ICOT Technical Report: TR-156

TR-136

A Large-Scuale Knowledge Base Machine
Control Technigue
Using Mulu-"ort Page-Memory

by
H. Monoi, H. Yeketa, M. Murakami
and
H. lioh

February, 1986

L1986, 1COT

Aita Rokusar Blde, F1F ({13 456-3181—5

|| :D | 1-28 Mita 1-Chome Telex ICOT J 32964

Minato-ko Tokyo 108 Japan

Institute for New Generation Computer Technology

A Large-Scale Knowledge Base Machine Control Technique

Using Multi-Port Page-Memory

Hidetoshi MONOI, Harne YOKOTA, Masaki MURAKAMI, Hidenori ITOH
Tnstitute for New Generatien Computer Technology{ICOT)
Mita Kokusal Building, Z1F

1-4-28 Mita, Minatoku, Tokyo L08 Japan

February, 1984

Abstract

The architecture and control of a knowledge base machine are discussed. The
machine retrieves knowledge from a relational knowledge hase, and consists of a
pumber of dedicated hardware units called unification engines, several disk sys-
tems, a control processor, and a multi-port page memory. The multiport page-
memory located hetween dedicated processors and disk systems enables efficient
retrieval from data streams.

The aim of control is to achicve parallel execution on the upification engines
and disk 5}‘5':&!1-‘1.; for retrieving knowledge stored in the disk systems. We propose
an event-driven control techoigue for allocating unification engines to decrease

conteal overhead.

1 Intraduction

The research aud development project for the Fifth Ceneration Compuizr

-
]

Systems in Japan aims to establish inference aund kucwledge base functions fo.

knowledge information processing. ICOT (lustitute for New Generation Com-
puter Technology) is currently developing a knowledge base machine as one of the
fundamental elements of the system.

The knowledge base machine is a specialized machine that stores massive
amount of knowledge in secondary memory devices, and executes high-speed knowl-
edge retrieval in response to requests from host systems. In systems which manage
large amounts of data like this, one of the major problems copcerning performance
is the bottleneck between the main memory and the secondary memory [1] as well
as what is called the von Neumann bottleneck.

In order to resolve the bottlenecks, we have decided to adopt multipori page-
memory|2| and proposed the ecomomic and practical way to conligure it[3]. A
multiport page-memory is capahlc'.of simultanecusly accessing multiple secondary
memory devices and data processors. It prevents access collision by allowing access
to a page (collection of words) and not a word. We also propose a dedicated proces-
sor to retrieve data from the knowledge base, which performs pipeline processing
on the data stream.

This paper describes the configuration and control techniques for a knowledge
hase machine utilizing the multiport page-memory and multiple dedicated proces-
sors. Chapter ? discusses retrieval methods proposed for a relational knowledge
hase. Chapter 3 covers the configuration of a knowledge base machine utiliz-
ing multiport page-memory and multiple dedicated processors, while Chapter i
presents the method for retrieving knowledge in parallel and the control tech-
nique for allocating processors in the event-driven manner to decrease the control

overhead.

Redh: /* Initialize cutput area. y
To=Uhead S poal(S) /* Unification-restriction by gonl clause. ¥/
ie=0; /* Initialize iteration counter. *f
while T+ & do /* lterate while T is not empty. *f
begin s *
T '=0pody=[KTk /* Hestrietion to get result. *
ReRUT, /* Store it into output area. +f
T"=T; hnd_.,-béljmadﬂ; /* Unification-restriction. */
Ti+1=1IT head. T-body(T ™) /* Projection for next iteration. *
i=i+1; #* Increase iteration counter, *
end ™ *

Figure 1. Example for Relational Koowledge Base Retrieval

2 Relational Knowledge Base Retrieval

The knowledge base machine currently under investigation at ICOT is designed
to retrieve data from a relational knowledge base composed of ferm relations. A
term relation is the expansion of the elements of a relation ip a relational database
to a term (a structure containing variables][6]. A relational knowledge base enables
manipulation of data by set operations and efficient retrieval from large volumes
of data, while a Prolog machine manipulating large volumes of data[5] executes
unification efficiently. It is also suitable to retrieve knowledge on stream-formed
data by a dedicated processor as in a relational database machine.

Operations used in the relational knowledge base are. enification-join, uniflcation-
resiriciion, projection, and so on. The unification-join and unificatien-restriciios
operations are based on the unification cperation corresponding to the =geality

checks in relational algebra. The projection operation is the same as iz conven-

tional relational algebra. An example of a knowledge base retrieval uiilizing these
operations is given in Figure 1[4]. This alse performs resalutions. In this example,
term relations consisting of 2 attributes (head and body) are used to store the Horn
clauses, and retrieval is executed by unification-join and unification-restriction op-
erations. In this example, S is the source relation of the retrieval, R is the relation
holding the resultant data, and Ty, T', and T" are temporary relations holding
intermediate resultant data. The restriction operation is indicated by o, the pro-
jection operation by =, the join operation by #4, and the unification conditions by
.

We call the knowledge retrieval operations based on unification operation such
as unification-join and unification-restriction Retrieval By Urification (RBUj) operations|G}.

From dow an, we use.-.ternm of dafa and relation to refer to the term relationm

introduced in this chapter. -

3 Architeciure
3.1 Unification Engine

In rel.il:iﬂn:ij knowledze base retrieval, processing loads of the scarch scheme
in join operation are extremely high, just as for conventional relational databases.
In addition, as the unification-join operation requires the unification operation
as well, a major increase in processing data is expected. In order to assure a
reasonable response time to a host processor, it is therefore essential to develep
methods to handle processing involving such major processing loads as suickly 2=
possible.

In respoase to this problem, we propose to use a special-purpose hardware de-

vice capable of handling knowledge retrieval processing, including unification-join
and unification-restriction operations|7]. It has three channels for input or output
of data and performs retrieval processing on input data streams from two channels
and issues the result to the other channel. This special-purpose hardware executes
RBU operations and also exeentes relational algebra operations such as those real-
ized in the relational database enzine developed for the relational database machine
Delta[8]. This new device is referred to as a Unification Engine (UE).

The UEs can relieve the system control processor handling large amounts of
data. The control processor has only to control the entire system and manage

interfacing with the host processor.

3.2 Multiport Page-Memory

For a UE to achieve its potential processing power, high-speed data transfer
between the UE and memory device is essential. Especially in knowledge base
and database machines, where data is stored in sccondary memory devices, the
gap of speed between processing and data transfer becomes a major problem. To
resolve this pmblem, a buffer memory could be located between the processors and
the secondary ;'.nemt‘:r}‘ devices. When processors, buffer memory and secondary
memory devices are all linked by a single data bus, data collision is likely to
increase as the number of processors and processing speed increases, ohstructing
satisfactory system performance. For this reason, we propose multiport page-
memory (MPPM) as the buffer memory.

As indicated in Figure 2 the MPPM is composed of multiple I/O ports, severa!
memory banks, and a switching network counecting them. Access through an 1/C

port to a word is not allowed, oaoly to a fixed number of words, which we call =

Fortl Portd Port n

Port 2
Controller Q (P Q CP

Switching Network

-

]

I

'

I

b e e g e :
-

Logical Page

e

Memary Memory AMemory

hemnry
bank 1 -hank 2 “hank 3 .

bank n

Figure 2. Multiport Pape-Memory Configuration

logical page. Multiple I/O ports cap access any given page at the swue time Al
logical pages are grouped in the memory bank (Figure 2). Logical pages defined
over the memory banks horizontally are assigned contiguous page addresses. To
avoid memary bank access collision. the switching setwork fixes the 1/0 port.
memory bank connections for a fixed time

This MPPM makes it possible tp link the UEs, buffer memory, and secondary
Memory devices withont data collision. The MPPM also acts as a buffer memory

between the UEs and secondary memory devices avording anv data collisions.

3.3 Hardware Conflguration

Tle configuration of the knowledge base machine equipped with tas AZE-10

and UEs is shown in Figure 3. This machine is composed of several Uks, the

MPPM, and a control processor (G}, multiple disk systems (DIKS), and an I/T

[=]

Control Bus

| l

L [=]l

C I 0 I n
P MM 0 K K K UE UE UE | |UE
17 P) 5 e
|
el ;]F - - TT1- TT-‘r ﬂ“k -
CF
MFPPM
CP : Control Processor UE : Unification Engine
I :Main Memory of CFP DES :DisK System
IopP 140 Proceszsar MPPM :Multi-Port Page-Memory

Figure 3. Knowledge Dase Machine Configuration

processor (IOP). The DKS include secondary memory devices such as disks devises

and handle data transmission to the MPPM. The IOF executes data tragsmission

between the host systems and the MPPM, and the MM of the CF and the MPPM.

This configuration provides the following features:

1. Multiple 'data buses between the UEs and the DKS eliminate data processing

bottlenecks,

2. Simultazeous retrieval for UEs.

In the confizuration in Figure 3, data How is as follows. The data in the

secondary memory device is staged by the DKS. The UEs theu accept the data

stream and output the resultant stream to the MPPM. The processing resali is

either re-input to the UE, sent to the sccondary memory of the DKS, or the contrel

processor MM through the IOP. The UEs and the DKS can independently accesz

MPPM pages, so that while the UEs are processing data on some pages, it is
possible for the DKS to be staging data to the other pages. Thus we can provide
an extremely efficient data processing system utilizing the MPPM.

Interface control hetween the knowledge base machine and the host and overall
knowledge base machine control are handled by the CP. For this reason, the CP
includes resource management control software to manage the MPPM and pro-
cessors connected to the MPPM, as well as a knowledge base manager. These
software packages control parallel knowledge retrieval using the processors con-
nected to the MPPM. The CP, UE, DKS, and IOP all function as IfO devices.
The CP iszues processing commands to the individual processors, beside initiating
processing. The CP keeps track of processor status by interrupts with control data.
The control data trusﬁhsions between the CP and the individual processors are

bandled via the control bus.

4 Multiport Page-Memory Control Technique

As mentioned above, we locate the multiport page-memory between the unifi-
eation enpines :.L_ud the disk svstems as a buffer memory. In this configuration, i is
possible for mulitiple UEs to retrieve data simultaneously. It is also possible for the
disk systems to pre-stage the data from secondary memeories, while the unification
enginces are retrieving the data io the multiport page-mmemory.

In the backend knowledge base machine proposed in this paper, it is common
to execnte several retrievals simultaneonsly in response to request from maultiple
users. In order to increase the efficiency of data retrieval, we must investigate the
methods for executing retrievals in parallel utilizing several unification engines.

From the point of view of multi-processor database systems, there are several

levels of parallel processing, such as parallel processing by the transaction, relation,
or page. Especially, parallel processing by relation and page are important for
scheduling multiple processors.

In this chapter, we first discuss parallel processing capability in relation-sized
units, and then we propose a scheduling method of the processors attached to
the multiport page-memory for executing page-sized parallel retrieval in an event-
driven manner. Lastly, we propose a multiport page-memory management method

enabling efficient retrieval in page-sized units.

4.1 Parallel Processing in the Knowledge Retrieval

4.1.1 Parnllel Search Capability

As described above, the proposed knowledge base machine includes multiple
UEs, and therefore a major pecformance prohlem is how these UEs will operate in
parallel during retricval. It is possible for UEs and DKS to operate in parallel, so
that the UEs retrieve data staged to the MPPM, and the DKS stage data required
by the UL in the near future.

The retrieval example for a relational knowledge base in Figure 1 can process
operations in parallel by staging all relations being used to the MPPM. Taking this
parallel capability into account, it is possible to describe the retrieval procedure
using the temporary relations Ty, T5, T3 awd R in Figure 4. That is, multiple
1JEs can execute retrieval simultaneously separating cutput relations. In Figure 4,

individual nodes represent data processing handled by the UEs.

The relations used in the individual nodes in Figure 4 must be ecither stagea

by the DKS prior to UE execution, or may have already been staged. Using the

- Stari

: Operations I
executed in UE _& +
: (Re®) (To=0 hendOgoal T)
: Controls I I
exceuted in CP I

Yes

(T1#0 boayO((T))(T2&To body© head(T))

(Ry=RUT,) (T3=0 Ty head T-goall T2 _)
I]

s 4
I
Terminate R+~R, Ty+T;
v I
End

Figure 4. Retrieval in Relation-Sized Units

MPPM enables parallel operation of the UEs and the DKSE, making it possible to
run UE processing at one node while performing staging for other nodes.
To execute this parallel control, CP control can be divided into following three

phases:

1. Node Execution Management,

2. Data Staging, and

3. UE Execution.

In the first phase of 'mode execution management’, a decision is made as to
whether sach node is executable or not. Here, "ezecutable’ means that input and
ourput relations used iz a node are ready to be processed. If a node is executable,

then it is passed to the next phase. In the sccoud phase of 'data staging’, &

determination is made as to whether staging is requnired or not. For podes where

14

staging is required, ioput requests are allocated to the corresponding DIKS. Nodes
are passed to last phase either when staging is not required or when staging by
DES is complete. In the last phase, free UEs are allocated to UE operations at

each node.

4.1.2 Parallel Control in an Event-Driven Manner

The above section described the parallel processing capability in retrieval from
the relational koowledge base. The MPPM can be accessed simultaneously in
page-sized units, and relations can be grouped inoto page-sized unit as well We
ean further increase the degree of parallel processing by introducing data retrieval
between pages. However, as granularity of pru;:eﬂsing decreases, control overliead
in allocating UEsz is likely to increase. Therefore, it is important to establish an
efficient method for alloeation of UEs.

A pumber of database machines with an architecture consisting of a con-
tral processor, several dedicated processors, and coppecting devices have heen
proposed[9)[11][12]. Each of the dedicated processors plays a major part in pro-
cessor allocation procedures within those machines. Control overhead such as
inter-processor .cnmmu nication and procedures for allocating processors, however,
are likely to iperease as the number of transactions to be processed increases. We
therefore propose a schéduling method in an event-driven manper. Io this method
the CP plays a major role as a master processor in allocating UEs for each re
trieval. UEs are allocated to each retrieval in page-sized units and activated by
commands from the CP.

Let us assume that for the pode processing the unification-join indicated iz

Figure 4,

11

stage stage stage stage

'.
1
L]
1
i
i
|
1

Y éf
———— - ——— === ~ _———
[PIn— [PTzze { Flzg— %
T —— T = = i — "
— : @crcessible (::) : immediately executable
——

— = : not accessible : executable when staging is complete

L ——

Figure 5. Unification-Join in Page-Sized Unit

e
TE = Tﬂ Eod'y{)gaan

the input relations T and T are composed of pages as follows.

7= (PP}, P} P}
To = (P, ", P5°)

In addition, PE' . PIT ®, and PE ® are already staged to the MPPM. Unification-
join processing can be divided into page-sized unit processing steps to enable the
processing in Figure 5.

In the individual nodes in Figure 5, the unification-join processing for P | PIT“.
and FE" can be handled by the engines immediately, but the other nodes execvting
upification-join have to wait for staging by the DIKS. In order to enable this type

of waiting, the following packet-form operation is proposed.

Condifion Operation Post-processing

Where objectives of each field of the packet are as follows.

Condition: The conditions indicating whether the operation indicated by the pack-
ets is executable or not.
Operation: The operation and relation pages to be executed by the UEs, DKSs,

or IOP.

FPost-Processing: The condition settings for the effects the result will have on other

packets,

Using this packet the flow in Figure 5 develops into the packet string indicated
in Figure 6. In Figure 6, S(P) is the status of page P, §(P)'= T indicates that
page P is accessible, and S{P) = F indicates that page P is not. The initial state
is S{P) = F for every page. Futhermore, stage(P) indicates the allocation of the
page to page P of the relation, apd staging by the DKS.

These packets are distributed among the processors such as the UEs, DKS,
and IOP executing operations indicated in the operation field. Every processor
determines independently whether a packet is executable or not. When a packet
becomes exccutable, operations indicated in the packets are sent to processors for
actual processing. Processing results are passed on to other packets. This control
flow is indicated in Figure 7, and the processing for the indicated boxes is as

follows:

Command Compile: Retrieval requests for the knowledge base are supplied as a
combination of retrieval operations in a relation-sized unit. The command
compile divides those retrieval operations into staging processes and UE pro-

cesses with the packet form by a page-sized unit. Finally, the command

12

Processor Condition Operation Post-processing

DKS T ; stage(PTy) i S(PT))T
T : stage(FT3} ; S(PT3)T
T ; stage(PTy) : S(PT4)«T
T : stage(PTog) ; B(FTog)«T

UE SiPTy)=T&S(FTay)=T ; PTrq=PT) hend%q'bu-d:.rlrr“l 1 S(PT2)+T
S(PTg)=T&S(PTe;)=T ; PT7=PT; hendbédhudyP'rm ; S(PTz9)=T
S(PTa)=T&S(FToy)=T ; PT71+=PTy haa,db@ﬂimdylﬂﬂl i S(PT23)T

SIPT)=T&S(PTog) =T ; PT2190=PTy headOboaylTes ; SPT210)«T
all S(PTx;) =T ; Nop : S(T2)«=T

CcP S(Te)=T : <Terminate Process>

Figure 6. Retrieval in the Packet Form

=
Command

Compile
packets for DES packets for CP

packets) for UE

- . -

3 |

Ed Ed Ed

DE=S UE Past-

"Allocation e = == =] Allocation | e = = -m=] FProcessing

S .
I_T_] I:'"'_‘ L_l:—l 1 r —1 1 3 : Commands

—— : Packels
8] u u

= o

= : Operations

Figure 7. Contral Flow for Page-Sized Retrieval

14

E E E = = =3 :ctatus information

compile distributes the packets to each processor allocation process corre-

sponding to the operation field.

DKS Allpeation: DEKS allocation examines the condition of each packet and deter-
mines whether staging is executable or not. If staging is executable, a DKS
is allocated according to the object pages and operations are sent to the DS
driver. When staging is complete, the status of the page is sent to the UE

allocation process.

UE Allocation: UE allocation also examines the condition of each packet and de-
termines whether the operation is executable or mot. If the operation is
executable, a free UE is allocated and operations are sent to the UE driver.
When execution of the operation s complete, status is sent to the post-

processing process.

UE: UE means actual driving of UEs. It includes interruption handling for actual

unification engines.
DKS: DKS means actual driving of DESs. It includes a request scheduler and

interruption handler for each actual device.

All of these control processes are exccuted by the CP. Therefore, individual
boxes in Figure 7 will be implemented as independent processes of the CP. Each
packet distributed to the processors is executed repeatedly until the retrieval re-

quest is satisfed,

4.2 Multiport Page-Memory Management

Relations in the knowledge base are stored in the secondary memory devices.

They are staged to the MPPM when they are necessary to UEs for data retrieval

15

Page Frame

Management Table Directory
- Page Tahle
page# (Y
#1 Clustering Page Disk
page - Index Adress Adress
page# 2 ;
page# n - - -

Figure 8. Memory Management Tables

Conventional virtual memory management schemes are usually applied to MPPM
systems. However, since the MPPM stores ouly relation-type data, it is more
efficient to treat relations directly in MPPM manpagement. In addition, because
the access unit for the MPPM is the page, high-efficiency buffer management is
obtained by staging/destaging data from the knowledge base in page-sized units,
rather than handling staging/destaging in relation-sized units. Mauaging relations
in page-sized uniis also enables indexing every page by its contents.

From now on, the logical page of the MPPM is refered to as the MPPM page
frame, and page-sized units grouping relations are refered to as simply relation
pages.

The puge table and the page frame management table in Figure 8 are used in

MPPM management. These tables have the following objectives.

Fage Table: Created for each relation to manage the relatica memory status such

as being staged or destaged. Page tables also keep indexing data for every

16

relation page and the page address in the MPPM and the disk where the

relation page is stored.

Page Frame Management Table: Created only once in the system. Individual en-
tries of this table are created for each page frame of the MPPM, and the table
is used to manage the page frame utilization status {either free or allocated

to a page).
These tables are used to manage the MPPM page frames in the following way.

The data stored in the knowledge base has a specific disk address for every
page.

When pages are staged to the MPPM, the address of the allocated page
frames are set in the page tabie corresponding to the relation. At the same
time, the page frame management table entry corresponding te the page

being used is altered to indicate that it Is in use.

When the page frame is no longer needed by the MPPM, the correspounding
page tahle entry in the page frame management table is rewritten to show

that it is free.

A page taﬁje iz generated for each relation and management of these page
tables is performed by the memory manager. This means that the knowledge base
management software does not need to be aware of the memory status of individual
relations and can directly handle relational operations. Individual relations are
stored in tuples, and items in a key attribute are assigned sequentially, enabling
pagewise clustering in the page tables, as indicated in Figure 8. This clusiering
data can be used to reduce the ohject relation pages and enable staging of only

essential pages.

17

5 Summary

This paper discribed the architecture and control techniques for a knowledge
base machine using multiport page-memory and unification engines. In knowledge
base machines where large volumes of data. must be processed, the combination of
multipert page-memory and dedicated processors appears to be a highly efficient
approach to the elimination of the data processing bottleneck and enabling high-
speed data processing on a data streaﬁl. Utilization of parallel control techniques
in the event-driven manner reduces overhead in processor allocating _pmcfdures
and inter-processor communication. It is also possible to execute retrievals in
parallel efficiently.

Future research topies will include further investigation of the control technique
proposed and quantitative measuremexnt of granularity for parallel processing us-
ing hardware and software simulators. We must resolve the problem of so-called
relation fragmentation[10] for efficient use of multiport page-memory and efficient

parallel rletrieml,

ACENOWLEDGEMENTS

The authur‘s. thanks Mr., H. Sakai of TOSHIBA Corporation and members of
ICOT's KBM {Knowledge Base Machine) workiug group for many useful discus-

sions.

15

[1]

2]

3l

4]

[l

(6]

17]

%)

References

Boral, H., and DeWitt, D.J., "Database Machines: An Idea Whose Time has
Past ? A Critique of the Future of Database Machines” Datebase Mechines.
H.0. Leilich and M. Missikoff (eds.) (Springer-Verlag. Berlin, 1983, pp 16GG-
187

Tanaka, Y., "A Multiport Page-Memory Architecture and A Multiport Disk-

Cache System™ New Generotion Computing 2, pp 241-260, 1984

Yokota, H., Moooi, H., Morita, Y., and Itoh, H. "Construction of Multiport

Page-Memory” ICOT Technical Memeo No. TM-132.

Yokota, H., and Itoh, H. " A Model and Architecture for a Relational Knowl-
edge Dase” ICOT Technical Report No. TR-144, to appear in The 13th Inter-

national Symposium on Computer Architecture, November 1985,

Sabbatel, G.B., Dang, W, laneselli, J.C., and Nguyven, G.T. "Unification for
a Prolog Data Base Machine” Proceedings of the Second Internetional Logic

Frogramming Conference, pp207-217 july 1984

Yokota, H., and Itoh, H. "Retrieval By Unification on Knowledge Base™ ICOT
Technical Memo INo. TM-132,

Morita, Y., Yokota, H., Nishida K., and Itoh, H. "Processing Method for
Retrieval by Unification Operation on Relational Knowledge Base™ submitted

to the 12cth International Conference on VLB August 1986,
Kakuta, T., Mivazaki, N., Shibayama, 5., Yokota, H., and Mnrakami, K.
" The Design and Implementation of Relational Database Machine Deliz”

Proceedings of the International Workshop on Database Mochines'85, March
1985,

19

[9] DeWitt, D.J., "DIRECT - A multiprocessor organization for supporting re-
lational database management systems” JELEE Trans. comput. C-28, 6{June

1578}, pp.395-406

[10] DeWitt, D.J., "Query Execution in DIRECT" In proceedings af ACM-SIGMOD
1979 International Conference on Management of Data (May 1879), pp.12-22

[11] Bancilhon, F., Richard, P., and Scholl, M., " The relatioral database machine

VERSO" 6th Workshop on Computer Architecture for non numeric processing,

june 1981

[12] Gardarin, G., "An introduction to SABRE multimicroprocessor data base
machine” 6th Workshop on Computer Architecture for non numerie processing,

june 1981

20

