ICOT Technical Report: TR-163

TR-163

Parallel Logic Programming Languages

by
Akikazu Takeuchi and Koichi Furukawa

April. 1986

U986, 1COT

Mita Kokusai Blde 21F iN3h 496-3191~5

“ :D I §-28 Mita I-Chome Telex WCOT 132064
Minato~ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel Logic Programming Languages

Akikazu Takeuchi and Koichi Furukawa

ICOT Research Center
Institute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108 Japan

1. Introduction

Any programming language which can be treated mathematically has its own logic in
ite semantic model. Logic programming languages are examples of such languages. They are
based on predicate logic and characterized by the fact that logical inference corresponds to
computation. Owing to this, a program can be written declaratively and can be executed
procedurally by computer. Many logic programming languages can be imagined. The one
based on Horn logic is the most successful and has been extensively studied.

A logic program is represented by a finite set of universally guantified Horn clauses. A
program can be read procedurally and declaratively [Kowalski, 1974]. A goal statement is
used to invoke computation that can be regarded as refutation of the goal statement under
the given set of clauses. Prolog is the first language which realized the idea [Roussel, 1975}.
Its computation rule corresponds to left-to-right and depth-first traversal of an AND-OR
tree.

Given a set of Horn clauses, there are many strategies for refutation other than the
one adopted in Prolog. Among these, parallel strategies are of great interest. These corre-
spond to the parallel interpretation of logic programs. Conery et al classified them into four
models, OR-parallelism, AND-parallelism, Stream-parallelism and Search-parallelism |Gnn-
ery and Kibler, 1981|. Stream-parallelism has received much attention recently, because of
its expressive power suitable for systems programming and other applications. Several par-
allel logic programming languages based on stream-parallelism have been proposed. They
include Relational Language |[Clark and Gregory, 1981], Concurrent Prolog [Shapiro, 1983,
Parlog [Clark and Gregory, 1984a], Guarded Horn Clavses [Ueda, 1985a}, [Ueda, 1986 and
Oc |Hirata, 1986].

The following ideas and requirements seem to be what motivated these languages. The
first was to create a parallel execution model for logic programs to fully utilize new parallel
computer architecture. As hardware technology evolves, highly parallel computers become
realizable using VLSI technology. However, to write a program for a parallel computer is a
complicated tazk and involves new problems quite different from those in programming on
a sequential computer. The gap between hardware and software seems to increase. It is be-
lieved that the success of the parallel computer depends on the software technology. Choosing
languages for parallel programming 12 the most important decision in parallel software tech-
nology. In order for a programmer to avoid various problems and extract parallelism easily,
languages should have clear semantics and be inherently parallel themselves. Because of
their semantic clarity and high level constructs useful for programming and debugging, logic
programs are being regarded as a candidate to fully utilize the power of parallel architectures.

The second issue is the extension of control of logic programming languages. Control
facilities of Prolog are similar to conventional procedural languages, although the model for
logic programming languages includes no specific control mechanism. There have been several
proposals for more flexible computation. They augment Prolog by introducing new control
primitives such as coroutines [Clark, McCabe and Gregory, 1982|, |Colmerauer, 1982, | Naish,
1984]. Languages based on stream-parallelism can be regarded as an alternative attempt to
extend control. These languages abandoned the rules of sequential execution, and thus first
introduced parallelism. A great deal of effort was devoted to finding reasonable set of contrel
primitives managing the parallelism obtained as a result.

The third point is to exploit new programming styles in iogic programming and thus to
exploit new applications of logic programming. Logic programming languages such as Prolog
are suitable for database applications and natural language processing, but were suspected
of being inadequate for applications such as operating systems. Parallel logic programming
languages with control primitives managing parallelism aims at covering such applications as
systems programming, object oriented programming and simulation and thus enlarging the
applications of logic programming.

The parallel logic programming languages have a relatively short history, just six years
or so. In this short time researches have been intensive around the world and many fruitful
results have been obtained. A general view to these languages will be presented in this paper.
The purpose of this paper is to present common features of the languages, to delineate the
differences between them at the abstract level and to address the problems they present.

The paper is organized as follows. The stream-parallel computation model will be
informally introduced in section 2. Section 3 provides definitions of several parallel logic
programming languages. Comimon features shared among them and their difference are
discussed. In final section, unsolved problems of semantics of parallel logic programming
languages will be discussed brielly.

2. Stream-parallel Computation Model

Stream-parallel computation models were studied by [Clark, McCabe and Gregory,
1982] and [van Emden and de Lucena, 1982] independently as extended interpretation models
of logic programs. Without introducing specific languages, we review the stream-parallel
computation models informally. Consider the following logic program (syntax similar to
Edinburgh Prolog [Bowen et al. , 1983] is used throughout],

quicksort (List,Sorted) :- gsort(List, Sorted,[]). (1)

gsort ([1,H,H). (2)
gsort([A|B] H,T) :-

partition(B,A,8 L),

aqsort(S,H, [A|T1]),

gsort(L,T1,T). (3)
partition([],X,[1,01). (4)
partitien([AIB] ,X,[A|S],L) :- A < X, partition(B,X,S,L). (5)
partition([A|B],X,8, [AIL]) :- A >= X, partition(B.X,S,L). (6)

)

The predicate, quicksort (List,Sorted), expresses the relation that Serted is the
sorted list of the list List. gsort(List ,H,T) represents the fact that the difference list H-T
is the sorted list of the list List. partition(List JE,5,L) says that § iz a sublist of List
each element of which is less than E, and L is a sublist each element of which is greater than
or equal to E. Given the above program and the following goal statement,

7- quicksort([2,1,3],X),

the Prolog interpreter will return the following answer substitution,

X = [1-21-3] .

The algorithm used in the above logic program is “divide and conquer”. Given a list,
the CDR is divided into two lists, one consisting of elements less than CAR, and the other
of elements greater than or equal to CAR. Both lists are sorted independently and they
are combined to construct the sorted list of the original list. The algorithm is typically
embodied in the clause (3). The clause can be read procedurally in the following way: To
sort a list [A|B], partition B into 5 and L with respect to A, and sort § and L. According
to the sequential computation rule of Prolog, these subgoals are executed from left to nght,
that is, first the list B is partitioned, then § is soried and finally L is sorted.

There are two possibilities for exploiting paralielism in the above program, especially in
clause (3). One is cooperative parallelism. Since the lists § and L can be sorted independently,
execution of two gsorts can be done in parallel. Although they share a variable, T1, they
can cooperate in the construction of a list H-T by constructing non-overlapping sublists,
H-T1 and T1-T, of H-T in parallel. The other is pipelining parallelism. Note that both
lists, S and L, are constructed incrementally from the heads by partition and that these
two lists are consumed from their heads by two separate gsoris. Therefore, it is possible to
start execution of the two gsorts with available parts of the lists before partition completes
the lists. The parallelism of the partition and the two separate gsorts resembles so-calied
pipelining parallelism. Both parallelisms, processed by a parallel computer, are expected to
be effective in reducing computation time.

Cooperative parallelism and pipelining parallelism are typical kinds of parallelism which
stream-parallel interpretation can extract from logic programs. Generally speaking, there are
two kinds of parallelism in stream-parallel interpretation. One for parallel interpretation of
conjunctive goals and the other for parallel search for clauses. Cooperative and pipeiining
parallelism are special cases of the former parallelism. The latter i1z not discussed in this
section; it will be introduced in the next section.

In the former parallelism, goals sharing variables are not independent and cau interact
with each other. Stream-parallelism involves cooperation of goals executed in parallel through
shared variables. This is in clear contrast with AND parallelism, where no collaboration
among goals is considered. In AND-paraliel interpretation, conjunctive goals are solved
independently and consistent solutions are extracted from their solutions, AND-parallel
interpretation is in danger of penerating a lot of irrelevant computation, since unnecessary
computation is only proved to be irrelevant when it Llerminates.

Stream-parallel interpretation avoids this problem in the following way. First, bindings
created in the course of computation are transported to other computations as soon as pos-
sible. This helps paraliel computations to exchange bindings of shared variables in order to

maintain consistency. Secondly, it provides new control primitives which can restrict access
modes to shared variables. There can be two modes in access to a variable, although the
mode is implicit and multiple in logic programming. These modes are “input (read)” and
“output (write)”. New primitives can be used to resirict the access mode to a shared vari-
able to either input or output. Appropriate restriction of access modes to a shared variable
enables the variable to be used as an asynchronous communication channel between parallel
computations. Using such asynchronous communication channels programmers can coordi-
nate parallel goals and suppress irrelevant computation. In sum, the parallelism explored in
stream-parallelism is controlled parallelism and the languages based on stream-parallelism
can extract maximum parallelism while reducing irrelevant parallel computation.

3. Languages

Several parzllel logic programming languages have been proposed. They are Relational
Language, Concurrent Prolog, Parlog, Guarded Horn Clauses (bereafter called GHC), Oc.
We start by defining the common features of these languages. These common features were
first proposed in Helational Language.

3.1 Common Features
(1) Syntax:
For notational convenience, we define the common syntax. A program is a finite set of

guarded clauses. A guarded clause is a universally quantified Horn clause of the form:

H:-Gl,...,Gn|B1, ..., Bm. nm2=>0

“I* is called a “commitment” operator or “commit”. “G1,...,Gn” is called the guard part and
“B1,...,Bm” the body part. H is called the head of the clause. A set of clauses sharing the
same predicate symbol with the same arity is defined to be the definition of that predicate.
A goal statement 1s a conjunction of goals of the form:

- P1,...,Pn. n>0.

(2) Declarative semantics:

The declarative meaning of *” iz “and” (“A”). The clause can be read declaratively

¥

as follows:

For all term values of the variables in the clause,
H is true if both G1,...,Gn and B1,..., Bm are true.

(3) Sketch of operational semantics:

Roughly speaking, ¢,” procedurally means fork. Namely a conjunction, “p, ¢", indicates
that goals, p and g, are to be solved in different processes. The procedural meaning of a com-
mitment operator is to cut off alternative clauses. We give a sketch of operational semantics
using two kinds of processes, an AND-process and an OR-process [Mi}razalci, Takeuchi and

Chikayama, 1985].

The goal statement is fed to a root-process, a special case of an OR-process. Given a
conjunction of goals, a root-process creates one AND-process for each goal. When all these
AND-processes succeed, the root-process succeeds. When one of thesze fails it fails.

Given a goal G with the predicate symbol P, an AND-process creates one OR-process
for each clause defining the predicate P and passes the goal to each process, When at Jeast
one of these OR-processes succeeds, the AND-process commits itself to the clause sent to
that OR-process, and aborts all the other OR-processes. Then it creates an AND-process
for each goal in the body part of the clause and replaces itself by these AND-processes. It
fails, when all of these OR-processes fail.

Given a goal and a clause, an OR-process unifies the goal with the head of the clause
and solves the guard part of the clause by creating an AND-process for each goal in the
guard. When all these AND-processes succeed, then it succeeds. When one of these fails, it
fails.

(3) Remarks:

Conjunctive goals are solved in parallel by AND-processes. A clause such that the
head can be unifed with the goal and the guard can successfully terminate is searched for In
parallel by OR-processes, but only one is selected by commitment. Parallel search is similar
to OR-parallelism, but not the same because it is bounded in the evaluation of guard parts.
A commitment operator selects one clause, cuts off the rest and terminates OR-parallehism.

Computation is organized hierarchically as an AND- and OR-process tree. Each OR
process may be aseociated with a local environment storing bindings that would imfluence
other competing OR processes if they were revealed to them. This will be discussed later.

In general, if access to a variable iz restricted to input mode, then no unification which
instantiates the variable to a non-variable term 15 allowed and such unification is forced to
suspend until the variable is instantiated. This kind of synchronization mechanism is useful
for delaying commitment until enough information is obtained. Languages proposed so far
have different syniactic primitives for specification of restriction of access mode. We review
them in the next section.

3.2 Restriction of Access Mode

¢ Mode Declaration

Parlog and its predecessor, Helational Language, take this approach. Restriction of
access mode is specified by mode declaration. In Parlog, each predicate definition must be
associated with one mode declaration. It has the jorm

mode R(mi, ..., mg).

where R is a predicate symbol with arity k. Each my is 77 or “77. “7” indicates that
access to a variable at this position in a goal is restricted to “input” mode. *~7 indicates
“output” mode. Note that there iz no neutral (multiple) mode. During head unification,
any attempt to instantiate a variable appearing in an argument specified as input in a goal
to a non-variable term is forced to suspend. Output mode indicates that a term pattern at
the correspending argument position in the head will be issued from the clause. Unification
between such output patterns and corresponding variables in the goal could be performed
after the clause is selected. Implementation of Parlog is presented in [Clark and Gregory,
1984b). The approach is to translate a general Parlog program to a program (called standard
form) in a simple subset of the language, called Kernel Parlog. Kernel Parlog has only
AND-parallelism and has no mode declaration. Input-mode unification and output-mode
unification are achieved by special one-way unification primitives, For example, if the relation
*p” has a mode declaration stating that the first argument is input and the second is output,

the clause

plquestion(P), answer(A)) :- good_question(P) | solve(P,A).

has the standard form
p(X,Y) :- question(P) <= X, good_question(P) |
Y:= answer (A), solve(P,A).

T <= X is one-way unification which can bind variables in T, but suspends on an attempt
to bind variables in X. Y := T is assignment unification. Note that mode declaration only
restricts head unification. In general, there may be a case in which a variable appearing in
an input argument in a goal is instantiated to a non-variable term during computation of
a guard part. In Parlog, a program indicating this possibility is regarded as a dangerous
program and excloded at compile-time by mode analysis. A merge operator merging two
lists into one in arbitrary arder can be defined in Parlog as follows:

mode merge(7.7,7).
merge ([A1X1,Y, [AIZ]) true | merge(X,Y,Z).
merge (X, [AlY], [A1Z]) true | merge(X,Y.Z).

merge ([1.Y,Y) := true | true.
merge (X, [1,X) :- true | true.

s Read-only annotation

Concurrent Prolog adopts this primitive. Read-only annotation is denoted by *77. It
can be attached to any variable. A variable with read-only annotation is called a read-only
variable., HRead-only annotation restricts access to the variable to read mode only. Any
attempt to instantiate an unbound variable with read-only annotation to a non-variable
term 18 forced to suspend until the variable is instantiated. Read-only annotation must be
handled in the general unification procedure, since read-only variables can appear anywhere
in 2 term. Using this annotation, the merge operator can be defined as follows:

merge ([A1X]),Y,[A1Z]) :- true | merge(X?,Y,Z).
merge (X, [A|Y],[A]Z]) :- true | merge(X,Y?,I).
merge([],Y,Y) :- trve | true.
merge (X, []1,X) :- true | true.

Invocation of the goal takes the form:

merge (X?,Y?,Z2).
e Input guard

This iz adopted in GHC and Oc. Restriction of access mode to variables in a goal
iz subsumed in the definition of a guard part. In GHC, given a goal & and a clause C,
during head unification and computation of the guard part of C, any attempt to instantiate
a variable appearing in the goal to a non-variable term is forced to suspend. Oc has no
guard condition, in other words, a guard part 15 always “true”. Hence, specification of
synchronization in Oc is simpler than in GHC. In Oc, any attempt to instantiate a variable
in the goal to a non-variable term in head unification is forced to suspend. Intuitively, a head
and a gnard part of GHC and Oc specify conditions to be satisfied by input data received
from a goal. The definition of merge 1z2:

merge ([A|X],Y,0z) :- true | Oz=[A|Z], merge{X,Y,Z).
merge (X, [A|Y],0z) :- true | 0z=[AlZ], merge(X.Y.Z).
merge ([1,Y,0z) :- true | Dz=Y.
merge (X, []1,0z) :- true | Dz=X.

Note that output unification must be put in the body part of each clause. Otherwise it will
cause suspension, since the output pattern will be regarded as the input pattern.

e Comparison

Different primitives for restricting access mode are adopted by different langnages. In
fact, the way to represent this restriction characterizes each language. They are basically
separated into two classes. One in procedure level representation and the other in data
level. Relational language, Parlog, GHC and Oc belong to the first class. Concurrent Prolog
belongs to the second class. The fact that procedures and data are complementary objects
in a programming language indicates the clear contrast between these two approaches.

Procedure level representation of input and output: Relational language and Parlog adopt
mode declaration for specification of mput and output. GHC and Oc utilize a guard part
for the specification of input. One mode is given for each predicate definition. On the other
hand, an input guard can include input specifications for each clause. Although they put
input specifications at different levels, a predicate definition and a clause, both approaches
associate input specification with a procedure.

Data level representation of input and outpui: Concurrent Prolog adopted read-only anno-
tation to restrict access mode. A variable with read-only annotation cannot be instantiated
(written), but can be read. In general, a variable with read-only annotation can be regarded
as a “protecied term” [Heﬂerstein and Shapiro, 1‘954}, iTa.keuc.hi and Furukawa, 1935}, since
it is protected from instantiation. Only a process which has access to the variable without
read-only annotation can instantiate it. Since input synchronization is embedded in a data
object, it becomes difficult to predict where and when synchronization will occur. This may
impair transparency of control flow of the program. On the other hand, embedding control
in a data object will enable novel control abstraction. Authors investigated this in the imple-
mentation of bounded buffer communication using protected terms |Takeuchi and Furukawa,
1985).

-]

3.3 OR-parallel Multiple Environments and Guard Safety

Given a goal and a clanse, an OR process evaluates head unification and the guard
part. Since there are competing OR processes, bindings made for variables in the goal must
be hidden from processes other than descendants of the OR-process. Therefore, conceptually,
each OR-process has a local environment where these bindings are stored. Local environ-
ments associated with OR-processes form a tree, since AND-processes and OR-processes are
hierarchically organized. The tree can dynamically expand and contract as computation
proceeds. There is no need to manage this dynamic tree if no local binding is made, but
otherwise it is an unavoidable task. :

A clause is defined to be safe if and only if, for any goal, evaluation of head unification
and the guard part never instantiates a variable appearing in the goal to a non-variable
term. The definition is due to Clark and Gregory [Clark and Gregory, 1984b]. We add a
few definitions. A program is defined to be safe, if and only if each clause in the program is
safe. A language is defined to be safe if and only if any program written in it is safe. If a
languages is safe, then it does not need to manage local environments. The concept of safety
clarifies the difference between the languages.

Parlog, GHC and Oc are safe languages. The design philosophy of Parlog excludes
any program which requires multiple environments. In Parlog, a program which may be
unsafe is excluded as a dangerous program at compile-time mode analysis. GHC and Oc
also do not need multiple environments. In fact, the rule of suspension in GHC and Oc can
be paraphrased so that any attempt to make bindings which should be stored in the local
environment is forced to suspend. Thus, safety is guaranteed at run-time by the suspension
mechanisim.

Concurrent Prolog is not safe. Thus, the tree of local environments has to be managed.
Several attempts to implement Concurrent Prolog hiave been reported |Levy, 1984], [Miyazaki,
Takenchi and Chikayama, 1985]. Levi proposed a lazy copying scheme for implementation of
multiple environments. Miyazaki et al. proposed a shallow binding scheme for this purpose.
Implementation of Concurrent Prolog must solve two complicated problems associated with
multiple environments. One is value access control. The other is detection of inconsistency
between local environments,

Local environments are organized as a tree structure. An environment in 2 node must
be accessible from nodes under the node, but must be hidden from others until the OR
process associated with the environment succeeds in being selected. Once the OR process
successfully terminates and il is selected, its local environment is merged with the local
environment of the parent AND process (the local environment associated with the parent
OR process of the AND process). Controlling the scope of variable access in this way is called
value access control, On commitment, however, it may happen that these two environments
contains inconsistent bindings. When should the inconsistency be detected 7 This is called
the problem of detection of inconsistency of local bindings. Ueda {Ueda, 1985b] presents two
possible solutions. One is called early detection, whick seeks to detect inconsistency as soon
as possible. If there exists inconsistency, the clause fails hefore commitment and the clause
is never selected. The other solution is called Jate detection and seeks to detect inconsistency
immediately after commitment. In this case, the clause succeeds in being selected, but
immediately fails after commitment. Programmers may prefer early detection, but it requires
a complicated locking mechanism for variables when implemented on a distributed memory

machine. Ueda examined the semantics of Concurrent Prolog from the point of view of
parallel execution and highlighted several subtle issues which become crucial problems in
distributed implementation of the languages [Ueda, 1985b).

Codich defines a concept of safety in Concurrent Prolog which is different from the
one stated here [Codish, 1985]. He introduced output annotation inte Concurrent Prolog.
Qutput annotation is used to declare which terms will be issued to a goal in head unification.
In his model, a clause is defined to be safe if, for any goal, no binding for variables in
the goal is made except those declared by output annotation during head unification and
guard computation. Management of local binding becomes simple in execution of a program
ensured to be safe, since such bindings are syntactically predictable. Codish tries to define
a gubset of Concurrent Prolog with output annotation such that the safety of any program
written in it can be verified syntactically.

3.4 Hierarchical Computation Structure and Flatness

As already mentioned, computation is organized as an AND- and OR-process tree. The
depth of the tree corresponds to the depth of nesting of guard computations. Some parallel
logic programming languages have a flat compuiation structure.

[Flat Concurrent Prolog] Flat Concurrent Prolog is a subset of Concurrent Prolog in which
guard parts are restricted to specify system predicates [Mierowsky et al. , 1985]. Since
no general computation is allowed in a guard, computation structure is always flat. No
tree-structured multiple local environments exist. This greatly reduces the complexity of
implementation of the language, but it does not eliminate the problem of detecting incon-
sistency. Flat Conenrrent Prolog seems to adopt late detection, but it is not clear how it is
realized in a distributed memory environment.

(Parlog] Owing to the safe property of a clause, OR-paraliel search for a clause can be
translated into AND-parallel goals. In the course of translation from a legal Parlog program
to a Kernel Parlog program, clauses defining a predicate are coliected into one clause. In
this clause, OR-parallel evaluation of guards is expressed by AND-parallel evaluation of
conjunction of meta-calls, each of which calls the guard of each clause. The commitment
operator is also expressed by a goal, which receives results from meta-calls, selects one and
aborts the other meta-calls. Thus, there exists simple hierarchy of AND-processes in Parlog.

[GHC| AND- and OR-process tree is essential. In GHC, unification suspends if and only if
binding made by the unification has to be stored in a ivcal environment. In order to know
whether a binding of a variable has to be stored in a Jocal environment or not, the birth
place of the variable in the hierarchy has to be identified. If it i= the location where the
binding is about to he made, then the binding can be made. Otherwise the attempt to bind
is forced to suspend. This i= why the hierarchical computation structure has to be managed
with appropriate information on variables.

{Oc and Flat GHC] Flat GHC is a subset of GHC. In Flat GHC, as well as Flat Concurrent
Prolog, a guard part is restricted to being a set of system predicates. Both Oc and Flat GHC
have no computation hierarchy, since no general computation is allowed in a guard and this
makes implementation of suspension simpler than in GHC. In fact, it can be implemented
bv one-way unification prunitives sundar Lo thosze of Parlog.

3.5 Summary of Comparison

We have reviewed parallel logic programming languages from the following three view-
points.

(1) Suspension mechanism
(2) Multiple OR-parallel environments
(3) Hierarchically organized computation

Safety and flatness contribute to reduce the complexity of implementation. Safety
make the management of multiple local environments quite simple. Flatness excludes the
hierarchical structure of computation.

The suspension mechanism is independent of the other mechanisms in Concurrent
Prolog. However, management of hierarchy of computation and multiple environments is
complicated. Safe Concurrent Prolog is an attempt io revise the Janguage to reduce the
complexity of managing multiple environments. Flat Concurrent Prolog has neither hierarchy
of computation nor multiple environments.

Owing to compile-time mode analysis, at run-time a Parlog program has a simple com-
putation model, where suspension is realized by one-way unification primitives, computation
hierarchy management is simple and no multiple environments exist. What Parlog compiler
does at compile-time can be regarded as detection of multiple environments over the hierar-
chical structure inferred from a program with mode declaration for possible data flow. One
flaw of Parlog is that one cannot write a meta-interpreter for the language in itself, while
in other languages this is possible. The ability to write a meta-interpreter for the language
in itself is an important property of a language for the self-contained development of its
programming system.

In GHC, the suspension mechanism and computation hierarchy are closely coupled,
though GHC needs no multiple environments. Oc and Flat GHC are similar to Kernel
Parlog. In fact, any program written m Oc and Flat GHC can be translated into a Kernel
Parlog program. If we can imagine Flat Kernel Parlog which prohibits general goals and
meta-calls in a guard, then Oc, Flat GHC and Flat Kernel Parlog are equivalent to each
other and constitute the simplest parallel logic programming language.

4. Semantics of Parallel Logic Programming Laﬁguagea

In this final section, we present an open problem on semantics of parallel logic programs.

The semantics of logic programs has been extensively investigated [van Emden and
Kowalski, 1976], [Apt and van Emden, 1982], [Lloyd, 1984]. These provide a rigid basis for
various mathematical manipulations of logic programs such as program verification, equiv-
alent program transformation and declarative debugpging. Logical foundations for parallel
logie programming languages are also indispensable for the development of the theory of
parallel logic programming including verification, transformation and debugging. However,
the results for pure logic programs are not directly applicable to parallel logic programming
languages because of the new control primitives.

Given a program P (a set of Horn clause), the success set of the program is defined to
be the set of all A in the Herbrand base of P such that P U {+ A} has an SLD-refutation.
The finite-failure set is defined to be the set of all A in the Herbrand base of P such that
there exists a finitely-failed SLD-tree with «— A as root. It is well known that the success
set, the minimum model and the least fixpoint of the function associated with the program
are equivalent, The finite-failure set 1s characterized by the greatest fixpoint under a certain
condition. If a goal succeeds under sound computation rules, the result 15 assumed of being
included in the snccess set. If a goal finitely fails, then the result iz ensured to be included

in the finite-failure set.

The declarative semantics of parallel logic programming languages recommends reading
a guarded clause as just a Horn clause. This i= sufficient as long as a goal succeeds, but this
does not happen sufficient in many cases. Suppose that a goal failed. This implies neither
that the result is not in the success set, nor that the result is in the finite-failure set, since the
goal may fail even if there is a possibility of success becanse of commitment to an incorrect
clause. The declarative semantics becomes insufficient also if two programs with different
input /output behavior need to be distinguished.

Paralle] Jogic programming languages have two control primitives not appearing in pure
logic programs. These are a commitment operator and a synchronization primitive. Par-
allel logic programming relies heavily on these control primitives. However, a commitment
operator changes the semantics of failure and a synchronization prunitive introduces proce-
dural flavor. It is now obvious that declarative semantics for pure logic programs cannot
characterize such aspects of parallel logic programs as failure and input/output behavior.

Let us consider the algorithmic debugging for paraliel logic programming languages,
where the intended interpretation of a program plays an important role in guiding debug-
ging. Declarative semantics such as success set is no longer sufficient. Intended interpreta-
tions should be abstract semantice characterizing all aspects which programmers intend to
express. One of the authors developed an algorithmic debugger for GHC, where the intended
interpretation with precedural flavor of a GHC program was defined [Takeuchi, 1986]. Lloyd
et al refined the framewoark for the above algorithmic debupging and discussed some difficult
cases to handle [Lloyd and Takeuchi, 1986]. These are just starting points.

Semantics of parallel logic programming languapes discussed in this paper have been
defined only operationally. None of them provides 2 method to modelling abstract meaning
of a program. What is required is semantics of parallel logic programs that can characterize
what a programmer intends to express in a program. Meanings of programs should be
abstract and independent from concrete implementation since the detail of implementation
is not of interest. Furthermore semantics should be mathematically manipulatable so that
important properties of programs can be derived from their meanings. Such semantics s
strongly desired for the theory of parallel logic programming.

References

Apt, K. R. and van Emden, M. H. [1982] Contributions to the Theory of Logic Programming.
J. ACM, Vol. 29, No. 3 (1982), pp. 841-802.

Bowen, D. L. (ed.), Byrd, L., Pereira, F. C. N., Pereira, L. M. and Warren, D. H. D.
|1983] DECsystem-10 Prolog User’s Manual. Dept. of Artificial Intelligence, Univ. of

Edinburgh.

Clark, K. L. and Gregory, S. [1981] A Relational Language for Parallel Programming. In
Proc. 1981 Conf. on Functional Programming Languages and Computer Architecture,
ACM, pp. 171-178.

Clark, K. L. McCabe, F. and Gregory, S. [1982] IC-Prolog language features. In Logic
Programming, Clark, K. L. and Tarnlund, 8. A. (ed.), Academic Press, pp. 253-266.

Clark, K. L. and Gregory, S. |1984a] PARLOG: Parallel Programming in Logic. Research
Report DOC 84/4, Dept. of Computing, Imperial College of Science and Technology,
London.

Clark, K. L. and Gregory, S. [1984b] Notes on the Implementation of PARLOG. Research
Report DOC 84/16, Dept. of Computing, Imperial College of Science and Technology,
London, 1984. Also in J. of Logic Programming, Vol. 2, No. 1 (19835), pp. 17-42.

Codish, M. {1985] Compiling OR-paralielsm into AND-parallelism. Master Thesis, Com-
puter Science, Feinberg Graduate School of the Weizmann Institute of Science, Re-
hovot.

Colmerauer, A. et al. [1982] PROLOG II Reference Manual and Theoretical Model. Groupe
Intelligence Artificielle, Faculte des Sciences de Luminy, Marseille.

Conery, J. S. and Kibler, D. F. [1981} Parallel Interpretation of Logic Programs. In Proc.
1981 Conf. on Functional Programming Languages and Computer Architecture, ACM,
pp. 163-170.

Hellerstein, L. and Shapiro, E. [1984] Implementing Parallel Algorithms in Concurrent Pre-
log: The MAXFLOW Experience. In Proc. 1984 Symp. on Logic Programming, IEEE
Computer Society, pp. 99-117.

Hirata, M. |1985) Self-Description of Oc and Its Applications. In Froc. Second National Conf.
of Japan Society of Software Science and Technology, pp. 153-156. (in Japanese)

Kowalski, R. [1974] Predicate Logic as Programming Language. In Proc. IFIP-74 Congress,
North-Holland, pp. 569-574. -

Levy, J. [1984] A Unification Algorithm for Concurrent Prolog. In Proc. Second Int. Logic
Programming Conf., Uppsala Univ., Sweden, pp. 331-342.

Lloyd, J. W. [1984] Foundations of Logic Programming. Springer-Verlag, Berlin Heidelberg
New York Tokyo.

Lloyd, J. W, and Takeuchi, A. [1986] A Framework of Debugging GHC. to appear Tech.
Report, Institute for New Generation Computer Technology, Tokyo.

Mierowsky, C. , Taylor, S. , Shapiro, E. , Levy, J. and Saira, M. [1985] The Design and
Implementation of Flat Concurrent FProlog. Tech. Report CS85-09, The Welzmann
Institute of Science, Rehovot.

Miyazaki, T. , Takeuchi, A. and Chikayama, T. [1985] A Sequential Implementation of Con-
current Prolog Based on the Shallow Binding Scheme. In Proc. 1985 Symp. on Logic
Programming, IEEE Computer Society, pp. 110-118.

Naish, L. [1964! MU-Prolog 5.1db Reference Manual. Internal Memorandum, Department
of Computer Science, Univ. Melbourne.

S

Rouszel, P [19?5'} Praolog: Manuel reference et d'utilisation. Tech., Heport, Groupe
d'Intellipence Artificielle, Marseille-Luminy.

Shapire, E. Y. [1983] A Subset of Concurrent Prolog and Its Interpreter. Tech. Report
TR-003, Institute for New Generation Computer Technology, Tekye.

Takeuchi, A. and Furukawa, K. [IQHE] Bounded Bufler Communication in Concurrent Prolog.
New Generation Computiag, Vol. 3, No. 2 (1983}, pp. 145-135.

Takeuchi, A. [1988] Algorithmic Debugging of GHC programs. to appear Tech. Report,
Institute for New Generation Cemputer Technology, Tokyo.

Ueda, K. [19553.] Guarded Horn Clauses. 1COT Tech. Report TR-103, Institute for New Gen-
eration Computer Technology. Also to appear in Lecture Notes in Computer Science,
Springer-Verlag, Berlin Heidelberg (198G).

Ueda, K. {1985b] Concurrent Prolog Re-examined. 1COT Tech, Report TR-102, Institute
for New Generation Computer Technolegy, Tokyo.

Ueda, K. [1986] Guarded Horn Clauses. Doctoral Thesis, Information Engineering Course,
Faculty of Engineering, Univ. of Tokyo.

van Emden, M. H. and Kowalski, R. |1976] The Semantics of Predicate Logic as a Program-
ming Language, J. ACM, Vol. 23, No. 4 (1976}, pp. 733-T4L

van Emden, M. H. and de Lucena Filho, G. 1. [1982] Predicate logic as a programming
language for parallel programming. In Logic Programming, Clark, K. L. and Tarniund,
S. A. (ed.), Academic Press, pp. 188-1G&.

