ICOT Technical Report: TR-168

I'H-168
Guarded Horn Clauses and Experiences

with Parallel Logic Programming

by
Jiro Tanaka, Kazunori Ueda, Toshihike Mivazaki

Akikazu Takeuchl Yuji Matsumoto and Koichi Furukawa

April. [986

986, 1COT

Mita Kokusai Didg. 21F (03) 456-3191~5

H :D l' 4-28 Mita 1-Chome Ielex ICOT J32964

Minato-ku Tokvo 108 Japan

Institute for New Gehératiah '_Z'J_dr_ﬁputer Technology

Guarded Horn Clauses and Experiences with Parallel Legic Programming
(Guarded Horn Clauses & THICLAAEATOFSZI &)

Jiro Tanahaﬂ:, Kazuneri Ueda. Toshiniko Mivazaki, Akikazu Takeuchi,
[Hop Bk LEHAE ErEE MHmE-—)

Yuji Malsumoto, and Koichi FuruHawa@

(EmaFE milR—)

ICOT Research Center, Mita-Kokusai-buile 21F
1-4-28,Mita, Minato-ku, Tokvo 108, Japan
Phone 456-2314 Fax 436-1618
(MEBEA T2 - 2HNRERERR)
(@104 BER =@ 1-1-26, -“HERTLIE)
(T456-2514 Fax 456-1818)

[tbatract)

This paper tries to overview the varicus asctivities of ICOT related to

Guarded Horn Clauses (GHC).

We describe a new parallel legle lapguage GHC, which is proposed by
Usda [Ueda 85¢, Ueda BE] first. The features of this lanpuage exists
in simppliecity and the ease of implementaticn. Then the implementation

of GHC and 1ts programming efforts are described.

We al=o summarize the current status of Kernel Language Version 1
(KL1). FKL1 dis& the language system for the FIM hardware [Murakaml

B5a]. The overall structure of ¥L1 and its distributed implementation

efforts are described,

1. Introduecticon

The final goal of the Fifth Generation Computer Project is the
development of logle-based high-speed parallel-computing-system. Qur
objective i= the design and development of a P"loglie programming
language" which allows parallel execution. FKowalski [Xowalski T4] has
pointed out that a set of Horn clauses alsc alleows Pparallel®
execution az well as sequential execution., Various efforts have been
carried out for the or-parallel or and-parallel execution of a Prolog
program. However, our view for such efforts iz that these approaches
may be inadequate for parailel oprogramming in general, although they
may be useful for uncontrolled all-sclution-search problems., What we
want is a more expressive, gererzl-purpose parallel programming
language which includes important concepts such as processes,

communication and synchronization.

2 Parallel logic programming language

2.1 Design Goals

The design requirements for our parallel logic programming language

can be summarized as follows [Ueda 85c]:

~= Parallelism, It must express parallelism "by nature,?® Sequential
languages which are added with parallel constructs are inadequate. It
should keep as little sequentiality as possible in order to preserve

parallelism inherent in a Horf-clause program.

-= Expressiveness, It must be an expressive, general-purpose parallel
Prograoming language. In partieular, it must be able te express

important concepts in parai lel programming such as processes,

compunication, and synchronization.

== Simplieity. We do not have much experience with parallel
programping. Therefore, it must be a "simple" language and we must

eatablish a foundation of parallel programming first.

-- Efficiency. There are various typical parzallel problems to be
deseribed in the langeage. It is important that we can execute such
programs as efficiently as the comparable ones written in other

existing parallel programming languages.

2.2 GHC

The languages we are interested in are the parallel logic languages
such as Parlog [Clark B5] and Concurrent Prolog [Shapire 83]. Those
languages seem to be most close to the above menticned requirements.
Although there sre differences, the basic computation mechaniams of
these languages are quite aimilar: Heorn clauses with guards are usaed
for defining predicates, goals are executed in parallel, and they have

some synehronizaticn mechanisms between goals,

In this section, we describe a new parallel logic language GHC, which
was proposed by Ueda [Ueda 85c, Ueda B86]. It inherits many features
from Parlog and Concurrent Frolog, What is most characteristic 1is
that the guard 1s the only syntactic construet added to Horn clauses.
In GHC, synchronization is realized by the suspension mechanism of

guards.

& GHC program is a set of guarded Horn elauses of the following form:

H := &1, G2, ... , G@ | B, B2, ... , Bk .

-

The operator | is called a commitment operator. The part of a clause
before | is ealled a guard, and the part after | is called a body.

Note that a clause head is inecluded in a guard.

A goal clause has the following form:

H E1| e E 1,EI-'I.« {n}.ﬂ.}

This can be regarded as a guarded Hern clause with an empty guard.

The semantics of GHC is quite =simple. Infermally, to execute a
program is to refute a given goal clause by means of input resclution
using the eclauses constituting the program. This pan be done in a

fully parallel manner under the following rules,

(a) Unification invoked in the guard of & clause cannot dinstantiate
the caller of that clause. In such & case, the unification suapends
until that ecaller will be instantiated by some other goal, This

provides the basic synchrenization mechanisms of GHC.

(b) When the guard of a clause sugceeds, 1t is first confirmed that no
other clause has been selected for the same gozl., If confirmed, that

clause is selected excluaively for subseguent executicn of the goal.

{c) Unification invoked in the body of a clause cannot instantiate the

guard of that clause upntil that clause is committed.

It must be streszed that under the rulea stated above, anything can be
done in parallel: Conjunctive goals can be executed in parallelj

candidate clauses for a goal ecan be tested in parallel; head

unification can be dene in parallel; head unification and the
execution of guard goals can be done in parallel. However, it would
have to be even more stressed that we can alsc execute a set of tasks
in an arbitrary order as long as it does not change the meaning of the

program.

2.3 Program examples

In this section we give program examples to show how GHC programs ape

described,

Binary Merge
merge([AlXs], Y=, Iz} := true | Z==[AlZs1], merge{X=, Y=, ZI=1).
merge (s, [A1Y=], Zs) :=- true | Zs=[AlZs1], merge(Xs, Ys, Zs1).
merge([], ¥s, Zs) :=- true | Zs=Y¥s,
merge(Xs, [1, Zs) i= true | Zas=Xs.

The goal merge(Xs=, Ys, Z3) merges two streams Xs and Y= (implemented
as lists) into one stream Zs. This 1s an example of nondeterministie
programs, MNote that no binding can be exported from the guard; the

binding to Zs muat be done in the body.

Generating Frimes

primes(Max, Ps) :- true | gen{2, Max, Ns}, sift(MNs, Ps).

gen(N, Max, N=} := N <= Max | Na=[NiNs1], N1 := N+1, gen(N1, Max, N=s1).
gen(N, Max, Ns) := N » Max | Ns=[].

aift([PlXa]l, 28) := true | Zs=[PiZs1], filter(P, Xs, ¥s), sift(¥s, Zs1).
sire([], Is) := true | Zs=[].

filter(P, [X|X=], ¥=) := ¥ mod P=:=0 | filter(P, X=, Ys).

—

{

rilter(P, [Xl%s], ¥s) := X mod P=\=0 | Ys=[XiYs1]l, filter(P, Xs, ¥s1).

filter(P, [1, ¥a) :- true i Ya=[].

The geal primes(Max, Ps) returns through Ps a stream of primes up to
Max, The stream of primes is generated from the stream of integers by
filtering out the multiples of primes, For each prime P, a [ilter
goal filter(P, Xs, ¥s) is generated which filters out the multiples of

P from the stream Xs, yielding Ya.

3. Sequential implementation

Even our final target of GHC is parallel implementation, segquential
implemertation of GCHC ia atill important. Qur experience cn
Concurrent Proleg shows that the 4interpretive execution of such
language can be very slow [Ueda B5a]. Therefore, we concentrated our

efforts on implementing GHC "compilers. "™

GHC and Prolog have lots of similarities. Therefore, translation of
the former to the latter iz much simpler than direet compilation to a
machine language. Therefore, the approach we took is compiling GHC
programs te DEC-10 Proleog programs, We already have the DEC=10 Prolog
compiler which translates & Prolog program %o the machine language.

It means that the GHC scurce program will be fipally translated to the

machine code.

The basic technigue for compiling & perallel logiec prograoming
language to Prolog has already been shown in [Ueda B5a]. By wusing
that technigque, we have already made tweo GEC compilers [Furukawa 85a],
one developed by Miyazaki and the other developed by Ueda. These

compilers have the following features in common,

BN

(1) They both use the similar techniques to Concurrent Prelog Compiler
[Ueda B5a] which compiles a Concurrent Frolog pregram to DEC=10

Prolog.

(2} Beth systems evaluate the guards of candidate clauses
sequentially. Or-parallel execution of candidate clauses is not done,

The body of a clause is eveluated only after that clause is selected.

(3) Since they are both implemented on top ef Prolog, there exists

interface to Proleg. The geal prolog(X) calls X as a Proleg goal.
The differences between two can be summarized as follows:

(a) Ueda's Compiler [Ueda 85a]

Thls compiler works on the subset of GHC where there is no
user-defined goal appearing in the guard of a clause. We call this
subset "Flat GHC" (FGHC) since there is no nesting guards, In this
case, we do nﬂt-need the run time check where vafiables beleong to.
This compiler does not distinguish "failure" and "suspension,? i.e.,
"failure” is handled as "suspension. " Therefore, the execution speed
i1a very fast (approximately 11 K LIPS for Tappend" program on

LEC-2065),

{b) Miyazaki's Compiler

This compiler works on the full set of GHC in the sense that we can
call user-defined goal from the guard of a eclause. In this caze, we
need run time check where variables belong to, We have realized this
by using "address-comparison method.® The execution speed is slower
compared with Ueda's compiler. This ecompiler distinguishes between

"failure" and "suspension.?

e

b

Although compilation to Prolog provides us an offhand way te execute
GHC programs, we also need more direet implementation for more
realistic applications. Therefore, compilation of FGHC program to the
VAX11-T80 mechine ccde has also been tried. The ourrent status is
that we have Jjuat finished up the object code mock-ups and are
estimating the executlon speed. The implementation work is now going

on using C and VAX11-T80 assembly languages.

4. GHC preogramming

Since we do not have much experiences on parallel programming, it
seems to be very important to get experiences on parallel programming.
Therefore, based on GHC, various application efferts are currently

carried on. These efforts can be summarized as follows:

(1) All-solution-search transformation [Ueda g5d]

We are currently working for the development of program transformation
techniques which transforms a Horn clause program inte a deterministic
GHC program. This technique can be viewed as a technique which
provides GHC with the all-solution-search ability. It has already
anown that this technique can be applicable to the non-trivial oclaas
of programs and the transformed program can be executed quite
efficiently, This transformation 1= also 4important in that it
exploits the AND-parallelism of GHC for parallel esearch along with

Codish's work [Codish E5].

(2) Process fusion [Furukawa 85b)

GHC enforces the streap-criented program where computation is

expressed by processes communicating with one ansother. In ganaral ,

each process is preferably designed to compute & relatively =imple and
small task. However, the resulting programsz, if naively implemented,
may generate too many small processes, which may cause the
inefficieney because of excessive interprocess communication, Process
fusion is aimed at reducing the number of processes by fusing
communicating processes, And thi= is analogous to loop fusien in
procedural language. Based on the fold/unfold method by Burstall and
Darlington [Burstall T7)], we are currently werking for the development

of the program transformation method.

{3) Parallel parser [Matsumoto 86]

The aim of the work is to develop @ parsing system which iz naturally
implemented 4in parallel legie pregramming languages. In our
framework, a grammar rule written in a DCG [Pereira 80] iz compiled
into & program of parallel logic programming langusges such as Guarded
Horn Clauses and Parleg, Words in a given sentence are defined as
processes, of which eaech consecutive pailr are connected by a stream
(i.e. a shared variable). Completed subtrees are alsoc represented &as
processes and partially constructed parse trees are expressed as data
structure produced and put dnto streams by such processes. The
parsing operates as the dynamie constructicn of such processes and
data. Although the econstruetion of the parse trees proceeds from
bottom to top, we also utilize top-down prediction, which iz
implemented as filters, A4 filtering process ie allocated to each
input stream and filters out unnecessary elements. The aystem iz moat
appropriaztely compared with Martin Key's Chart Parsing, ir that
ipactive ares corre=zpond to processes and active arcs are represented
asz data passed through streams. The important feature of our method
iz that the grammar rules and the dicticnmary are completely compiled

into & program in the target parallel leogic progranming language and

the system does not need any program which interprets the grammar and
the dicticnary. The derived program has neither any side-effect nor

duplicate computation.

(1) Llgorithmic debugging [Takeuchi 86]

Another effort has been done for developing & debugger for GHC. It
has been said that debugging of parallel programs is a very hard task,
compared with debugging of sequential programs. The reascns why it is
difficult are that 1) conceptually several computations are executed
in parallel, 2Z) these computationa may interaet with each other and 3)
there are new kinds of bugs such as deadlock. Usually a program is
debugged by examination of executilicn trace of the program. Executicn
trace of parallel programs is, however, messy since traces of several
computation are interleaved. Even if execution trace is s=eparated
into several traces using, =ay windows, it is not sufficient for
debugging. In general, we should distinguish between debugging &nd
understanding of a program behaviaor, In the case of debugging, what
is required iz to find the location of the bug. Monitoring of a
progrem behavieor will help finding & bug, but it forces a programmer
to understand a program behavior. It is better if a programmer could
debug a program only with more abstract knowledge such as input and
cutput specification of component modules, We have defined abstract
meanings of GHC programs and are developing an algorithmie debugger
for GHC, The debugger is based on the idea of algorithmic debugging
of Shapiro [Shapiro 82] and reduces the number of gqueries based on the
"divide and gquery" strategy, Lloyd and Takeuchi formally examine the
properties of the debugger [Lleyd 867, Current wversion of our
algorithmie debugger only deals with body of GHC clauses for

simplicity.

(5) Propozsitional temporal logic prover [Takahashi B6]

Temporal Logic is an extension of the first order logic including the
noticn of time. It deals with logical deseriptions and ressopning on
time, A propositicnal temporal logic prover based on omega-graph

refutation procedure hasz been develcped in GHC.

Umega-graph refutation dis a procedure to decide the wvalidity of a
temporal formula, It npegates & given formula, computes the initial
pede formula of the negated feormula, conatructs the corresponding
omega=graph, and checks the exiztence of 2 lecop czlled Yeomega-loop,"

If the loop is found, then the given formula is proved to be invalid.

In owr implementation, an omega-graph is constructed Aincrementally
from initial npode formula by sucecessive node expansions. It 1is
represented by the netweork of commupicatlipg processes which spawn
brother processes as the graph iz expanded, New methods have alse
been implemented for the detecticon of an cmega-loop where the network

of procezses finds leoops via sending and receiving messages,

We have implemented an approprizte mechanism which checkes the attempt
whether 1t tries to access the up-constructed part of the network and
forces the process to zuspend. Therefore, an ocmega-loeop detecticn can
be performed in parallel with omega-graph construction. It

contributed extensively to reduce the execution time.

5, Kernel Language Version 1

In this section, we summarize the current status of Kernel Language
Version 1 {(KL1). KL1 i= originslly the language for the PIM hardware.
The prototype developmenta of PIM=D (Parallel Inference Machine based
on Dataflow) and PIM-R (Parallel Inference Machine based on Reduction)
has been done a2 such PIM hardware development activities [Murakami
85a]. KLV is expected teo work as the interface between PIM hardware
and the scftware which should be developed for the parallel high-speed

logie-based system.

The first conceptuzl specification of KLY was fixed on 1084, In
[Furukawa B4], we have stated that FKL1 should be based on Concurrent
Frolog [Shapiro £3] adding sete-abatracticn, meta-inference and module

facilities.

Based on thils conceptual speecification, lets of enthusiastie effarts
and dizcussions were done for the detailed specificationa of ¥L1 [Ueda
85kb1. Several Implementation efforts have alsc been done for
Concurrent Frolog [Miyagaki 8s5]. These efforts made it expliecit
preblems existing 4in Concurrent Prolog regarding the semanticz and
parallel execution [Ueda 84). It forcad usz to revise the econceptual

specification of KL1.

After the elaborate examination, we have decided to adopt the Flat GHC
(FGHC) as the core part of KL1. The discussion for the detailed
specification of KL1 also has made clear that we should separate the
language into several layers. Therefore, now the KL1 is the language

system which consists of three layers, These are shown in Figure 1,

[

KL1 Language Svstem

el ts s s eSS S mrm e m = NSRS EEEEES S e 2

KL1-u (user)

]
i
:
¥
P
Fmodule sTructure '
i
i
i
i
i

L]
(]
i
[
L]
i
L]
i
1
L]
L)
i
L
L]

wall=-splution=-saarch
KL1-¢ (core) ‘KL1-p (pragma):
*flat GHC %allocation |
smeta-cal l + *kscheduling i

KL1-b (base)

*non logical level

*parallel Warren code

xinclude built-in for message
exchange between PES

Figure 1 EL1 Language system

Here, KL1-¢ iz the core language of KL1. We assume FPGHC which

includes meta-call predicates as ELi-c,

KLi-p 1= the pragma language which specifies how the program should be
executed in & distributeds/parallel enviromment, KL1=p iz npot =&

language as it stands. It is attached to KLl-c to specify process

alleocation and scheduling information.

KL1-u i3 the wuser language which should be positicned on KLi-c¢ and

Kl1-p. It includes the module structure and all-solutionesesreh

predicates. Currently, EL1-u i= in the designing stage.

KLi-b is the machine language which hardware/firmware will directly
support. This level dis not a logical level and it looks like the
parallel version of Warren's abstract machine instruction set [Warren

B3].

6. Distributed implementaticn

Various researches have been carried out for the develomment of FPIM
machine from the "architectural™ view point. However, in accordance
with the develcpment of our research, we noticed that there exists
lots of problems to be solved at Ysoftware® or "firmware! level, s=uch
as (1) how to oot the system, (2) hew to deliver object program to
each PE, (3) how to handle input/output and interrupt, (&) hew to

balange the load beiween FEs, etc,

These problems are not the hardware problem ip itself, Therefore,
ICOT decided to start "Multi=FSI" project to examine such "software®
problems in distributed envircrment. There iz not sc muehk rew in
hardware. ICOT has already developed Perscnal Sequential Inference
(PSI) machire [Taki B&]. Multi-PSI hardware iz simply built up by
connecting 6 - 76 Perscnal Sequential Inference (PSI) machines with

high speed grid-hardware.

6.1 The multi-FE model

The model we assumed is the pulti-FF system where dozens of PEs are

Erid-network connected. There exist lots of deszigning choices. Lots

of intensive discussieons had been done inside ICOT. The decisions we

13

have made are az followe:

(1) PE must be connected in a way which allows the Increase of PE

number. OCur svstem must work even if we have hundreds of FE.

(2) Each Processing Element (PE) has its local memory. It has no
shared memory nor global address space. In ow =aystem, FE

communicates each other only via messege exchange.

(3) We assume and-parallel legle language as cur underlying legle
language. And-parallel execution of & pregram Is also assumed.
fur claim is that and-parallelism plays more basie rcles than
or=parallelism in distributed environment. Each FZ exscutes a program

independently or cooperatively.

Figure 2 shows how the multi-FE model looks like.

Neowark ROUTE Schecuiing Quess

Herwark . HaTwOri

Figure Z Mul ti=FE Model

This multi-FE model has the following features.

{1) We assume that the program, 1.e., the definition of clauses, has
been loaded to every FE from the beginning for simplicity. More
reglistic assumption such as Mlazy" fetching of program code may be

needed in & later atage.

{2) First, a goal is put into ore PE, this automatically atarts the
computation. Each PE executes the geals which are thrown fromg other
PEz besides processing local gozls, When there 1= noe pgoals te be

processed onr all PEs, it means the eng of computation.

{3) Each PE has one scheduling queue. Each FPE repeats to degueue a
goal from the scheduling queue and reduces it to the resulting gosals.
These goals are engqueued to the ascheduling queue or thrown to other

EE.

{4) S3ince each PE has independent address space, the unification of
two variables existing on different PEs invokes the necessity toc apan
inter-FE reference chaina, Each FE has the variable management table

for that purpose.

(5) Unification scmetimes inveokes various messages to other PEs, The
examples of such messages are "get value,™ "unify," “unify_ channels,”
ete.

6.2 Multi-FE simulator

We have implemented the =zoftware simulator of the multi-PE szyatenm

[Tanaka 86]. In relate to this simulator, our system is based on the

work by Miyazaki and Murakami [Murakami 85b]. Our aystemr i= written
in Prelog and simulates the executicn of pre-processed FGHC program in
a multi-FE enviromment. Our sy=tem consists of processes and a

network manager as is shown in Figure 3.

network manager

out
in

pe®n

Figure 3 MHulti-PE simulator

Each PE checks whether there is message from its input channel. Ir
90, measages are added to the scheduling queue. Then it executes the
first goals inside the queus, If there i3 a message to be sent, the
Dessage 1s set to the cutput channel. Network manager takes care of
message exchange between FEs, Messages dinside output channels
inelude the sending address. Network manager delivers the message

to the specified input channel.

Since our system does not have global address space, sending of a goal
which Includes variables teo other FE needs a little compl icated
meéchanism, In our implementation, each PE has s variable menagement
table. We consult this table whenever the need for inter-FE reference

is generated.

6.3 Implementation on PSI [Miyazaldi 86]

Implementation on PSI 1s more realistic effort for "Multi-pE3I®
project. PSI machine iz a perscnal workstation and its designing
concept iz very similar to LISP machine, Conventional techniques have
been adopted and ESP [Chikayama 84)], which is the object-oriented

extension of Proleg, is firmware supported.

The compiler which translates & FGHC progracm to Warrern-like abstract
machine instruction segquences [Warren B3] and the emulator of that
abstract mwachine instruction set have already implemented. Qur
Warren=like dnstruction set also includes the primitives for
distributed execution, BPEmulater has been written in ESF and it has

been realized using heap are on PS1 machine,

The current version only executes & program on one FSI machine, The
execution speed is approximately 0.9 K LIFS on naive reverse program
[Miyazaki 861]. Currently, the enthusiastic efforts for Multi-FSI
system are in progress. ICOT has glready finished up the design of
connecting hardware, The gctual hardware of Multi-PET Version 1 will
be completed by the end of April 1986. The effort which extends this

implementation to Multi-PST aystem is alsc going on.

T Summary

We de=zcribed the varicus activities of ICOT related to Guarded Horn
Clauses [GHC). The language features of GHC, its implementation
efforts and its applications were described., We also summarized the
current status of KL1 and its distributed implementation efforts,

These activities are on-going project and must be extended further on

various directicns.

B. Acknowledgments

This research was carried out as a part of the Fifth Generation
Computer Project. We would like to thank our colleagues, Kazuo Talkd
and Takashi Chikayama, for their useful comments and suggestlons. We
also would like to thank Kazuke Takahashi and Tadashi Kanamori at
Central Research Laboratery, Mitsubishi Electrie Corp. for their GHC
programming efforts, Thanks zlso goes to Kazuhiro Fuehi, the Director

of ICOT for givipg us the opportunity to pursue this research.

[References]

[Burstall 77] Burstall, R, and Darlington, J.: A Transformation System
for Developing Recursive Programs, JACM Vel.Z24, No.1, pp.44-67.

[Chikayama £4] Chikayeme, T. : EEF Reference Mapual. ICOT Technical
Report TR-044, ICOT, 1584,

[Clark B85] Clark, K., Gregery, &.: PARLOG: Parzllel Programming in
Logie. Research Report DOC BL4/4, Department of Computing, Imperizl
College of Science and Technology, Reviszed June 1985.

[Codish £57 Codish, M.: Compiling OB-paralleliem inte AND-paralelism,
M. Sc Thesis, Weizmann Institute of Science, December 1085,

[Furukaws 84] Furukawa K. et al,: The Conceptual Specifieatien of the
Kernel Language Version 1. Technical Repert TRE-0S54, ICOT, 1984,

[Furukawa 5a2] Furukawa K. et al.: Xernel Language Version 1,
explanation materials, ICOT, 1985, in Japanesze.

[Furukawa 85b] Furukawa K., Ueda K.: GHC Proecess Fusien by Program
Transformation. In Proe. Second National Conf. of Japan Society of
Sof'tware Science and Technology, 1985, pp. B9-G52.

[Kowalski T4) Kowalski, R.: Predicate Logic as PFrogramming Language.
In Proc. IFIP '74, North-Holland, Amsterdam, Londen, 1974, pp.569=5TL.

[Lloyd 86] Lloyd, J. and Takeuechi, A.: A Framewcrk for Debugging GHC.
To appear ICQT TR, 1986.

[Matsumoto B6] Matsumoteo, ¥.: A Perallel Parsing System for Natural
Language Analysis, to be pre=ented at the Third Int. Logie Programming
Cenf., Londen, 1986.

[Miyazaki BF] Miyazaki:, T. et al,: 4 Sequentisl Implementation of
Concwrrent Prolog DBased on Shallow Binding Scheme, Proceedings of
19685 Symposiuw on Logle Propremming pp. 110-118,

[Miyazaki B6] Miyazaki, T. and Taki, K.: The implementation method of
Fiat GHC on Multi-P:5I aystem, Unpuklished draft, 1988, in Japanese.

[Murakami B5Sa] Murakami, Xunic et al.: FResearch on Parsllel Mzchine
firchitecture for F.G.C.5.. Computer, vol.18, No.B, June 1085,

[Murakami 85b] Murakami, Kenichireo: The study of unifier
implementsation in multi-processor emvircmment., Multi-5TM study group
internal document, ICOT, 1985, in Japanese.

[Pereira B0] Pereira, F.C.N. and Warren, D.H.D.: Definite Clause
Grammara for Language Analys=is - 4 survey of the Formali=m and &
Compariscn with Augmented Transition Networks, Artifiecial Intelligence,
13, Pp.231-2T78, 1960,

[Shapire B2] Shapire, E.: Algorithmic Program Debugging, MIT Press,
Cambridge, Ma=a, 1082,

[Shapire 83] Shapire, E.: A Subset of Concurrent Prolog and its
Interpreter. ICOT Technical Report TR-CGO3, ICOT, 1983.

[Shapiro 85] Shepirc, E. et al: Logix User Manual for Release 1.1,
Weizmann Institute, Israel, 1985,

[Takahashi 86] Takabashi,K. and Kanamori,T.: On Parallel Programming
Methodology in GHC. ICOT Techniceal Report, to appear,.

[Takeuchi B6] Takeuchi, A.: Algorithmic debugging of GHC programs and
its implementation in GHC, unpublizhed draft, 1986.

[Taki 8Y4] Taki, K. et al,: Hardware Design and Implementation of the
Fersonal Seguential Inference Machine (PSI), Proc. International
Conference on Fifth Generation Computer Systems 1984, ICOT, pp.308-404.

[Tanzka 86] Tanaka, J. et &al.: Distributed Implementation of FGHC ==

Toward the realization of Multi-FSI system ==, Unpublished draft,
1986.

[Ueda E5a)] Ueda, K. and Chikayama, T.: Concurrent Prolog Compiler on Top
of Precleg. Proc. of 1985 Symposium on Logic Programming, pp.119-126,
1985.

[Ueda B5b] Ueda, K.: Concurrent Proleog HRe-Examined, ICOT Technical
Report TR=102, ICOT, 1685.

[Ueda BSc] Ueda, K.: Guarded Horn Clauses, ICOT Technical Report
TR"'EE: ICDTr 19351

[Ueda 85d] Ueda, K.: Making Exhaustive Search Program Deterministic.
ICOT Technical Report TR=-7145, ICOT, 1985. Alsoc to be presented at the
Third Int. Logic Programming Conf., London (1986).

[Ueda B6] Ueda, K.: Guarded Horn Clauses, Docterael — Thesis,
Information Engineering Course, Faculty of Engineering, University of
Tokye, March 1986.

[Warren 831 Warren, D. H.: An Abatract Prolog Instruction Set.
Tech. Report 309, Artificial Intelligence Center, SRI International,
C4, 1983.

