamed appropriately so that there occurs no conflict of
variable names,

A-deletion GulHy GrlHz} Gy Hi]
G H AHaA - -AH

V-deletion Gy [Hil GulHa] G [Hyl
G_[HVHzV- -V H|
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Ti-deletion Gyl-H,| Gy lHs)

G_H, S Ha]
DCI o1(GalATZ By L ealGalaf2Ba) L or(GalATE Byj]) |
G+[A; G+|A] G+]A]
NFI Galfalse] | ni(Ga[ATlBysl) L -+ na(GalAT2 Byj) |
G_1Al
simplification o{Ga(true] | _ olGlalfalac) |
G

3,1, Case Splitting

MeDeletion

Let & be a geal formula. When H is a positive subformuia of the form HyAH A --AH:
(k > 1) and each undecided variable 'X appearing in H; appears only in H; (1<i<k), we
generate k new AND-goals Gy H,|,CylHz),...,Cx[H:), where undecided variables in 7 and
not in H are renamed and net shared between Gg[H,] and GgH,] (¢£7).

Example 3.1.1. Let § he

¥ A,B,C (append(A,B,C)Alist(C) 23D reverse(A,DJASE reverse(B E)).
Thez the goal formula of S is

append({A,B,ClAlist{C) Dreverze{A,1D)Areverse(B,TE).
By applying A-deletion, we have 2 AND-roals

append(A,B,C)Alist{C) Dreverse(A,TD).

append(A,B,C)Alist{C) Dreverse(B,’E).

V-Deletion

Let G be a goal formula. When H is a negative subformula of the form H vy - v H
(k > 1) and each undecided variable ?X appearing in H; appears only in H; (1<i<k), we
generate k new AND-goals Gy (H,|,Gy|H:],....Cx|H:), where undecided variables in (7 and
not in K are renamed and not shared between Gy [H;| and Gy lH;) (i77).

Example 3.1.2. Let § be of tke form

V5T ((S=T vS<T vT<S) 2(-+)).
Then the goal formula of 5 is

(5=T vS<T vT<S8) ().
By applying V-deletion, we have 3 AND-goals

§=T D(---).

S<T 2f---)

T<S ().
=-Deletion

Let G be a goal formula. When H iz a negative subformula of the form Hy; D H; and
each undecided variable 'X appearing in H; appears only in H; (1 <i<2), wa generate two
new AND-goals Gy [-H,| and Gy[H;], where undecided variables in G and not in H are
renamed and sot shared between Gy [H,] and Gy |H;] (1=7).

5



Example 3.1.3. Let S be

¥ U,B,C,D;,D2 ({append(B,C,Dz) 2D;=D;) D(append(B,C,D2) 2[U[D|={U|Da]}}.
Then the poal formula of 5 is

(append(B,C,Da) DDy =D3) D{append(B,C,Dz) 2{U[D:]=[U|Dz]).
By applying D -deletion, we have 2 AND-goals

- append(B,C,D;) >(append(B,C,D3) D{UIDy]=[U[Da]).

Dy =Da2 D(append(B,C,Dz) D[U|D;|=[U|D2]).

3.2. Deflnite Clause Inference
We generalize the execution of pesitive goals using polarity.

Definite Clause Inference (DCI)

Let A be a positive atom in a goal formula G and “"Ag - Ay, Ag, ..., A" be any definite
clanze in P. When A i: unifiable with Ay by a deciding m.g.u. o, we generate a new OR-
goal o{GaldiAdaA - Adm]) | (AiAAZA---AAm is true when m = 0.) All new variables
introduced are treated as fresh undecided variables.

Example 3.2.1. Let 5 be

% A,B,U ((reverse(A,B) Dreverse(B,A)) D(reverse(A,[U[B]) Dreverse([U|B],A))).
Then the goal formula of 5 is

(reverse(A,B) Dreverze(B,A)) D(reverse(A,[UIB]) Dreverse([U|B|,A})
We can apply DClto reverse({U|B], A) and it is replaced with reverse(A, 1C)A append(?C, [U], B).
Note that the variable introduced frem the body of the definite clause is treated as an un-
decided variable 1C.

Example 3.2.2. When § is an existential formula of the form 3¥;:Yz- - -Ym(Ai AdaA- - -AAs),
i.e., of the form of usual execution goals, the goal formula of § is 7-A;, Az,..., Ax. (The
juxtaposition delimited by " denotes conjunction and -G denotes the goal fermula ob-
tained by replacing every variable ¥ in G with !Y.) Then usual execution is applied to
Ay, Az, ..., Ax

2.3, *Negation as Failure™ Inference
We also generalize the execution of negative goals using polarity.

*Negation as Failure” Inference (NFI)

Let A be a negative atom in a goal formula G. We generate new AND-goals G 4[false] |
and T{GalAiAAzA: - AALD) | for every definite clause "Ap - Ay, Az,...,An" in P, whose
head Ay is unifiable with A, say by an m.g.u. . (A AAaA - ‘AAum is true when m = 0.) All
new variables introduced are treated as fresh free variables. (Note that A always includes
only free variables and r may be any m.g.u. without restriction.)

Example 3.3.1. Let 5§ be

¥ A B, U ((reverze(A,B) Dreverse(B,A)) D(reverse(|U]A] B} Dreverze(B,[U|A))).
Then the goal formula of 5 is

(reverse(A,B) Dreverse(B,A)) Direverse([UjA],B) Dreverse(B,[UJA]))
We can apply NF1to reverse(|L'|A], B). The first goal is trivially true. In the second goal, the
atom is replaced with reverse(A, C)Aappend(C, (U], B). Note that the variable introduced
from the body of the definite clause is treated as a free variable C.

G



Example 3.3.2. Let § be an S-formula of the form —A, where A is a ground atem. Suppese
there exist k definite clauses whose heads are unifiable with Abym.gu’sn,r2, ..., 7. Whken
NFT1 iz applied to A, we have k 4= 1 AND-goals

(=false) |,

n{—~{An AdggA - Adym,)) L,

ra(~{Az1 Adaa A - Adam,)) 1,

b

n(=(An Adra A Adim,)) L

The first goal fermula is trivially frue. Other goal formulas are of the form ¥X,, X5, ..., X,
={A; Adz A AAR), because internal variables introduced from the bodies of the definite
clauses are free variables in the generated goal formulas. We can continue applying NFI by
selecting atoms in each geal formula. When a selected atom has ne unifiable head, the only
goal formula generated is the first one, which is always true. When all goal formulas are
reduced toc true, —A is proved. This is ezactly the *Negation as Failure® rule in the usual
sense (see Clark [4]).

3.4, Simplifleation

Simplifieation .

Let G be a goal formula. When Ay, Az,...,Am are positive atoms and Am 41, Az, ..., An
are pegative atoms unifiable to A by a deciding m.gu. o, we generate two new AND-goals
ag{Gialtrue) | and o{G)a(false) L.

Exampie 3.4.1. Let G be a geal formula
(add{X,Y,Z) Dadd(Y,X,2)) 2(add{X,Y,Z) Dadd(Y s(X),s(Z)))
of an 5-formula
VXY, 2 ((add(X,Y,Z) Dadd(Y,X,Z)) D(add(X,Y,Z) Dadd(Y,s(X),5(Z)))).
Because ¢ =< > is a deciding substitution and unifies the positive atom add(X,Y, Z)} and
the negative atom add(X,Y, Z), we generate new AND-gecals
(erue 2add(Y X,Z)) D(true Dadd(Y,s(X),(Z))) 1,
(false Dadd{Y,X,Z)) 2 (false Dadd(Y s{X),s(Z})) 1,
Le, edd(Y, X, Z)Dadd(Y, s{X),£(Z)) and true. This inference corresponds to generating
(Y X}+1=Y+(X+1)
frem
X+Y=Y+4X DX+Y)+1=Y+(X+1)
in functional programs, i.e., using the equation X +¥ = ¥ L X in the premise and throwing
it away. This is called cross-fertilization in Boyer Moore Theorem Prover (BMTP) [2].

Example 3.4.2. Let G be a goal formula

(reverse(A B) Dreverse(B,A)) Dreverse(A,C) Aappend(C,[U],B) Sreverse(B,[UIA]))
of an S-formuia

VA B CU([reverse(A,C) Zreverse(C,A}) D((reverse(A,C}Aappend(C,[U],B)) Dreverse(B,[UJA])).
Because ¢ =< > is a deciding substitution and unifies the positive atom reverse(A, C) and
the negative atom reverse{A, €}, we generate new AND-goals

(true Dreverse(C,A)) D(true Aappend(C,[U),B) Dreverse(B,[UJA]) 1,

(false Dreverse(C,A)) D{false Aappend{C,[U],B) Dreverse(B,[UViA])) I,
e, reverse(C A) Dfappend(C,[U], B) Dreverse(D, [I7|A])) and true. This inference cor-
responds to geoerating

reverse(Cl=A Dreverse(append(C [U)))=[U]A]
from



reverse{reverse(A))=A Treverse(append(reverse(A),[U]))=[U|Al

in functional programs, i.e., replacement of the special term reverse(A) with a variable C.
This is called generalisation in BMTP [2].

Remark. The clazs of S-formulas defined in 2.2 is the minimum class of formulas that includes
universal formulas and is elosed under extended execution.

4. Soundness of Extended Execution

In this section, we summarize the completion in the sense of Clark first. Then we define

conjunctive normal form and disjunstive normal form of goal formulas similarly to usual first

order formulas and prepare several lemmas about them. Lastly, we prove the soundness of
our extended execution using these lemmas.

4.1, Completion of Prolog Programs

A Prolog program P is a finite set of definite clauses. P states only the *if™ part of

programmer's intentions. By complementing the "only if” part, we can strengthen F to &
theory P" called completion of P. P~ iz obtained as follaws (Clark j4]).

fa) Transform each definite clause as follows.

P{tllrh” -::n] - BIFE:I "":Hﬂ'l
!
Il = tl.l"';xz — !2-‘"‘-' * -'"'.xn. = Eﬂ.f"’-ElF‘\BEh th::'pf.Xille ':X"i}

32,2y 2, WIWo - W (X =t AX =13 A - AXa=1 AB1ABaA- - -ABm) 2p(X1, Xz, ..., Xi)

(&)

(e

where Xy, Xa,..., X, are fresh variables, &, 2, ..., £, are variables appearing in the
head p(ty,ta,...,ta) (called head wariables) and Wi, Wy, ..., W, are variables appearing
only in the bady By, Bs, ..., Bem (called internal variables).

If the definite clauses with the head predicate p are transformed to

Hy Dp(X,Xa,.. . Xa),
Hz Dp(X: Xz, .. Xa),

':'r Hk :"P':xhxﬂu- . 'Jxll}r
define p* using the disjunction of the right-hand sides as follows.
PV X, Xa [PIX, X, X)) = Hy VH2 v VH)

When a predicate symbol p in P has oo corresponding definite clause, we stipulate that
p is WXy, Xa,..., Xn op(Xy, Xa,...,X,). (Such predicates are said to be undefined.)
Let P" be a firet order theory whose axiom is the set of all p° and the following set of
axioms EQ for eguality.

X=X

X=7Y2Y¥=X

X=YAY=22X=2

Xi=YiaXa=1A  AXa =Y 20X, X2, .., X)) = (1,2, V)

Hl = F!_.'*ﬁ.:{.j = Yﬂf""' ’ f"‘-}:n = Yu:‘.pl:xhxﬂr'"rxﬂ}jpi}_layjn"‘ly!l}]

e for any pair of distinct constant symbel ¢ and ¢

J(X:, X2, .., Xa)59(Y1,Ya,..., V) for any pair of distinct function symbols f and ¢

B



JlX, Xz, LX) =Y, YR o =N =Yan - AXa =Y,
J(X,, X3, ..., Xn)5#e for any function symbol f and constant symbel ¢
t== X for any non-variable term ¢ containing X

Example 4.1.1. Let append be a predicate defined by

append(| [, K., K).

append([X|L],M,[X{N]) :- append(L ,M,N).
Then append’ is

¥ A,B,C (append(AB,C) =

3K (A= |AB=KAC=K) vIX LM N (A=[X|LIAB=MAC=[X|NiAappend(L,M,N))).

MNote that p' can be expressed in a simpler form when the heads are not unifiable. append”
is simplified to

¥ K append(] |, KK} A¥X,L M,N (appecd{[XIL]M,[XIN])= append(L ,M,N)).

Example 4.1.2. Let reverse be a predicate defined by

reverse([ |, I].

reverse{[X|L],M) :- reverse(L N),append[N [X] M).
Then reverse” is

¥ AB ( reverse(AB) =

{A=[]AB=[]) v3X,L M N (A=[X|LiAB=MAreverse(L,N)Aappend{N,[X] M))).

reverse’ ean be similarly simplified to

reverze(| |,[ |} AVX,L MN (reverse([N|L] M)= reverse(L N}Aappend(N,X| M)).

4.2, Normal Forms of Goal Formulas

Az defined for usual first order formulas, we can define conjunctive and disjunctive
normal forms of S-farmulas, which correspond conjunctive and disjunctive pormal forms of
goal formulas. In order to transform goal formula to their normal forms, we use the following
transformaticaos, of which (a) and (b) are used commonly, (¢} is for conjunctive normal forms
and (d) is for disjunctive normal forms.

(a) GOH — -GVH,
(b} =(GVH) = =GA-H,
—.[GJ.'.,,HJ — =GV -H,

~[~G) = G,
(e) (FAGIWH — (FyH)ACVH),
FyiGaH) — (FvGA(FvH),
(d) (FvGEaH = (FAHWIGAH),
FAIGVH) — (FAGWV(FAH).

Let & be a gozal formula. A goal formula Gepp is called a copjunctive pormal form of
G when it is obtained by applying (a) first as far as possible, (b) next as far as possible and
lastly {c) as far as possible, Gewnp corresponds to a first order formula of the ferm

VX, X2, L, Xn 3V Ye, L Y (LW E 2V A (R 2y W Eaa V- A - -A(Ley Vg2V - ))
where each (L;; WLV ) is called a conjunet.

A goal formula Gpyp is called a disjunctive normal form of G when it is obtained by
applying (a) frst as far as pessible, (b) next as far as possible and lastly (d) as far as possible.
G pwnp corresponds to a first order formula of the form

8



VX1, X2, Xa 311, Y2, .o, Yo ((LuaALgaA- - JV{L2sAL22A- - V- V(Laa ALraAc )
where each (LiyALiA- ) is called a disjunct.

In the trapsformations above, subformulas in the right-hand side are called descended
subformulas of the subformula in the left-hand side with the same symbol.

Lemma 4.2.1. Let & be a goal formula, A be an atom in G, Ggnr be a conjunctive normal

form of G and Gpwr be a disjunctive normal form of G.

{a) Let A he a positive atom of G. When some descended atom of A appear: in some
conjunct of Genp, it appears positively, i.e., in the form A in the conjunct. When
some descended atom of A appears in some disjunct of Gpyp, it appears positively,
ie., in the form A in the disjunct.

{b) Let A be a negative atom of G. When some descended atom of A appears in some
conjunct of Gewnr, it appears negatively, i.e., in the form =A in the conjunct. When
some descended atom of A appears in some disjunct of Gpnr, it appears negatively,
i.e., in the form —A in the disjuncl.

Froof. Beeause subformulas in each transformation rule have same polarities in the left-hand
side and the right-hand side, the descended atoms have the same polarity as the antecedent
atom. It holds between 5 and G -xp and between & and Gpnr.

Lemma 4.2.2. Let G be a goal formula and H be a subformula of G.

(a) When H appears positively in G (possibly at several occurrences), G is logically equiv-
alent to (HAI)VJ for some [ and J.

(b) When H appears negatively in G (possibly at several occurrences), G is logically equiv-
alent to (~HAI)VJ for some I and J.

(¢) When H appears positively in G {pussibly at several occurrences), G is logically equiv-
alent to (HwI)AJ for some [ and J.

(d) When H appears negatively in G {possibly at several occurrences), G is lagically equiv-
alent te (=HVI)AJ for some [ and J.

where there is no occurrences of H in [ or J with the same porality as the original H.

Proof. Suppose H appears positively in G. First we transform G to its disjunctive normal
form regarding M as a special atom. Because HAH is logically equivalent to H, it is logieally
equivalent to a disjunctive normal form with each disjunct containing at most one descended
H of the occurrences of H in G. Let the disjuncis containing some descendant of the
occurrences of H be
(HAlY V (HAL) v v (HAL)

and the disjuncts containing no descendant of H be J. Then it is obviously equivalent to
(Enl)WJ, where I is IyvIzv-- -V Ii. Other cases are proved similarly.

Lemma 4.2.3, Let & be a goal fermula.

(a) When a formula H of the form HyAHzA- - AHe [k > 1) occurs positively in G (possibly
at several occurrences) and each undecided variable X appearing in H; appears cnly in
H; (1<i<k), G is logically equivalent to Gg{H | AGy{H A -AGu[H:]

(b} When a formula H of the form H,VH;v---VH, (k > 1) oceurs negatively in G (pessibly
at several occurrences) and each undecided variable X appearing in H; appears only in
H; (1<i<k), G is logieally equivalent to Gy [H|ACH [Hz|A - -AGw{Hx].

(e} When a formula H of the form H; 2 H; occurs negatively in G (possibly at several oc-
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currences) and each undecided variable 'X appearing in H; appears only in H; (1 £:<2),
G is logically equivalent to Gg|-H,|AGy|[Hzl.
where Gg(H;] iz a goal formula obtained by replacing the ceccurrences of H with H;.
Yariables in G are renamed and not shared ameng GylH, | .Gr[Hz),....Gu[H:).

Proof. Let G be a goal formula. Suppose a fermula of the form HiAHA---AH: appears
positively in G (possibly at several occurrences). Thenusing Lemma 4.2.2.(a), G is logically
equivalent to an S-formula of the form
b5 T CTUNES: $HEC) ST SRV ¢ TP ST T i ({H AWV,
where ¥y, Y2, ..., Y are undecided variables not in H and Y144, Yi+2,..., Ym are those in H.
First, we move existentizl quantifiera for ¥j4 4, ¥112,..., Y inwards. Because these
variables appear just in some H;, we have
VX, Xa, ., X 3V Y, Y ((EHWASHA  ASHOAIIVIT)
where each FH; is existential quantifled H;.
Secondly, we move existential gquantifications for ¥y, Y2, ..., Y inwards. Because 3 is
distributive over W and theze variables do not appear in H, we have
VA, X, X W H AHz A - AHOAZULL Us, .., Urwsy, va, .., WiJh
where [’ and J' are variants of [ and J by renaming ¥7,%5,.... YV te U, U, ..., U and
V]JVZJ v w“'
Thirdly, we make k variants 31y, 31;, ..., 30, of 3U,, Uy, ..., U by renaming Uy, Uy, ..., UL
Because I3[ A3IaA---A3Iy is logically equivalent to 23Uy, Uy, ..., Uil', we have
WX, X, XA {GHACLAGHASIGIA - -AGH ASLR) VIV, Ve, .., V).
Fourthly, we distribute Vv over A using de Morgan’s law. We have
L ST CT {[&HlAEII;]VEJIJK\{[EHIHEII]NEJZ}A- ' '-'“\{{EH;J"'-HI*}\"EJ; }]
where we have made k variants 3Jy, 373, ..., 2 of 3V, Vo, .., ViJ' by renaming V4, V5, .., V1.
Fifthly, we move universal quantifiers far Xy, X3,..., X, inwards. Becauze V is dis-
tributive over A, we have a conjunction of k formulas
(VX1 Ko, .. K ([(FHAZLVET)) A
(X321, X93,..., Xon ((FH2AILWEJZ) A

PX %1, Xaa, o o Xan ((BHASLIVI))
by repaming X, Xz,.. ., X,
Lastly, we move existential quantifers of each conjunct cutwards. We have
VX1, Xya, oo Xim 3Y01, Y20 Yo, ((BH AV A
(VX21, X2z, ..., Xaq Va1, Yaa, .. Yar, o ((BH2ALIVIR)) A

(vXir, Xz, o Xin V%0, Yoz, - Yo - (GHALV))

MNow each conjunct &7, iz a variant of G except that H is replaced with H; and has oo
common variable, Hence it is logically equivalent to Gy [H,]. After all the original goal is
logieally equivalent to

G [HL'""GH[H]"'L . 'J"\GH[HJ;:.
Other cases are proved similarly vsing Lemma 4.2.2.(b).

Lemmas 4.2.4. Let & be a goal formula.

{a) Whez H iz a pegative subformula of the form HiAHA---AHy (k > 1), G is logically
equivalent to Gy Hy|VGg Halv-- VG g [Hil.

(b) When H iz a positive subformula of the form HywHav---vHy (&8 > 1), G is logically
equivalent to Gyl IWGg[Hz|Vv - vGu[Hal.
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(¢) When H is a positive subformula of the form Hy 2 Hj, G is logically equivalent to
Gul-Hi|VGu|[Hz).

where Gg[H,] it a geal formula obtained by replacing the occurrences of A with H;.

Varisbles in G are shared among Gy [H,|,Gu(Hzl,-...Gu[Hl.

Proef. Let G be a goal formula and H be a negative subformula of the form HyAHz A - AH:.
Then,using Lemma 4.2.2.(d), G is logically equivalent to an S-formula of the form
vxh x?- <y x‘ll 3?’1!}’2: e Ym {[-‘H""FI}‘NJ]
First, we make k variants of J. Because I'vIV. -V is logically equivalent to [, we have
YA, Xz, wXn 2V, Y2 0V ({((=H vI)W(=Ha AW~ 'V{chf]]‘h}].
Secondly, we distribute A over Vv using de Morgan's law. We have
VX, Xa, . X 3V, Va0 Yo (((GHOVDATIWV((SHVDAT WY - V(= HRVIAJT)).
Mow each conjunct (G iz identical to G except that H is replaced with H;. Hence it is
logically equivalent to Gg[H;]. After all, the criginal goal i3 logically equivalent to
GH[HI]VGH[HQ_;V' . 'VGH{H}.].
Other cases are proved similarly using Lemma 4.2.2.(c).

Lemma 4.2.5. Let G be a goal formula and A4 be an atom containing no undecided variable.
(a) When G 4(true) | is a logical consequence of P" then ADG is also a logical consequence

of P°,
{b) When GA(false) | iz a logical conseguence of P*, then ~ADG is also a logical conse-
quence of P".

Proof. We prove (a) in 2 steps.
First, it is obvios that, when G a(true) | is alogical consequence of P°, s0is ADG4(true) |

Secondly, let Geoxr be a conjunctive normal form of G of the form

CiACaA - - -ACy
Then ATG is logically equivalent to —AVGeonrp. By distributing V over A, it is legically
equivalent to

{“AUC]}J"‘\["AVC;].‘"\ ! h{_‘AVCL}.
When €, contains A, ~AvC; is logically equivalent to =AVCya(true) !, e, true. When
C, contains oo A but —A, then again ~AVC; is logically equivalent to —AVCia(true) [,
because ~AV—AV:--V-A is logically eguivalent to -A. When C; contains neither A nor
-A, ~AVC; is obviously logically equivalent to =AVCialtrue) |. Since this belds for all 4,
ADG is logically equivalent to ADG g(true) |

After all, when G 4(true) | it a logical consequence of P® 5018 ADG. The case (b) is
proved similarly.

Lemma 4.2.6. Let G be a goal formula, [y, 2#2,.. ., 8,],[81,22,- - ., ta] be two lists of terms,
which contain no undecided variable and are unifiable by an m.gu. r and By, 5,,.... B,
be atoms containing no undecided variable. When r(G) is a legical conseguence of P*, =0 is
5y =it =tah M = Ea A B'[.l"'l.ﬂz.l'"'-" ABm DG

Proof. We prove it in 2 steps.

First, using the set of axioms EQ for =, when r(G) is a logical conzequence of P’ so
is 81 = tiAsg = t2/\ - Asq = ta D G

Secondly, when 37 = 11 A8z = LA Al = t, 2 G.

is a logical conzequence of P, 50 i3 &y = tjAd3 = A *Asa = ta A ByABaA- - -ABp
-G
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After all, when r(G) is a logical consequence of P*, 3013 3; = t1Asa = taA- - As, = tn
N BiaBzn--ABm DG

4.3, Proof of the Soundness

Now we prove the soundness of our extended execution,

Lemma 4.3.1. Let ’X be an undecided wariable in a goal formula & and ¢ =<1 X &=t >
be a deciding substitution. When o{G) is a logical consequence of P°, 50 is G. (All pew
variables introdyced are treated as fresh undecided variables. Now on, we call the rule to
generate subgoal ¢{C) from G oracle decision.)

FProof. Trivial,

Lemma 4.3.2. Case splittings are sound.

Proof. It is a special case of Lemma 4.2.3. where we have just cne occurrence of H.
Lemma 4.3.3. DCI is sound.

Proof. We prove it in 6 steps. Let A be a positive atom with its predicate symbol p in a
goal fermula G. Suppese A and the head p(ty, ta, ..., t.) of the f-th definite clauze for p are
unifiable to pls,, 52,..., 4,) by a deciding m.gu. oo u, where ¢ and p are the restrictions
of the m.gu. to undecided variables in G and to head variables of the definite clause,
respectively.

First, because oracle decision is sound by Lemma 4.3.1, when o(G} is a logical conse-
quence of P°, so is .

Secondly, by instantiating universally quantified variabler X;,X3,..., X, in the com-
pletion p” 10 34, £1,.. ., 3, respectively, we have

_p{sl,s;,...,sn] = (H;vHaVv- - -vHi)
from P, where H; is of the form
3 Yo, Ya,Za,Zay o2y (1=t Asg=13A - -Aza=t, AB;AB2A- - -ABm),
¥1. ¥z, .. ¥y arc head variables and 21, Z3, ..., Z, are internal variables. By replacing equiv-
asience with equivalence, o{G) is a logical conzequence of P if and enly if e (G)pias.aa,..a) [ H1vHV - VH}]
is a logical consequence of P,

Thirdly, by Lemma 4.2.4, 0(Glpa,,as.....0 ) H1 VHaV---VH,] is logically equivalent to
UIG}F{I;J......-,.]IHI]V J{G}p[q,:.,....sn][Hﬂv T EEG],p{h.n....,hJ[Hk]'

Fourthly, it is obvious that, when (G )pfey,0a,...,) [ Hi] 15 a logical consequence of P,
f0 is aEG}Pfhr':.----h}[HlIV (G )pins, 03,00 0m) [H2]V - (Gl piny,ma,... 0w} [ H k-

Fifthly, because oracle decision to 0{Glp(s,,ss,..,0.)|Hi} bY mu in order to instantiate
the head variables Y¥3,Y;,.. ., ¥, is sound by Lemma 4.3.1, when o(G)gs,,u9,....0n) 00 H)] is
a logical enpsequence of P°, 5o is (G la(ar 80,0, 0m) [ Hi], wWhere p{H;) iz of the form

32,25, Zy (8 = 3yh8g = 39h - Asq = 8o Ap(ByABa A ABm)).

Sixthly, because u(H,} is logically eguivalent to

= 21, z:, feoy E-_, ﬂ'l:B]_.l"'v.E:J"\.' - f‘\Brn}]
o(Glpiay,a9,...,a) B Hi)] is logically equivalent to o o BIGA[AT_ o B51).
After all, when o o B{G4[AT_oB;]) 12 a logical consequence of P’ woisG.

Lemma 4.3.4. NFI is zound.

Proof. We prove it in 2 steps. Let 4 be a negative atom play, 82,..., &a) of a goal formula
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{7 containing no undecided variakle.
First, it is obvious that G is logically equivalent to ADG and —~ADG.
Secondly, as for the first goal formula, by mstan!;mtlng universally guantified variables
Xy, Xz,...,Xn in the completion p* to 3;,92,..., s respectively, we have  p(s;,22,...,%.)
= {H1*¢H=v~- VH;)
where H; is of the form
3Y., Y2, .. Y21, 22,y &o (81 = tiAag = taA - -Asn = taAB1AB2A- - -ABm)
By applying Lemma 4.3.3.(a) for A in the antecedant and the pegative cccurrence in G,
ADG is logically equivalent to
Hi DG A[H,y, H;:?GH[H:I, - H[jGH[H;i-
Suppose the equational part 87 = t; A3 = ta/A---Adn = ty are unifiable for H,, Hz, ..., Hy,
say by m.g.u’s vy, 72,..., 7 and not unifiable for Hi4y1,Hes2,...,Hi. By Lemma 4.2.6,
when
n(GalATLeBysl) L, Tz{GA.ﬁ;"’gBm]} Lo ml(GalAT2e Busl)
are logical comsequences of P, so are
H,DG4[Hy], HI:}GH[HZL oy Hie DGy Hyl.
Other goal formulas H;_;.l:hGH[Hg-_l]J Hy+22Cg[Hyya], ... .HiDGg[H] are always
logical consequences of P’. As for the zecond goal formula, using Lemma 4.3.5(b), when
Galfaisel | is a logical consequence of P, so is ~ADG.
After all, when G a[faise] |, n{GaiAT2oB1s]) L (G alAT2oB2;]) 4oy (G alAT 2o Bajl) 4

are logical consequences of P, s0isG.
Lemma 4..5. Simplification is sound.

Proof. We prove it in 3 steps. Let A;, Az,..., A, be atoms in a goal formula G unifiable to
A by a deciding m.g.u. o.

First, because oracle decision is sound by Lemma 4.3.1, when #{G) iz 2 logical conse-
quence of P°, 20 is G.

Secondly, it is obvios that oG} is logically equivalent to ADo(G} and ~ADe(G).

Thirdly, by Lemma 4.2.5.(a) for the first goal formula, when o(G)a(true) | is a logical
conzequence of P°, sois AD¢(G). Similarly, by Lemma 4.2.5.(b) for the second goal formula,
when o(G)a(false) | is a logical consequence of P, s0 is ~ADo(G).

Atter all, when o{G)(true) | and F{G'}A{fﬂist’} | are logical consequences of P, so is
G.

From Lemmas 4.2.2—4.3.5, extended execution is sound for geal formulas.

Theorem 4.3. (Soundness for S-formulas)

Let G be a goal formula and Gy, Gy, ..., Gy be goal formulas generated as subgoals by
app!}*mg some rule of extended execution. ‘thn G1, Gz, ..., G are all logical consequences
of P*, then the goal formula G is a logical consequence of P That is, extended execution
is sound for S-formulas.

5. Completeness of Extended Exeeution

In this section, we restrict our attention to a class of extended execution sequences,
calied normal extended execution, whose initial goal formula is a universal formula, (Throughout
Section 5 except Corollary 5.5, we assume that the initial goal formula G always centains no
undecided variable and use universal formulas and undecided-variable-free goal formulas in-
distinguishably.) Then, we restrict our atiention further to the cases where no case splitting
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is applicable to the initial universal formula. Afier preparing several notions concerning
sequences of INFIs, we show thai fair applicaticn of NFI to such a formula does not lase
provability by normal axtended execution. Then we introduce a sequence of interpretations
associated with fair application of NFI when such a formula is not provable by pormal
extepded execution. Lastly, we prove the completeness theorem using these notions.

5.1. Normal Extended Execeution

In this section, we consider the trees corresponding to extended execution. Application
of a sequence of extended execution rules can be regarded as generation of an AND-tree.

Let P be a program and G be a goal formula. A tree is called an extended execution
tree of & in P, when it satizfiez the following conditions.

(a) Each necde of the tree is a goal formula.

(b} The root node is .

{¢) When a case splitting is applied to a subformula H of a node, then this node has k
descendants for each AND-goals generated by the case splitting. H and the case splitting
rule are called a selected subformula and a selected rule at this node, respectively.

(d) When a DCI is applied to a positive atom A in a node, then this node has a descendant
generated by the DCIL A and DCI are called a selected atom and a gefected rule at this
node, respectively.

(e} When an NFI is applied to a negative atom A in a node, then this node has k L 1
descendants for each AND-gacls generated by the NFIL A and NF1 are called a selected
atom and a selected rule at thiz node, respectively.

(Il When a simplification iz applied to atems Ay, As,..., A, io a node, then this node has
two descendants for each AND-gacls geperated by the simplification. 4,, Az, ..., A, and
simplification are called selected atoms and a selected rwle at this node, rezpectively.

A branch from the root & in an extended execution tree is called a derivation. A
derivation which ends with frue iz called a proving derivation. An extended execution tres
iz called a proving extended execution tree when every derivation in the extended execution
tree it a preving derivation,

Example 5.1.1. The tree below iz a proving execution tree.
reverse(B,[U|Aq])Aappend{Ay,[V],A) Dreverse([V|B],[UIA])

1DCI
reverse(B [UlA ) Aappend{A,,[VL,A) Dreverse(B,?Az)Aappend(TA; [V],IUIA])
|DCl
reverse(B,|UlA, |)nappend(A,,[V],A) Dreverze(B,/U[7A,]) Aappend(TA,,[V],A)
- / simplification y
append(A,,[V] A) Dappend(A, [V].A) true
/  simplification
true true

The underlined atoms denote the selected atoms.

An extended execution tree of a universal formula & is called a pormal extended
execulion tree of G when, for every derivation in the extended execution iree, the sequence
of the selected rules on it consists of 4 phases satisfying the following conditions.

(a) The first phase is a (possibly empty) sequence of caze splittings. All case splittings
must be applied to the universal formulas as far as possible. Among the applicable caze
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splittings, those to the outer subformulas are prefered.

(b) The second phase is a (possibly empty) sequence of NFIs.

(¢} The third phase is a (possibly empty] sequence of DCla.

{d) The fourth phase is a (possibly empty) sequence of simplifications. The simplifications
must be done for positive atoms and one negative atom in the goal formulas.

A mormal extended execution tree is said to be NFI-free when no NFI is a selected rule
in the tree. Note that no fresh free variable is introduced into the succeeding goal formulas
after all NFIs were applied in the second phase.

Example 5.1.2. The tree in the example above is an NFI-free normal extended execution
tree, where the first phase is empty.

Lemma 5.1.1. Let (7 be a univerzal formula and r be an instantiation of free variables in (7.
If G is provabie by normal exetended execution, so is r(G).

Proof, Let T be a normal extended execution tree of G, Then let 7" be a tree cbtained from
T by applying 7 to each node and deleting the subtrees whose roots cannot be generated
by the corresponding NFIs due te overinstantiation by r. Then T' is the normal extended
execution tree of r(G).

Lemma 5.1.2. Let G be a universal formula and Gy, Gy, ..., Gy be all the case-splitting-free
univerzal formulas cbtained from G by applying case splitting a3 far as possible. Then &
is provable by normal extended execution if and only if all Gy, G3,..., Gk are provable by
normal extended execution, -

Proof. Trivial.

Before going on, we show several properties of universal formulas to which no casze
gplitting is appiicable.

A univerzal formula & iz zaid to be case-gplitting-free when no case eplitting is applicable
to G, i.e., there is oo positive subformula of the form HiAHz, no negative subformula of
the form H,VH: and no pegative subformula of the form Hy 2 Ha.

Now, we notice the relation between the positive and negative parts in the senze of
Schiitte [18] and the positive and negative subformulas in this paper. The positive and
negative part of a formula 7 are defined as follows.

{a) F is a positive part of 7.

{b) Wken -4 is a positive (negative) part of 7, then § is a negative (positive) part of 7.
{¢) When S KX is a posilive part of 7, then G and ¥ are positive parts of 7.

{d} When G ¥ iz a negative part of 7, then § and ¥ are negative parts of 7.

() When G2 iz a positive part of 7, then G 1s a pegative part of 7 aod N is a positive

part of 7.

Intuitively, a positive part of 7 is a subformula of 7 such that 7 is true when it is true
and a negative part of 7 is a subformula of 7 such that 7 is true when it is false. Positive
parts are always positive subformulas and negative parts are always negative subformulas,
but not vice versa in general.

Lemma 5.1.3. Let G be a case-splitting-free universal formula and H be a subformula of G.
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Then H is a positive part of G when it is a pesitive subkformula of G and H is a negative
part of G when it is a negative sublormula of G.

Proof. By induction on the superterm-subterm relation on the set of subformulas of G.
{Subformulas are greater than superformulas.)

Base Case : Trivial, because G is not only a positive formula but also a positive part of itself.
Induetion Step : Suppoge the lemma helds for a positive subformula 7 of G. When H is
either of the form =H' H,WHs,Hy 3 Hs, the lemma heolds obviously for H', Hy, H; from the
definition. When H is of the form H,AH2, it contradicts the fact that no case splitting is
applicable to 7. The case H is negative is proved similariy.

Lemma 5.1.4. Let G be a case-splitting-free universal formula, A be a pegative atom of G

and “Ag - Ay, Az, ..., An" be a definite clause (m >0} with which an NFI is applicable to

A using an m.g.u. r. Then

{a) r{GAldiAAzA--AAm]) | i3 a case-splitting-free universal formula and each r{4;) s a
negative part of r{G A AA2 A AAm)).

(b) If B is another atom of G, r(5) remains in r{Gal4;AAzA---Adm]) |

Proof. When m >> 0, the lemma is trivial. When m =0, A; AAzA---NAm is true. Let H be
any subformutla of G. Because G is case-splitting-free, H must be a pozitive subformula of
the form HywHs, Hy D Hz, ~H' or H must be a negative subfermula of the form H,AHz,
-H'.
Case 1 : When H is a positive subformula of the form H;VH; and Aisin H;, Ais a
necative subformula of Hy. By Lemma 2.3, Hya(true] | can’t be frue. Hence H; reamins
in Gaftrue] !|. The case when A is in H7 is proved similarly.
Case 2 : When H is a positive subformula of the form HyDH; and Aisin Hy, Als a
positive subformula of H,. By Lemma 2.3, Hya(true] | can't be false. Hence Hy reamins
in Galtrue] |. The case when A is in My is proved similarly.
Case 3 : When H is a negative subformula of the form HyAH; and A isin Hy, Ais a
positive subformula of H;. By Lemma 2.3, Hya[true] | can't be faise. Hence Hy remains
in Gatrue] |. The case when A is in H5 is proved similarly.

Because it holds for any subfermula of &, just a subformula of the form -=----A
disappears from G when A is replaced with true. Hence 7{(Ga(true]} | is still case-splitting-
free and r{B) remains in r(G 4(true]) | il B is another atom of G.

Lemma 5.1.5. Let G ba a case-splitting-free universal formula and ' be a goal formula
obtained from G by applying a sequence of DCIs. Then a negative atom of G' is a negative
part of &',

Proaf. Trivial.
§.2. "Negatlon as Fallure® Tree

In this section, we focus our attention to extended execution trees sueh that oniy NFIs
are applied to case-splitting-free universal formulas,

Let P be a program and G be a case-splitting-free universal formula. A tree iz called a
*Neration as Failure” tree of G in F (or NFI tree for short), when it satizfies the following
eonditiens.

{a} Each node of the tree is a case-splitting-free universal formula,
{b] Tke root node is .
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(¢} When G contains a negative atom, let A be a negative atom in G called a selected atom.
Then this node has kL 1 descendants for each AND-gacls generated by NFI. (Note that
the first goal obtained by replacing A with folse is always true due to Lemma 5.1.3.)
(d) When G contains noc negative atom, this node has no descendant.

A brapoch from the root G in an NFI tree is called an NFI derivation and denoted by
a sequence of triples < Gy, C;, 6; >, where each G4, is the result of NFI using a definite
clause ; and an m.g.u. #;. An NFI derivation which contains a nede provable by some
MNFI-free normal extended execution is called a proviog NFIderivaticn. An NF1treeis called
a proving NFI tree when every NFI derivation in the NFI tree is a proving NFI derivation.

For a given NFI derivation < G, Cy, & >, a negative atom By in Gy is called an instan-
tiated copy of negative atom By in G; (F< k), if there is a sequence of atoms By, B+, ..., B
with ﬂ_f{ﬂ':-] = B,41, f:1{Bys 1= E;; FIE TR, fr—1({Bp—1) = B,

For a given NFI derivation < G,,Cy,#; >, an atem in G, is a descended atom of an
atam Ag in Go with Jevel 0 if it is an instantiated copy of Ag. An atom in G, is a descended
atom of atom As in Gg with jeve]l n if it is an instaptiated copy of an atom which was
introduced by applying NFI to a descended atom of Ay with level n — 1.

Let Th be the set of all case-splitting-free univerzal formulas provable by normal
extended execution. & € Th is said to be provable by NFI depth d when it satisfies the
followizg conditions and denoted by G € Thy.

{a) If G is provable by NFI-free normal extended execution, G € The.

(b) If there existz an NF1to a negative atom B of G generating subgoals Gg, G1,G2,....Gx
such that Go, G1,Gz,...,Gy € Thy—;, then G € Thy. (Such atoms are called depth-
reducing atoms of G.)

Lemma 5.2.1. Let G be a caze-splitting free universal formula provable by normal extended
execution, A be a negative atom of G and "4 - Ay, A5, ..., A" be a definite clause (m2>0)
whose head A, is unifiable with A by an m.gu. r. Then r(G.[A1AAzA---AAL]) | is also
provable by normal extended execution.

Proof. By induction on the NFI-depth of G. Let T be the proving normal extended execution
tree of G. In the following, we construct a proving normal extended execurion tree T' of
r(GalAiAdzA - -Adm]) | from T.
Base Case : When G € Thy, there is an NFI-free tree T.
Case 1 : When the occurrence of A is not selected in the simplification in the fourth phase
in T, let T! be the tree obtained by applying r and replacing r{A) with r{d; AdaA---Adn)
in each node in T
Case 2 : When the cecurrence of A ig zelected in some simplilication with positive atoms
By, Ba,... and the negative atom A, let T' be the tree obtained by applying r, applying
DCls to r(By), r(Ba), ... at the end of the third phase and using new simplifications between
positive atoms and negative r{A4,)'s for each ¢ (1 <i<m). (See Lemma 5.1.5.).
Induetion Step : When (7 € Thy, there i a proving normal extended execution tree T of G at
the top of which an NFIis applied to a negative atom B to generate £+ 1 case-splitting-free
universal formulas

Go 1 Gglfelse] |,

Gy (GalByaADnA- '-"‘-Blm1” Ly

Gz : va(Gp|BaaABaz A - ABam,|) |,
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Gy @ vilGp By ABra A ABim )
such that Gg, Gy, G2, ..., G € Thy_1.
Case 1 : When the cecurreace of B is identical to that of A, some Gy is identical to r{G 4
[A1AAzA - -Adm]) |, Let T7 be the immediate subtree of T with its root G,.
Caze 2 : When the accurrence of O iz diferent from that of A, the cccurrence of B
remains in (G afA1AAA - -Adm]) | by Lemma 5.1.4 and the same NFI is applicable to
(GalAiAAz A - -AAR]) | to generate new universal formulas. Because the instantiation of
A to r{A) may instantiate free variables in B, the number of the generated univerzal formulas
7+ 1is less than or equal to k£ + 1. Say, the first 7 clauses are used in the NFI with m.g.u.'s
v vk, .17 Let ; be defined by #f o r = ryo vy, Then the universal formulas generated
from r{Gaid; Azl --AAy) | are identical to

Gy irue,

G']. : T]_[G 1_-,.-“.,1_,][4‘1.;.-"'\."1.2_.'*&' ' '.-""..-Am] J.,

G'z . Tz[G:P,{A][J'LL.l"'-.AZh' ! ‘j".Aml'] l,

G; . TJ[GJ'y:t_q]i.‘i.lﬂAgf".' : -I"'I-Arn” L
By the inducticn hypothesis, these G ) [A1AAZA---AAR]) | are provable by normal ex-
tended execution. Hence, by Lemma 5.1.1, G},GY,...,G; have normal extended excution
trees Ty, T, ,T‘ Let T be the tree conzisting of them with its root r{Ga[A1 AAz A -AAR]) |

Lemma 5.2.2. Let & be a case-splitting-free universal formula and G' be a case-splitting-Tree

universal formula which is an immediate descended node of & with its selected atom A.

(a) When d(G) = 0, d{G") = 0

{b) Wken d{G) > 0, let B be a depth-reducing atom of G. If A and B is an identical
oceurrence of an atom, then d(G) > d4{G'). If A and B are different cccurrences of atoms,
then d{G") > d(G), some irstantiated copy of B remains in ' and the instarctiated copy
of B is still a depth-reducing stom of G'

FProof. It is trivial from Lemma 5.2.1 that, when G is provable by normai extended execution,
7' is also provable by normal extended execution. The case (a] is obvious from Base Case
there. The farmer half of the caze (b) is cbvious from Case 1 in Induction Step and the
latter half from Caze 2 there.

5.3. Fair *Negation as Failure™ Derivatlon

Ip this section, we introduce fairness of the application of NF1: following Lassez and
Maher [12] and show the strong completeness of fair NFI, that is, all fair NFlz generate
proving NFI trees if and only if there exists a proving NFI tree.

An NFI derivation is zaid to be fair if, for every atem 8B in the derivation, either some
instantiated copy is sclected within a finite number of steps or some instantiated copy is in
G, provable by NFI-[ree normal extended execution.

A computatiopal rule iz a rule to choose the selected atom {rom mnegative atoms. A
computational rule is said to be fair if every NFI derivation produced from it is fair.

Lemma 5.3, Let & be a case-splitting-free univerzal formula. Any fair NFI reduces G to a
set of casze-splitting-free universal formulas provable by NEFI-free normal extended execution
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if and only if all fair NFIlreduces G {o a set of case-splitting-iree universal formulas provable
by NFI-free normal extended execution.

Proof. By induction on the depth d of G.

Base Case : When d = 0, any universal fermula obtained {from G by applying NF1 fairly iz
with depth 0. Hence the lemma is trivial.

Induction Step : When d > 0, let T be a fair NFI tree of G, Br be any derivation in T and
B be some depth-reducing atom of . Because the computation rule is fair, ap instantiated
copy of B it eventually selected from the case-splitting-free universal formulas on Br and
their depths decreate by Lemma 5.2.2. Let G' be a case-splitting-free universal formula on
Br whose depth is less than that of G. Then by induction hypothesiz, G" has a fair proving
NFI tree.

5.4. Models Associated with "Negation as Failure™ Derivations

In this section, we define a sequence of models associated with a sequence of case-
splitting-free universal formulas in a nen-proving NF] derivation.

In the following, we assume a fixed set of constants, funtion symbels and prediate
symbols in P. An expressions of the form p{d;, da, ..., dn) is called a [D-atom when p is an
n-ary predicate symbol in P and d,,ds,...,d, are elements of a set D. In general, let D
be a fixed domain of interpretation for P with some fixed assignment of constants in P to
elemnts of D and functions in P to functions on D and let Bp be the set of all D-atoms.

Depending on the assignments of the predicates of F, we have variety of interpreta-
tions for P. Such an interpretation can be identified with some subset of Ep. (When
pldy,dz, ..., dn} 15 in this subset, it is considered true.) All sueh interpretations maturally
form a complete lattice with respect to the partial order of set incluszion. Following Jaffar
et al [T], a monotone transformation T from this lattice to itsell is defined by

T(I) = {pldr, da,...,dx) | “Bo - B1,B2,...,Bm." € P and
there is an assignment of the variables in the definite clause to elements of D
such that with this assignment By becomes p(dy, ds,..., d,) and
all By,Bz,....,Bnarein [ }.

We denote the set of all terms on set of variables V by H(V) and the set of all H(V)-
atoms by B{V). (H(®) and B(0) are the usual Herbrand universe and Herbrand base.)
Subsets of B{V) are considered interpretations with its domain H(V) as subsets of the usual
Herbrand base are.

Let G{= Gg) be a ease-splitting-free universal formula not provable by normal extended
execution and suppose that there is a non-proving fair NFI derivation BR =< G,,C,, 8; >
In order to make the following discussion simple, we assume that each free variable in
the universal formulas Gy, Gy... is renamed so that these formulas have no commen free
variable. Let Vg, ¥y, Vs, ... be the sets of all free variables in Gg, Gy, Gz, ... respectively
and V be ), V;. Then every [ree variable in G; and variable in C, is instantiated by 6, to a
term conotaining only free variables in Vyp g,

Let Ag, Ay, A=,... be the sequence of the set of all negative atoms in Gg, Gy, Gz, .. .
We define a sequence Jy, Jy, J2, ..., where each J; is a subset of B{1,) as fallows.
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Ji = Uiiee TH(A).
Lemma 5.4.1. J; iz a model of P with its domain H{;] for all £220.
FProaf. It iz trivial because J; 2 T{J,) for all i >0,

Lemma 5.4.2. Whea an atom A is 1o J;, a conjunction of atoms can be generated from A by
a sequence of DCls such that zome instances of these atoms, s2y by o, are all in 4;. (Note
that variables in V; are treated like constants. ¢ does cot instantiste these wariables.)

Proof. By induction on the minimum number [ such thet A€ Ui:n TH AL

Base Case - When I =0, A itself i5 an atom in A,

Induetion Step : Suppoze that the lemma holds for all atoms in Ui-n T*{A;) and A is in
i':,,-_. T*(A4;). Thken there is an instance of a definite elause *A - Ay, Az, ..., A" such

that some instance of Ay, Ag, ..., A are all in |} _, T*(4,). By the industica hypothesis,

conjunctions of atoms can be generated from the instances of Ay, Ag, ... An bY sequences

of DCIs such that some instances of these atoms are all in 4;. Then, the dezired conjunction

of atoms can be generated {rom A by a sequence of DCls as follews @ Azply DCI to A using

the definite clausze and apply the sequences of DCls to each A..

Lemma 5.4.3. Under the interpretation assigning X as an element of H{V;) to each free
varizble X in &, & is nod walid in J; for all $220.

Proof. Suppose Gy is valid in J; under the izterpretation. Then some positive atom A in
7; must be in J;. By Lemma 5.4.2, there is a tequence of DCls pecerating a conjuncticn
of atoms from A such that some instznces of these atoms are zll in 4; e negative atoms
in G;. Apply the same sequence of DCls te G,. Then, because A is a positive part of Gy
and each pegative atoms of &, 13 a negative part of &y, appliceticn of :implifeations on
these atems alway: gensrates true from the resultant geal formulas. Henece G is provable
by normal extended execution, whizh contradicts the faci that B8R is a noo-proving NFI
derivation.

5.5. Proof of the Completencss
Now we show a proof of the following lemma.

Lemma 5.5. A case-splitting-free universal formula 5 is provable by cormal extendsd
execution if and only if S is a lozical consequence of P,

We prove the lemma by shewing existence of a model of P™|J{-5} for any caze-splitting-
free universal formula 5 not provable by neormal extended execution. Similarty to Jaffar et al
[T, we comstruct a mode! which iz not necessarily isomorphic to Herbracd medels. Suppose
there is a non-proving NI derivction BR =< Gy, €, 8; >, where Gy is the goai formuia
of 3.

3.5.1. Deflnition of Domain

Here w2 assume the terminelegy and potatioms of term rewriting system such as oe-
currence, independence of oezurrences, subterm of ¢ at occurrence w denoted by ¢/w and
replacement of a subterm of ¢ at occurrence w with term 5 denoted by t{we=s] (see eg.,
Jaffar et al [7) p.503 or Huet [6] pp.807).
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Certain binary relations are defined following Jaffar et al [T] p.503. A rewriie a is of
the form < w, X,t >». It defines a mapping from A {V) inte itzell such that

s<w X t>= s[we=t], W is an oczurrence of a variable X in 3;
2 otherwize,

Two rewrites < wy, Xy, > and < wy, X3, 3 > are said to be independent when w, and
o are independent. A rewrite o is said to be superfliuous for a term ¢t when ta =¢.

Let & be a set of rewites on H(V). Then

(a) # <, tif nis the smallest natural number such that seya;---a, = t for some
@y, 09,..., 0, & R, 8 < §if there exists n such that 5 <{, &

(b} sTaf il nis the smallest natural number such that uaaz--ar = 5, uf 192 - e = ¢ for
some u € H(V)l+ m = n and a;,az,...,@f1,82,....fm € R. &ft if there exizts n
such that M.t

{e¢) skat if nis the smallest natural number such that sayaz---ap =4, t8, 82+ Fm = u for
some u & H(V) !4 m = n apd a;,0q,..., a0, 82,...,8m € R, alt if there exists n
such that sl,t.

We now define a set R of rewrites bazed on the collection {8,} :

R ={< w, X, t >|the binding X +=! appears in some ¥}
Lemma 5.5.1. { is an eguivalence relation oo H (V).
Proof. See Jaflar et al [7] p.504.

Let the domain D be the quotient of H{V) by | dencted by H{V)/L
5.5.2. Definition of Interpretation

Let [t] dencte the [ equivalence class of ¢. For each constant ¢ in P, we assign to ¢ the
equivalence class |¢]. For each n-ary function f in P, we assign to [ the function from D™
to D defined by ({1}, [ta], ..., [tal)=f(t1,t2,.. ., ts)]. This assignment is well defined. (See
Jaffar et al [T| Proposition 3.2 in p.504.)

Let By be the set of all D-atoms. For =, we assign the identity relation en D. For
other predicates, we deflne a subszet [ of Bp from the interpretations Jg, Jy, ... associzted
with BR. Let [; be a subset of Bp defined as follows.

I = {p([ta], [eal, - . [2a]) P p(20, B2y te) € i}
Lemma 5.5.2.1. Let [, Iy,... be as defined. Then [ & 1, C ---

Proof. Suppose a negative atom A of G, is in A, and A is unified with the head of "Ay -
Ay, Az, ., An" branmgu. 8, and ,[A) in 8,{G,) s replzced with 8:{A; )A8(A2)A- - -AB:(AR).
Becauze 8;(A,), 8;(A4z2),...,0:iAm) € B{Vix,) are all in 4,4, frem the deficition in 5.4,
6i{As) 13 in Jiswy. Then because 8,(A) = 8:{Aq), for all plsy,22,...,8a) € £, there exizt
ty,t2,.. .t € H{Viyy) such that [s1] = [tal, [s2] = [ta), . .., [3a] = .itn] and p(ty, tz,.. ., ta) €
Jity. Hemee [y © iy,
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Let I be the set of all exprastions of the ferm p{[ty], [ta],..., [ta]) € Dp such that
p{t]; t:rr ERT tn} E I. for some i, t-ha!. iSI

I= {p(it:],[tz],- ... [ta]) [ P(t1, t2, .. tn) € J, for some § } = |, Ii.
Lemma 5.5.2.2. [ is a fixpoint of T,

Proof. The proof is similar to that of Jaffar et al [7] p.505. Because this lemma is the
essential part of the whole proof, we write it dowa here again.
I 2 T(I) is obvious, because I; 2 T(I;) for each i. (Note that J; 2 T(J,) for each «.}
I € T(I depend: on the fact thot B is an NFI derivation in the fzir WFI tree. Let
pl[t1], (2], ..., [ta]) be acy element in [ such that p{fy,f2,...,ta) is in A; (£20). Because
BR is frum a fair NTT tree, there exizis a 7 > 0 such that pleg, e2,...,0,) = fity o
-8 Bigg o foa(plts, tz, ..., ta)) is in Aiy ead plag, 5z,...,94) is the sslected atom in
Gis;. Suppose C,s; takes the form plry,r2,..., %) - By, By, ..., E,. By the definition
of T, p({fiss41{rills (Biss4alrall, - (it iwa(ra)]) € T(I). Alse, by tke abovementioned
relationchip betwween subsiitutions snd rewrites and the definition of I equivalence class,
F[[tli: [iz}: "y [!ﬂ-i}
= pl[diws(t1)], (@i (tadly - - o, [Bige5{2a)])
= F{[Sl]n [523- = [sn]}
= F{[ﬂi+;'+1{51]']r :3£+j+1{-52]]1---: ['?i-i—j—f—l{’n}]}
= p{{fiss+rlri)] Bissalrall .o B s (rall),
so that p([t1], [tz],. .. [ta]) € T(I). Because each J; is generated from A, the above relation
helds for any atem in J. Thus I = T{J).

5.5.4. Imvrlidity in the Model

Lastly we confirm that [ is indeed a medel of P in which G{= Gy) is nct valid.
Lemma 5.5.3.1. [ iz a model of P,
Proof. See Jafar et a! (7] Propositicn 3.1 in p.504 and p.505.

Lemma 5.5.3.2, Let Xy, Xz,.. ., X, beall the free variables in G, Then JEEVY,, X2,..., X5,

Froof. We write E{X, X3,...,X.) to show the set (possibly superset) of all free vari-

ables in expression E explicitly. Suppese Tj=%X; X7, . . X.G[X; Xz, ..., X,). Then

G{X,], Xz, .., [ X)) must be valid in /. Because all negative atoms in G{[X4], [X3), ..., [Xa])
are true in [, it must contain at least one pesitive atom A{[X,], [Xz],. .., [X.]) true in [. This

implies that for a sufficiently large M, fag_qo0pg g0 ol o 0glA[Xy, Xz, X)) isin

J . Because the atom is a positive part of Gag, this in turn means that Gae(¥5, Y2, ., Vi)

is valid in Jpr under the interpretation assigning ¥ as co element of H{Vy) to each free

variable ¥ in Gy, which contradicts Lemma 5.4.3.

Thus the prooef of Lemma 5.5 is Hnished.

Thearem 3.5, (Completeness for S-formulas)
Extended exccution is eomplete for S-formulas,

Proof. First, let 5 be a universal formula which iz not necescarliy case-splitting-free. By
Lemma 5.1.2, § 1z provable by normal exZended exccution if and only if all case-splitting-free
universzf formulas 5, 55, ..., 5 obtained from & by applying case splitting as far as possibie
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are provable by normal extended execution. Obviously, § is a logical consequence of P* jf
snd coly if all case-splitting-free universal formulas 51, 82, ..., Sy are legical eonseguencos
of P°. Hence a universal formula S is provable by normai extended exeeution if and only if
S is a legical consequence of P°.

Now let S be any S-formula and S,.., be a universai formuia obtained from § by
introducing new predicates, adding new definite clauses and replacing several conjuncts in
S with atoms with the new predicstes, 2s was done in Ezample 2.2.5. Let P, be the
completeion of the original program P plus the added new delgpite clauses. Then, note
that Snew is a logical consequenca of P, if and only if § is a logizal consequence of P°.
Moreover, S, i3 provable by normal extended execution il and only if § is provable by
normal extended execution, because the new predicates do not apoear in any bedy of the
program FPp,w. Since Lemma 5.5 holds for S, and P;m, extended exszcution is complete
for S5-formulas.

6. Diseussion
(1) Completeness of the SLD-ilesclutien and the *Nezstion ns Failure™ Rule

Not cnly our theorem is a generalizetion of the completcness of the SLD-refutation
I5].[11,[4] where S is a ground pesitive goal A or mere generally a formula of the form
32X, X, L X (A AAZA- - -AAR), but alseo it is a geperalization of the completeness of the
“Negation as Failure™ rule by Jaffar et al [3},[7],[8],|20] where § is a ground negative goal
=A or more generally a goal formula of the form WX, Xq, ..., Xa (A AAzA AL

Corollary 8.1. 32X, X, ..., X, [A;AAzA --AA,) is provable by the SLD-rescluticn if and
only if it iz a logical consequence of P,

Proof, Let G be 3 goal formula of the form 33X, Xa,..., Xald AdzA - AAR). Because
there is no negative atom in G, there is no chance to apply NFI and simplification. It is
obvicus that there exists an SLD-refutation of G if end only if there exizts a sequence cf
DCI proving &. (Indeed the countermodel [ in our proof iz Jy, whick is the usual minimum
Herbtrand medel sizee Vo = 9.)

Corollary 6.2. VX, Xs, .. X (A, A28 -AAL) iz provable by the *Negation as Failure®
rule if and enly if it is a logical consequence of P°.

Freofl. Let G be a goal formula of the form vX,, X3, .., Xn-{A1A42A- - AA:). Because
there iz no pesitive atem in G, there is no chance to apply DCI and simplification. Tt is
obvious that there exists a finite failure tree of G if and only if there exists a sequence of
NFI proving . (Indced the countermedel [ in our proof is idantical to the medel by Jaffar
et ail [T, since Ag is the set of all nepative atoms in G.)

We owe very much to the work by Jaffar et al [T]. The use ef fairness to overlap inter-
pretations Jg, Iy, fg, ... is due to them, though we have constructed a courtermodel without
resorting to Knaster-Tarzki's fixpoint theorem. The true diffieulty existed in clartfying the
preperties of NFI trees in Section 2.2 and 5.3

{2) Use of Normal Extecd:d Execution

Qur proof of the completeness implies a nermal presf thecrem.
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Corollary 6.1. (Normal Extended Execution Theorem)
An S-formula 5 is provable by extended execution if and only if § is provabie by normal
extended exesution.

Proof. Suppoze an S-formula § is provable by extended executicn. By Theorem 4.3, § is
a logiczl consequence of P. By Theorem 5.5, § is pravable by normal extended execution.
Another direction is trivial.

In our verfication system Argus/V, application of exetended execution is controlled by
many BMTP-like heuristics [6],]10],{11},[12]. In particular, we bave adopted the fellowing
priority rule : Case splitting is prefered to NFI, which is prefered to DCI, whkich is in turn
prefered to simplification. This theorem partly justifes thiz priority rule in our heuriztic
control of the inferences.

{3) Roles of the Oraele Deeision Bule

Oracle decision is never applied automatically in our verfication system Argus/V. Though
Argus;V has the interactive facility to apply oracle decicsion and direct the ruies to be applisd
next, all theorems proved automatically so for needed po orele decision, becauze zll these
theorems are in S-fermulas. But, eracle decision is not completely redundant. Actually, it
makes more first order formulas provable.

Example £.1. Let p be a predicate defined by

p(Z) - pa(Z).

p(Z) - pa(Z).
and & be a goal formula

(P1(X) 2@ (PZA(P2(X) 2q2(12))) WV p(1Z). .
Though this S5-formula is a legical conzegquence of P, we can’t prove it without oracle
decizicn. [ Nete that mo case splitting is applicable beczuse of the cccurrences of 12, If
DCl is applied te p(72), either pi(72) or pz(7Z) iz lost.) By applying an eracls decision by
g =<1Z&=X >, we have a new goal formula

(P2 (X D quXNA(P2iX) D qa(X))) v p(X).
from which we have

(Pa(X) Zaqu (X)) v p(X).

(p2(X) 2qz(X)) v p(X).
These goal formulas are provable by DCI and simplifization.

One might expect that extended execution is complete for a larger class of first order
formulas. The following example is a counterexample against it.

Example 6.2. Suppose we have relaxed the condition (S;) for S-formulas to
{52)No undecided variable appears among the negative atoms of 5.

We called this clage of first formuias S-formulas in {9],]10] and conjectured the ezmpleteners.
But extended execution is not complete for it even with oracle decision. Let p be a predizate
as before and oow & be a goal formula

(P (X) D qu (1 Z)A(p2(Y) Da2(7Z))) V p(12).
Though this S-fermula is a logical consequence of P°, we can't prove it even with oracle
decizion. | Note that both < 7Z+=X > and <7Z+Y > leave: one goal formula nat provabla
by extended execution.)

7. Concluzions



We bave showno soundness and completeness of an exteztion of cxecution devised for
proving properties of Prolog programs. This work establishes a theoratical foundation of
pur verification system Argus/V developed between April 1284 and March 1985,
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