ICOT Technical Report: TR-172

TR-172
Intelligent Support for Office Work
with a
Prolog-Based Object-Oriented Programming Language ESP

by
Hideki Sato and Hitoshi Matsumoto
(Fupitsu Lid.)

April, 1986

CHOSA. 1ICOT

Mtz hokusal Bidg M7 (03] 436-3191 =5
“ D [4-20 Aita I-Chome

Telex 1C0T]132964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Intelligent Support for Office Work

with a Prolog-Based Object-Oriented Programming Language ESP
Hideki S5ate ard Hitoshi Matsumote

FUJITSY LIMITED

1015 ¥amikoedanaka, Naskahere-ku, Kewaszaki, 211, Jepen
AESTRACT

This paper discusses intelligent suppert for oiffice weork with
ESF, & Frolog-based object-oriented progromming language. Toa pravide
intelligent support for the office work, the knowledge of the office
work must be represented and maintained, and meta-lev=l procedures
must be developed f{or the system to wuse the cecbject-level eof the
krnowledge to act intelligently and actively, ESP is used to model the
krnowledge and to develop the meta-level preocedures, Both the object-
oriented feature and the legic-programming feature of ESP are suffi-
cient to provide inptelligent suppert. Discussion is focused con office
tasks modeling and on how office tasks are performed, for office tasks
are the basis for malting an office system intelligent aznd active. In
cur modeling framewark, an office task is represented by a eclass of
ESF. The predicate form of E3P 1is wused to represent constituent
tasks, pre-conditions, pest-ceonditions, =nd constraints of the tasks.
The meta-level procedures e-e implemented zs method predicates defined
in the system «classes and inherited by clssses representing office
tasks for intelligent support.

This work is part of the activities under aker in the Fifth Gen-

eration Computer Systems (FGCS) Prcject of Japan.
1. INTRODUCTIOH

Ls computer techneleogies progress, vwvarious kinds eof software
- 1 =

togcls have been developed to suppert office work such as electronice
mail, calendar management, text editor, and forms packages. Although
these tools are effective for performing specitfic aspects of office
tasks, supporting this level of tasks is limited to the effect of im=-
provement on office productivity [12]. Te improve office productivi=-
ty, mere effective suppert is required for higher level tasks directly
relzted to office goazls or office funetions, Currently, computer sys-
tems play only a passive role in performing such trsks, while office
waorkers play an active rele, This 1is beﬁauae most of the knowledge
resides with the office workers, nct the computer systems. An intel-
ligei.t and active office system must be developed, if this situation
is to change.

Methods for supporting higher levels of office work can be divi.-
ed into two cstegories. One category is based on the procedure execu-
tiun approach; the other is basec on the knowledge-based approach.
The procedure executicn zpproach [111,014]1,[17] regards office work as
a2 data processing sctivity: office tasks are structured in terms cof
irput, process, and output., The assumption is thast office tasks can
be well-understood and completely automated. Therefore, the tasks
this approach deals with best are restricted to routine z2nd rigidly
structured tasks, This approach seems iradecuate for supporting of-
fice work, because of the nature of office and the office work [(51].

The knowledge-based approach [11,021,031,06],0131,016] regards
cffice work as a problem-selving esctivity: office tasks are structured
‘r terms of goal-subgoal hierarchy. The assumption i1s that not gll
zspects of office tasks are totally understnod and that the knowledge
used for preblem-solving may enly be partial. This approach seens
promiszing, for it enables the system L0 use various kimds of the
stored knowledge sbout office work to provide a wide range of intelli-

Eent support.

Qur approach te supperting effice work is in 1line with the
knowledge-bazed one, To create a knowlecge-based office system tuwe
things are reguired. First, the system must be able tc represent and
mzintzin knowledge 2bcut office work. This includes knowledge about
organizatiens, office workers, dats objects, office tasks, responsi-
bvilities, and so on. Second, the system must be able to help offiece
workers with their office tasks. The system Knows what office tasks
are to be done, when they are to be done, and whe is respensible for
doing them, t czn z2ssist in analyzing and menitoring. It perferms
simple routine tesks for office workers. It helps office workers to
perform complex tasks. TIn a word, the system acts intelligently based
on its stored knowledge. Such an intellisznt and sctive sys.em re-
quires that meta-level procedures [10] be added to the knowledge men-
tioned above, The meta-level procedures refer to object-level
krowledge [101.

The object-oriented wparadigm ([81,7191,015] =nd the logic-
programeing paradigm [71,010] =re =sdeguste for coping with ihe re-
guirements menticoned above. The firs:t renuirement 1s met by
representing concepis and relztionships in the office. Concepis can
be medeled in a natural way with the object-oriented paradigm. Relz-
tionships between «concepls can be nicely represented with the legic-
programming paradicm, The second reguirement 1s essily met by the use
of both paradigms to develep the meta-level procedures that lncor-
porate the zbove khnowledge.

This paper discusses intelligent support for office work with ESP
[4), 2 Prolog-baszed object-coriented programming languzge. The follow-
ing secticn is a brief explanstion of ESP. Section 3 focuses on cur
framework for office Lusk modeling. Sectien L describes how office
tasks are performed, based on the task deseriptions. Our concluslions

are given in Section %.
- 3 -

2. ESP

ESP is & Proleg-based object-oriented programming language which
provide beoth an object-oriented feature and a legic=programming
feature. An object of ESP is defined in terms of a set of metheds im-
plemented by Prolog clauses and a set of slots, ESP programming
deseribes & eless definition cconsisting of 2 syntax as zhown in Figure

11-

claz=s <elzss name> has

[<nature definition> ;] «v++ inheritance
{ <elass slebt definition> ; 1} vees olass
{ <class clause definiticn> ; ! cass €lzss
[instance
{ <instance slot definition> ; 1} .--. instznee
{ <instance clause definitien> ; } 1 instance
[loeszl
{ <loceal clause definitiony ; 1] vees local

end .
Figure 1. Syntax of class definition in EZEF

The inheritance part defines the super classes which this class
inherits, If & class inherits other clesses, the class has 211 the
methads and slats of those classes s well zs its own. The class part
defines the class object which consisits of class methods and class

slots. The instance psrt defines the template of instance objects.
Tts definition consists of instance methods and instance slots as well

5 a class definitien, A method is defined by Preclog eclauses. The
local part defines the predicates which can only be cslled within this

ok

ass,

£ meihod predicate has the syntax ":<{predicate name>(<{argument
list>)": It is distinguished from a local predicate by the colon ':!
preceding <predicate name>., The beginning element of <argument 1list>
specifies the object which receives the messsge. Before-demon and

after-demen predicates can be attached to a method (primary) predi-

-q L

cate, They are specified by putting the keywerds 'before' and 'after'
in front of the svntax of the method predicate, Durin- executicn of =2
message, before-demeons are called before the ecall of the primary
predicate, and after-demons are called after the call of the primary
predicate, If a class inherits other classes, the eclauczes of the same
primary method are OR'ed and the demons are AND'ed with the primary
predicate.

Some built-in method predicztes are provided for objeet manipulz-
tion. 4 ":new(Clsss,Instance)" methed predicate is used to create an
instance object of a2 class. ":get_slct[Dbject,Slop_name,value}" and
":set slot{Object,Slot name,Vslue)" method predicates are preovided to
access a slot of an object, They are alsoc described in the maero no-
tation, "Cbject!Slot name"™ to refer to the wvalue of Lhne slot and

"Object!Slet name:=Value" tc assign the value to the slot.

3, FRAMEWORX OF OFFICE TASK MODELING

s

In the c¢ffice, there are varicus concepits related to office

tesks., They are zlsc rclated to ezsch other. 3Such conceplts are organ-

izations, off.ce warkers, data objects (e.g., forms), office Lasks,
and 50 on. The mest important concept among them is the office task,
because it plavs a central reole in making an office system intelligent
and active. Tnis section discusses how to model cffice tasks. E3SP is
used as the medel representation language.

In our medeling framework, an office task 1z represented by =&
clzss of EBP. From the standpoint ¢f modeling, the super-sub rels-
tionship and the whole-part relationship are useful. The {ormer en-
ables the user tc easily define the task description similar te exist-
ing ones with & few incremental changes. The latter provides the uscr

with a mean: to comweose an affice task of anmether constituent tasks.

Three basiec abstrasct classses (1.e., ‘'tLask' e¢lass, ‘'composite task'
- 5 -

class, and 'primitive task' elass) are provided. ‘'task' class is the
most abstract concept of all the tasks, ‘'composite task' c¢lass is the
sbstract concept of composite-tasks, while 'primitive task' class is
the abstract concept of primitive-tasks. They are both subclasses of
ttask'! olass. A task concepts in the office is defined zs 2 subelass
which is lin'ed to the 'composite_ task' class or the 'primitive task’
class either directly or indirectly.

Figure 2 shows a typical example of a composite-task descripticn.
The example is of an accounting of business trip expense. It consists
of filling out a travel expense_account_form, approval ¢f the account
reguest by a manager, completion of the transseticn by & elerk, and
making & report that explzins why the travel expense exceeds the stan-

dard expense,

class travel expense_saceounit_task has
9 super task of thls task
nature cemposite task;
instance -
% attributes af thisz task
atiribute
petiticner,
travel_expense_accmunt_farm,
report on overspending;
% pre-conditicn of this task
pefore:exccute(Self):-
exist travel order_ form(Self!petitioner),
[
"1
% post-condition of this task
aflerienecuteSelfl): -
equal(Selfltravel expense acuount_ form!status,"checked"),
',
"1
feconstituent tasks of this task
.Eanstltuent task(Sels,fill out travel expense account_form,
[petltioner{Self'Detltlcrer Y1)
tcenstituent task(Self,meke_a_repcri_on Gve“spendzﬂg,
[petltloner{Self'pet tioner)]):-
judge overspending(Selfltravel expense_account_lorm!
total Entﬁurt}
tconstituent task(Self,get seal of a manager,
[manager (Manager),ferm(SelfTtravel expense sccount_form),
repcrt(ielf'repcrr on cverspending)lli=-
'manﬂgertqﬂlf'petltloner Manager);
tconstituent task(Self,complete travel expense account,
a [form{Eelf travel _expense account_form),
report(Selfirepert_on_overspending)l):-

-6 -

% constraint
ifollowed by(Self,fill out_travel expenss_form,
get_seal of manager);
:follow=d by{Self,get seal of __manager,
cnﬂplate travel _expense_acceount);
:followed by(Self,fill out travel expense acceunt _form,
make a report on _overspending);
:followed by(Self, nnxe 2 renart on averspending,
get seal of _manager):-
1=
-y
toptionzl(Self,make a report on averspending):-
|
-
imatch(Self,travel expense_account_form,
[£il1_ cut travel ex;ense a¢¢$Uﬂt form,form]):
imateh(Self,report_on overspending,
[ﬂage_a_report_cn_nwerspending,repcrt]J:-

-
L

lacal

ancd.
Figure 2. A compcsite-task description

A composite-task is defined iIn terms o¢of attributes, pre-
condition, post-condition, constituent tasks, and cconstraints. The
attributes of a tesk relate the task to cther objeets or wvalues and
gare represented by the slots of a class, They may be shared by the
constituent tasks znd used by higher lovel subsuming tasks. If &n =t-
tribute hes an initializstion specification, it is inmitialized st the
instantiation of 2 tazk object, In Figure 2, =a petitioner, =&
travel expense_account_form, and & report_on_overspending are defined
as the attributes of the 'travel expense_account task'.

Before a task can begin, certain conditions must meet the state
of objects in the system, These are called the pre-cendition of =
task. Alse, when a task iz completed, certzin conditionsz must be sa-
tisfied. These are called the pest-condition of a tesk and are used
Lo ascertzin if the goal {(i.e., the task) was zttained. These condi-
tions &re described in the bodies of the clauses, which define the
before-demon predicate and the after-demon predicate of the instance
method predicate ":execute{Task)". The pre-conditicn in Figure 2

-7 -

specifies that the travel_order_form must be sub:itted for the peti-
tioner before the travel expense account_task begins. The poszst=
condition specifies that the travel expense_account form must have
been checked when the travel expense acccunt_task [inishes.

4 composite-task is composed of lower level constituent tasks
which are either cecmposite-tasks or primitive-tasks. These consti-
tuent tasks are regarded as the operaters which are used to attain the
geal (i.e., the task). They may have conditicns, if their applicaticon

depends on the state ef objeects in the system. They zlso hzve parame-

ters reguired for t'=ir execution. This Knowledge is defined by the
instance method nredicate
":eonstituent task(Self,Conatituent task,Parameter list)", which shows

the relationship that this task ('3elf') hes "Constituent t=sk' as a
constituent task snd that the parameiers to be passed to the consti-
tuent task are specified by 'Parametar_ list'. The arguments
'Constituent tazsk' and ‘'Parameter_list' give & name and a parameter
list faor the constituent task. The parameter is a term of a parameter
nsme =2nd 1tz wvalue. The bedy of +the elause which defines the
":constituent task" prediecate, specifies the cendition under which the
ecnstituent task is applied and the derivation of any parameters. As
For the censtituent task 'm: "2 _a report_an overspending', making s re-
csrt is reguired il the travel expense exceeds a standard value and
takes the petitioner of the travel expense acecount as ils parameter.
The temporal ordering among the constituent-tasks nmust be deter-
mined +ta perform & composite-task. However, office tasks are cften
parallel, negligible, and performed in several ways. Therefore, 1l 15
difficult +to totally specify the precise sequence of constituent
tasks. Instead, the definition of constraints is introduced to speci-
fy the relationships among constituent tasks and cptional constituent

tasks piecemeal. The following three instance method predicates are
-8 -

used to define such constraints,
- :followed(Self,Constituent task?l,Constituent task?)

This pr:dicate shows the relationship tLhat ‘'Constituent taskl' is
followed by 'Constituent task2' during the execution of task ('Self").

b1

- :alternative(felf [Constituent ftesk?,Constituent task2,...])

e

This prediczste shows the relstionship that ‘'Constituent taskl?',
"Constituent task2', ... are alternatives during the execution of task
("Self')s
- toptienal(Self,Constituent task)

This predicate shows that the execution of 'Ceonstituent task' is op-

tionzl during the executicn of task ('Self').

Constraints about attributes must be mezintained during the eiecu=
tion «f & task, for Lhe execution ¢f the constituent tasks may cause
changes in the states, There are two kinds of constraints related Lo
attributes. One is concerned with the values of attributes. However,
this kind can be represented in the definitions sbout other kinds of
objects (e.g., data objects)., Therefere, it is excluded from the task
deseriptions. The other kind 1is concerned with the relztionships
between the attributes of a task and the attributes of the constituent
tasks. To describe this relationship, the instance method predicate
"imatch{Self,Attributel,[Constituent task,Attribute1])" is used. This
predieate shows the relationship that the wvalue eof ‘'Attributel' of
task L'8elf") iz equal to the velue of TAttributel' of
'Constituent task'. In Figure 2, the relationship defines the value
of the attribute 'travel expense_acccunt_form' as egual to the value
of the atiribute '*form! of the constituent task
'fill out travel expense_account_form'.

A primitive-task is defined in terms of the pre-condition, the
post-c ndition, and the attributes &s well as a composite-task. Alsc,

-0 -

the instance method predicate ":execute(Task)" is defined to perform

its functicn.
4, HOW AN OFFICE TASKE I5 PERFORMED

This section discusses how an office task is performed based on
the task descripticns explained in the previcus section. FPerfarmance
of an office task is regarded as the process in which a planning tree
is built by recursively dividing & tesk into subtesms. Eszsch node of
trie planning tree represents an instance of a task deseription and
ezch arc between two nodes represents the relationship between a task
and & subtask. This tazk-subtask relationship is regarded as the re-
lationship between geal &nd subgosl in preblem selving., & task
represented by a leaf node is primitive. Its performance is imple=-
mented by the instance method predivate ":execute(Task)" that is de-
fined in the task deseriptien, Figure 3 sﬁcws the tap-most level of 2z
me’ s=level procedure which schedules the performance of 2 composite-
task based on its own task description. This procedure is implemented
45 an instanece method predicate of 'composite _task' eclass, so that Lhe
subclasses which represent the compesite-task are able te Inherit It
and so be capable of scheduling.

texecute(Self) -
repeat,
select subtask(Self,Task,Parameter list),
execute(Task,Parameter list),

constraint propagation(Seli,Task),
histery registration(Self,Task);

Figure 3. Top-most level of the scheduling procedure

The procedure in Figure 3 utilizes foerward reascning strategy us-
ing the task descripticn to purform & composite-task. Side-effects
caused by forward reasoning are reflected in the status of the relat-

ed slot wvalues of objects. When the procedure is inveked, the
- 10 =

before-demen predicate of ":execute(Selfl)" is first called to check
the pre-conditien eof this task. Cyecles are then repested until the
post-condition of the task is satisfied. In each ecyecle, a subtask ap-
plicable to the current state is selected. Then, after its instantia-
tion, it is recursively executed. Attribute values arc propagated Lo
maintain constrazints after the execution of the subtask. Finzlly,
data zbeut the execution of the subtask is recorded in the histery.
When each cyele is finished, the after-demon predicate ef
"rexecubte(Self)" is celled te check that the task 1= completed, If
the post-condition is satisfied, the task is finished. Otherwise, the
next cyele is started under the backtracking econtrol of Prelog,
without restoring any side-effects,

Selection of 2 subtask in each eyele wusesz the instance method
predicate ":constituent task™, the censtraints abcut the temporal orc.
ering of the constituznt tasks, and the history which hélds the execu=
tion log. The office world is open-ended and evolving, so a situation
may occur, in which the procedure cannct deal with the selection of =
subtask wusing only task descriptions. When 2 =subtzsk cannot be
cnesen, office workers must undertake te sclve the preblem, for they
have more relevant knowledge than the computer. Our system enebles
aofiice workers to intervene, whenever the systsm cannot 5eient the
next subtask,

In each cycle, values are prepagated to maintzin constraints us-
ing the relationships between the sttributes of the main task and of
its ecenstituent tasks, lor the status is changed by the execution of
subtasks, after a subtask is completed in each cycle, the instance
methad predicate
":match{Self,Attributel,[Constituent task,Attributel])" is ecalled to
gscertain if the propagation is necessary. If it is, the value of the

'Attributel’ of ‘'Constituent task' is propagated to the 'Attributel!
211 -

glot of the task ('Self'),

5. CONCLUSIONS

There are severzl efforts to develop a knowledge-based office
system. Barser, et al, [1],[2] propese an excellent problem-sclving
method which deals with unstructured office tasks. POISE [3] provides
office workers with a wide range of assistance. The task descripticn
fremework of POISE is similar to ours. However, our work differs from
POISE, because our system uses the logic-programming feature of ESP to
enzble natural description of the relationships. Woe, et al. [16]
21so make use of the objeect-criented approach to modeling office work.
They use production systems to cope with complex office tasks. Tao
deal wiin sueh tasks, our system borrows the goal-oriented ability of
Prolog as well as the nelp of the office werkers.

This paper discusses intelligent suppert fer office work., ESF 1s
used to provide the cbject-oriented feature end theo legic-programming
festure. Both the fezatures are sufficient te represent the knowledge
af office werk using & conceptually natural construets. They are glso
appropriate to develep the meta-level procedures which refer to the
cbject-level of the knowledge. Discussion is focused on modeling of-
fice tasks and an how office tasks are performed, for office tasks are
the basis for making an office system intelligent and active. In our
modeling framework, an office task is represented by a class of ESP.
The predicate form of ESPF 1is used to represent constituent tasks,
pre-conditions, post-conditions, and constraints of the tasks. The
meta-level pracedures are implemented as method predi stes defined Ir
the system classes and inherited Dy classes representing office tasks

for intelligent support.

ACKNOWLEDGEMENT

This wark is bazsed on the results of the R & D activities of the
Fift» Generatiosn Computer Systems Project of Japarn., We would like to
thank Mr. Y. Iwashita, the chief of the Fifth Sectiorn of ICOT (Insti-
tute for New Generation Computer Technolegy) for his encouragement and
support. We &lso thank Mr., T, Hayzshi, manager of Sefliuare Labaratory
of Fujitsu Laboratories Limited, and Mr. Y. Hiratsukz, serni.r
researchar of Fujitsu Lzboratories Limited, for their continued gui-
dance, Specizl mention should go to Dr. 8. Mekirouchl of Fujitsu Le-

boratories Limited for his helpful comments on the draft o¢f this pe-

per,

{1]Barber, G., "Supporting organizationzl problem solving with a
workstation®™, ACM TOOIS, Vel.1, No.l, pp.U5-6T7, January, 1983
[21Barter, G. et al., "Semantic support for work in organizations",
Froceedings of IFIP B3, pp.561-566, 1983

[31Crefs, W. B, and Lefkowitz, L. §,,"Task support in an effice zysten”
, RCM TI2IS, Vel.2, No.3, pp.197-212, July, 1984

[41Chikayama, T., "ESP referenc manual"™, ICOT TR-044, 1983

(5]Fikes, R. E. and Henderson, D. &,, Jr., "On supporiing the use of
praocedures in office work", Proceedings of 1at National Confcerence on
Artificizl Intelligence, pp.202-207, 1Q80

[6]Fikes, R. E., "Odyssey: a knowledge-based sssistant", Artificilal
intelligence, Vol.i6, pp.331=361, 19281

[7T]Genesereth, M. R. and Girsberg, M. L., "Logic programming”,
Communicatior of ACM, V- 1,28, No.9, pp.033-GU1, September, 1285
(81Gibbs, 3. and Tsichritgzis, D., "A data modeling approach for office
infermation systems™, ACM TOOTS, Vol.1, No.Y, pp.299-3719, Gctober, 1883
f9]Goldberg, A. and Robsen, D., "Smalltalk-80: the lanpguage and 1ts

- 13 -

implementation”, Addison-Wesley, 15832

ETD]KDHEIEEi, R., "Logic programming", Proceedings of IFIP 83,
pp.133-185, 1983

[111Hogg, J. et al., "Form procedures”, in Omega Alpha, Tsichritzis, D.
, ed,, TR-CB3RG=-127, Computer 3ys., Res. Group, Univ. of Torento,
pp.101-133, March, 1981

[12]Lechovsky, F. H., "Improving office productivity: a technology
perspective", Proceedings of the IEEE, Vel.T1, No.4, pp.512-518, 1983
[131Maes, P., "Steps towasrds knowladge-based office systems",
Proceedings of 12t conference on artificizl intelligence applications,
pp.562-568, 1984

[1415hu, N. C. et al., "Specification of forms processing and business
procedures for office zutomation", IEEE Trans, on 5E, Vol,.5E-8, Ne.5,
pp.49%=-512, 18982

[1:]Weinreb, D. and Mocon, D., "Flavors: message passing in the Lisp
machine™, MIT AT Meme 602, November, 1980

[16]Woo, C. C. and Lochovsky, F. H., "An object-based approach to
modeling office work", IEEE Databazase Engineering, Vel.8, WNe.4, p..14-22
, December, 1985

[17]Zlcef, M. M., "QBE/OBE: a language for office and business

automation", IEEE Computer, Yol.14, pp.13-22, 1981

- 14 -

