ICOT Technical Report: TR-166

TR-166

Affinity between

Meta Interpreters and Partial Evaluation

by
Akikazu Takeuchi

Apnl. 1986

CNYRA 10T

Mita Kokusai Blde 21F {031 456 T18L--5

][:O | 4-7% Mita L-Chome Telex WCOT)32064

Minato-ku Tokvao 108 Japan

Institute for New Generation Computer Tebﬁnolog}r

AFFINITY BETWEEN
META INTERPRETERS AND PARTIAL EVALUATION
Akil=zu Takeuchi

ICOT Resecarch Caenter
Insiisute for New Gegeration Computer Technology
1—4-28, Mita, Minato-ku, Tokye 108 Japan

A fine affinity betwsen genernlity of metz interpreters and specialization by partial evaluation s re-
marked. Tweo open problems with this view are pointed out and discussed. One relates to the semantics
of partial evaluation of nondeterministic parallei languages and the other concerns meta description on

parallel computation.

1. AFPINITY

Partial evaluation has heen invesiigated theoretically
and has been recognized as an important methodai-
ogy for seftware developrment {1, 2}, Many researchers
expiored partial evaluation in practical applications
(3,4,5,6,7). These applications are mainly in com-
piler generation and optimization.

The general idea of partial evaluation is specialization.
It i= dual to geperalization. To explore the power of
partial evaluation, it s better to consider partial eval-
wation with something general, since, whenever some-
thing is general, then there is room for partial evalu-
ation and the resultant specialized program is wsually
more cfficient. Recent reporia, {8,9,10}, differ irem
the pnwiuua ones in that ti}ey uplum |:|:|.:‘I'.'La.1 evalua-
tion accompanied with exploration of meta deseription
in terms of 3 meta interpreter, which is esseatinlly o
genaral concept.

As we proceed to the stage where the problem saiv-
ing ability of computer software iz the main theme,
we often require not only the domain specific (object-
level]l knowiedge, but also the meta-level knowiedge
for making use of the objeci-level knowledge mors
flexibly and hence enriching problem solving power
{11,12,12,14,15,16}. The separation of cbject and
meta levels is often fruicful fer designing and under.
standing programa. However, meta knowiedge imple-
rmented b}‘ a meta ':nl.erpretar resuits in run-time ned-
ficiency beranse of its generality,

However, generalily in meta level description matches
the condition of applicability of partial evaluation.
Meta level description can be specialized when an ob-
ject level program is fixed. The resultant program
bas functionalities of both meta and ahject programs,
since it is a specialized version of meta description
with respect to some object program. Thus, there is 3
fine affinity between higher order general description
in 2 meta interpreter and specialization in partial eval-
uation. Owing to this fine afnity, the technique can
be applied naturally without any refinements or exten-

sions. Thia Gne affcity implies the new programming
spproach taken in {8,9, 10} where a program is clearly
deseriped as layers of descriptions and executed after
combining ali the layers io form one layer by partial
evaluation. We believe that the new approach is useful
for general programming methodology including AL
where meta-level knowledge plays a central role. The
new approach is similar to genera] program transfor-
mation. However, it is more practical since

1] it is straightforward, just specializing the meta
interpreter with respect to an object program.
In program transiocrmation the target is usually
abatract, that is, increased program efficiency,

1) program transformation requires many heuristics
to contrel transformation, while in partial evalu-
aticn only partial evaluation technigues of a lan-
guage are required, which are easier io estab-
lish compared with general heuristics for program
transformation.

However, several questions arise, such as: What is
the formal meaning of partial evaluation of 3 meta
interpreter with respect to an obiect program? Where
does the resulting program beleng? What kinds of
techniques can be used o partial evaluation, especiaily
for FCP? Other questions concerns the limits of this
approach: What can and what cannot be expressed as
& meta description? What kinds of meta descriptions
are useful in parallel and nondeterministic languages
guch as FCP? These guestions should be solved io
verify the new approach.

The following sections are devoted to discussion of the
above two fypes of question, i.e, zection 2 deals with
issues ic semantics and section 3 with meta description
on parailel computation.

2. SEMANTICS OF PARTIAL EVALUATION

The general semantics of partial evaluation is theorst-
jcally analyzed {1,2}. Here we first give modei the
oretic semantics for partial evaluation of 2 meta in-
terpreter for pure Prolog. It iz useful for an intuitive
understanding of specialization of 2 meta interpreter.

Althongh we assume that a syotactically identical lan-
guage is uzed for descripiion of both object level and
meta level as usual, we have to distinguish the two
languages conceptually, At the meta level, language
constructs of an object language are all represeated by
constants of the meta language. From the object Jevel,
meta level description can be regarded as higher or-
der description. Meta level description in the form of
an interpreter is general in the sense that (meta) vari-
ables in the meta description can range over any lan-
guage construct which can be expressed at the object
level. For example, in the description of the program
which can detect deadlock in {10}, a universally quan-
tified meta variable is used to dencte an object level
goal. Specialization by partial evaluation is regarded
13 restricting the domain of such meta variables in
the meta description to constants naming object level
individuals, and executing parts of a meta program
which become ready for execution. Formally ibe re-
sultant program is still 2 meta level program which
has smaller model than before. It 13, however, easy
to translate it back to the object level, since the same
language is used for object and meta languages. In
fact, the resultant programs in the examples in {10}
can be regarded as programs obtained by iranslating
the results of pariial evaluation to the object level.

1t is unclear what kinds of partial evaluation tech-
niques are used o the partial evaluation of FCP pro-
grams. When the author developed the pariial evaiu-
ator for Prolog {9}, the main techniques adopted were
instantiaticn of some of the arguments and uniolding
of a goal by clauses, the heads of which are unifizble
with the goal. These technigues are known to guaran-
tee preservation of the meaning of a program. Tamaki
et al, {17} established the equivalence property of un-
folding,/folding procedures for Prolog in terms of the
minimum mode] semantica. As far as we know, no
theorem which guarantees the equivalence property of
the unfolding procedure for FCF has been proved yet.
But it is pecessary to eatablish thai the pair of 2 meta
interpreter and an object program is equivalent to the
partially evaluated program.

It iz weil known that, for a pure logic program, the
success set, the minimum model and the least fixpoint
of the funciion asscciated with the program are egquiv-
alent {18}. The success set is a set of ground literals
that can be finitely derived from the program. It is
possible to imagine the success set of a FCP program.
A sueerss set of 2 FCP program corresponds to a set of
literals which are Anal forms of queries after the com-
putation succeasfully terminates. Usuwally it is called
a set of total histories; since the final form of a query
represents in itself all the inputs received and all the
output sent. However, it is known that a ser of total
histories ia insufficient for the semantics of nondeter-
ministic data fow languages {19}. The example used
to prove this prepesition is also valid in FCP. Hence,
the set of total histories is insufficient for the seman-
tica of FCP. We illustrate this using the example in

{18}.

b

7
2
[

Fig. 1 Structure of sl

| 4 |

51|

plusl

P

Flg. 2 Structure of t1

piC[AlIn], [AlOuE]l} :-
true | pli(Ia¥,0us).
pLLI([AIIn] . [A]Y :- true | true.

dup([AII].[A.A]) :- true | trume.

merge({[AlIx], Iy, [AlOut]l) :-
true | merge(Ixz?, Iy.0ut).
merge{Iz, [AII¥], [AlOQut]) :-
true | mcrguflr.ly?,ﬂqt:l,
merge(Iz, []1,[]) := true | true.
merge{[],Iy.Iy) :- true | true.

s1(Ix,Iy,0ut) :- true |
dup{Ix?,0x}, dup({Iy?,07),
merge(0x7,0y7,0z), pi{D=z7, Out).

ti{In.0uz} :- true |
gi(In?.M447.0us), plual(Dut?.Nid).

plusl([AlIn], [A1]) :- A1 := A+l | true.

Fig. 1 and fig. 2 illustrate a1 and t1, respectively. The
first argument of pl is used as an input port and the
second argument as an output port. The first two
elements of o lst received are output one by ome as

they are received. s1 has two input poris, the frst
and second arguments, and one output port, the third
argument. Internally it invokes four goals, twa dup's,
merge and pl. dup outpurs doubieton, the elements
af which are duplicates of the first element of the Lst
received. The total history set of al is:

[s1([X1Tx], . [X.XI). s1(..[¥iIy).[¥.Y]),
st I=], [YILy]. X710,
gie(Nlix], [YIIy].[¥.X12})

where X apnd ¥ denote the Grst element of lists received
at the first and second arguments, respectiveiy. Note
that the total history set reveals several possibilities
of cutputs for the same ippot, which results from the
pondeterminism of the merge operator. t1 consists of
sl and plusl where the output of 8l 1= connecied to
the second input port of st through plusi. plusi
sutputs a singleton at the second argument, the ele-
ment of which is egual to the value of the Srst element
of the first argument pius one. The total kistory set
of t1 when it receives (5| is:

{t1([51.{5.51), =1((5].[5,61)}

Copsider the partial evaluation of pi. If we unfoid pi1
in the body part of the clause of p1, then the following
new clause is obtained jor pl.

pl([A.B1In].[A.B]} :- true | true.
The total histery set of s1 is oot changed by this
uzfoiding. However, the total history set of £2 changes

to

{t1([51.05,51)}.

This uniolding does not affect the semantics of the
intermediate module, e, 81, but the semanticz of
the suter module, Le., i, ineloding this intermed]-
ate moduie does change in the sense of the total his-
tory set. Thus ke unfolding precedure above does
oot preserve the eguivalence property of a program,
even if it seems safe locally. The difficulty in mod-
elling the computation of FCP and nondeterministic
data fow laoguages results from their poodetermin-
ism introduced by, for example, the merge operation.
Although it s ot clear that the techniques used in
the partial evaluation in {10} include the unfolding in
the situation mentioned above, it is ciear that, when
technigues for partind evaluasion are insroduced, they
have to be accompanied with the model of computa-
tion by which we can diseuss the equivalence property
of each technigue.

3. LIMIT OF META DESCRIPTION IN DIS-
TRIBUTED ENVIRONMENT

Apother point reiated to enriching the new approach
concerns the funclionalities of meta interprecers. The
important question is what we ¢2n express io terms of
a mela interpreter,

Az mentioned above, 2 meta language bas linguage
constructs of an object language 2s constants. A meta

r_l,.l

interpreter written in the meta language is regarded
as the description of the simulation of the object level
compuiation at the meta level. Applications of mets
interpreters presented 3o far can be classified into tweo
casegories, shough they are closely mixed in real sys-
tems. One concerns observation and the other contral.

Meta level description for observation of the object
levei computation is used in varicus areas such as de-
bugging, expers system shells which produce expla-
mation, deadlock-detecting meta interpreters and se
on. Descriptions iz these meta interpreters refer io
the computation state or history of the object level
compuiation simulated by the meta interpreter. Meta
level description for control is used to medify and aug-
ment computation rules for programs written in oh.
ject level lapguages. (B} explored severa| meta inter-
preters which adopt different strategies for resociving
given goals. A meta interpreter handling certainty
faciors {20} is aiso an example of this category since
it prunes search space with low cersainty, We do noi
kznow of any other kinds of meta description useful to
applicaticn. There is vet unexplored power in meta
interpreters thar is well worth investigating since the
new approach makes it practical in real applications.

The probiem arises in observation of computation. As
is well known in the field of distributed processing,
finite dalay of data flow is inevitable in parallel pro
grams running in a distributed environment. Hepce
it is generally difficult or even imposaible fo define an
abservable computation state meaningfully. The dii-
feulty seems o appear in the program of deadlock-
detecting meza ipterpreter in {10}, However, it is
rather easy fo recognize deadlock, since deadlock is
2 glebal and stable state. Owing to the side-effect
free propervy of the language, once an event happens
and leaves zome iraces, the svemt will be eventually
abserved since Do computaticn can erase or overwrite
the traces it has jefl,

T a meta interpreter has ihe description “do some-
thing wioen some tragsient state § exists”, 1t 1= diffi-
cult to impletnect 2 method for precisely determining
whether the state still exists or not when i is ob-
served. The difienity originates in the delay betwesy
the moment when an event happens and the moment
when it is observed, because of the finite delav of dats
flow. It i=s geperally impossible to predict the deiay
beiween the real evens and observation by a meta io-
terpreter. The direct implication of this is that, io
parailet languages, the definition and implementation
of the concept of unboundness of an objest varizble
is difficult {21}, since unbaundedness is a transient
property of a variable. Therefore, the definition of
copy, that is, making 2 variaotr of a jerm, becomes
difficull becouse it reguires distivguishiog whether 2
variable in the term iz bounded or not.

Where does this sbservation lead us? The conelu-
sion can be summarized as follows. There is po proh-
lem if meta description concerns pure observation,

since what happensd will eventually become observ-
able. The problem may arises when meta deserip-
tica includes actions to be taken when observing scme
states. But it is still safe if the states are somethiog
like dead-end. The most difficult things to describe in
meta level are actions to be pm-farmad when]muwing
some transient states to exist.

What we should do now is to investigate unexplored
power of meta description on parallel computation
after due consideration of these problems.

ACENOWLEDGEMENT

We would like to thank Harupori Ueda, Toshihiko
Mivazaki, Hirchisa Sekd, HKoichi Furukawa for their
many belpful discussions.

REFERENCES

{1} Y. Putamura, Partial Evaluation of Computation
Process: An Approach to a Compiler-Compiler,
Systemas, Computers, Coatrols, vol. 2, 2e. §, 1971,
TZ1-TI8.

A. P. Ershov, Mixed Computation: Potential Ap-
plications and Preblems for Study, Theoretieal
Compuier Science, vel. 18, 1982, 41-67.

P, Emanuelson, Performance Enhaacement io a
Well-Structured Pattern Matcher through Partial
Evaluation, Linkoping Studies in Science and
Technology Dissertations, ne. 53, Software Sye-
tems Research Center, Linkoping University,
1980.

J. Koemorowski, A Specification of Abstract Pro-
log Machine and [lis Application to Partial Evalu-
ation, Linkoping Studies in Science and Technel-
ogy Dissertations, no. 69, Sofiware Systems He-
search Center, Linkoping University, 1981,

K. Kabn, A Partial Evaluator of Lisp Written in
a Proiog Written fn Lisp Intended fo be Applied
to the Prolog aad Itself which in fturn js Intended
ic be Given to [tself Together with the Proleg to
Produce a Prolog Compiler, UPMAIL, Dept. of
Computing Science, Uppsala University, 1982.
N, D. Jones, P. Sestoft and H. Sondergaard, Aa
Experiment in Partial Evaluation: The Gepera-
tion of a Compiler Generater, DIKU RAPPORT,
WR: 85/1, Unlversity of Copenhagen, 1985.

R. Venken, A Proleg Meta-Interpreter for Par-
tial Evaluation and Its Application to Source to
Source Transformation and Query-Optimisation,
In Proc. of ECAIL-84, North-Holland, 1984, 91-
100.

J. Gallagher, Transforming Logic Programs by
Specialising Interpreters, Dept, of Computer Sci-
ence, Trinity College, University of Dublin, 1984,
A, Tzkeuchi and K. Purukawa, Partial Evaluation
of Protog Programs and [ta Applicaticn to Meta
Programming, In Proc. IFIP-86 Congress, Elsa-
vier 3cience Publishers, 1986.

{2}

{3}

{4}

{5}

{8}

(9}

S

{10} E. Shapirc and §. Safra, Meta Incerpreters for
Real, In Proc. [FIP-86 Congress, North-Hollaad,
1986.

{11} R. Davis, Meta-rules: Reasoning bout Control,
Artificial Inteiligence, vol. 15, 1980, 179-182.

{12} A. Bundy and B. Welham, Using Meta-level In-
ference for Selective Application of Multipie Re-
write Rules in Algebraic Manipulatisn, Artifcial
Intelligence, vol. 16, 1981, 189-212,

{13} H. Gallaire and C. Lasserre, Meta-Level Contral
for Logic Programs, In Logic Programming, K.
Clark and 5. Tarnlund (ed.), Academic Press,
1982, 173-185.

{14} K. Bowen and R. Kowalski, Amalgamsting Lan-
guage and Metailanguage in Logic Prog nmming,
In Logie Programming, K. Clark and 5. farnlund
(ed.), Academic Press, 1983, 153-172.

{15} K. Bowen and T. Weinberg, A Meta-Lew Exten-
sion of Projog, Tech. Report CIS-85-1, § Tacuse
University, 1985.

{16} L. Sterling, Logical Levels of Problem Solv.ng, In
Froc. The Second Inter. Conf. oo Logic Pro ram-
ming, Uppsala University, 1984, 231-242.

{17} H. Tamaki and T. Sato, Unfold/Fold Tran for-
mazion of Logic Programs, In Proc. The Sec nd
Inter. Conf. or Logic Programming, Uppsala Uai-

) versity, 1084, 127-138.

{18} K. R. Apt and M. H. van Emden, Contributions
to the Theory of Logic Programming, J. ACLY
vol. 29, no. 3, 1982, §41-862.

{18} J. D. Brock and W. B. Ackermann, Scenario:
Model of Nonderminate Computation, In Forma
ization of Programming Concepts, J. Diaz and L
HRamos (ed. }, Lecture Notes in Compuier Science,
vol. 107, Springer-Verlag, 1981, 252-258.

{20} E. Shapiro, Logic Programs with Uncertainties:
A Tool for Implementing Rule-based Systems, In

roc. [JCAL-83, 1083, 520-332.

{21} K. Ueda, Guarded Horo Clauses, ICOT Tech. Re-
port TR-103, Institute for New Generation Com-
puter Technology. Also to appear in Logic Pro-
gramming'85, Elicki Wada [ed.], Leciure Notes
in Computer Science, no. 221, Springer Verlag,
Beriin Heidelberg, 1686,

