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Abgtraet

A computation meckanism “computation by meta-unification with eonstructors® is
proposed. This view of computation stems from the bekavior of an interpreter of an equa-
tiopal language called Talos. In Talos everything is done by controlled sequences of meta-
uifizations, as is by controlled tequences of unifications in Prelog. This is a generalizs-
tian of the conventiona! term rewriting as well. We show s noodeterministic equational
meta-unification algorithm to enswer whether a set of equations £p is metaunifiable by
a conditienal equaticnal theory £ satisfying some conditions. Then we prove its ground
completenes that is, it computes & more general substitution than any £-ynifier, when the
£-unifier instanciates & to a set of ground equations. The operational semantics of Talos is
given based on the algorithm. The model theoretic semantics is given by the initial algebra
of £, or equivalently, the set of all ground equations valid in all models of £. The fBxpoint
semantics is defined similarly to Prelog. Using the ground completeness, we show these
semantics are equivalent.

Keywords : Equational Theories, Term Rewriting Systems Unifieation, Semantics.
Contents

1. Introduction
2. Meta-Unification for Corditional Equational Theories
2.1. Conditicnal Equational Theories
0.2, Meta-Unification
2.3. Consistency and Complisteness
3, Syotax of Talos
3.1. Definition of Data Types
3.2, Definition of Functions
33 Query
4. Mesa-Unification for Conditional Equational Theories with Constructors
4.1. Conditivnal Equational Theories with Constructors
4.2, Meta-Unification with Constructors
4.3, Consistency and Ground Completeness
. Semarntics of Talos
5.1. Operaticnal Semanties
5.2, Model Thecretic Semantizs
5.3 Equnivalence of Two Semantica
8. Discursions
T. Conclusions
Acknowledgements
References

LR



1. Introduetion

Prolog [4] is a relational language based on first-order predicate calculus. Operaticnal
semantics of Prolog is usually explained by the SLD-resolution, a strategy of the resclution
complete for Horn clauses. Frominent features of Prolog are procedure invocation by
unifieation and nondeterministic search {automatic backtracking). Results of procedures are
passed through variables within each clause, while,in functional programs like Lisp, nested
composition of functions is the main construct.

Fupctional languages are more classical and share semantical clearness with Prolog
([3],]11],[21]). They can be considered special logic programming languages based on equa-
tional logic, When an equation is considered a term rewriting rule, equational logic turns
into computation, which is the basis of the operational semantics of functional programs.
Theugh functional programs are superior to Prolog in some points (readability etc), they lack
some powerfull features of Prolog such as pondeterministic search. When we accomodate
these features to functional programming, we need to carry it out not by an ad hec device
but by a unified approach. Several such attempts have been done from different point of
views ([2],[6],]81,(19],[22]).

In this paper we propose a computaticn mechanism “computation by meta-unification
with constructors™. This view of computation stems from the behavior of an interpreter of an
equational language called Talos. In Talos evervthing is done by contralled sequence of meta-
uifications, as is by controlled sequences of unifications in Prolog. This is a generalization
of the copveniional term rewriting as well. Both invocations of functions by unification and
automatic backtrackings are integrated into Tales.

This paper is organized as follows. In section 2, we introduce conditional equational
thecries in general, give an extension of the Fay-Hullot's meta-unification algorithm and
prove its completeness. In section 3, we show the syntax of our programming language Talos.
I section 4, we introduce conditional equational theories with zonstructors, give a nondeter-
ministic eguational algorithm to answer whether a set of equations & is metaunifable by
a eonditional equational theory £ satisfying some conditions. Then we prove its ground
completenes that is, it computes & more general substitution than any {-unifier, when the
£.unifier instanciates & to a seb of ground equations, In section 5,we discuss the semanties of
Talos. The operational semantics ef Talos is given based on the equational meta-unification
algorithm. The model theoretic semantics is given by the initial algebra of £, or equiv-
alent!y the set of all ground equatiors valid ir eli models of £. The fixpoint semantics is
defined similarly to Prolog. Then using the ground compieteness, we thow these semantics
are equivalent. Lastly in section 6, we discuss the relations to other works.

In this paper we azsume familiarity with (many-sorted) eguational logic and term rewrit-
ing systems. As syntactical variables, we use XY, 2 for variables, f,g, b for lunction sym-
bels, a, b, ¢ for constante, r, &, ¢, @, 8,7, 6 for terms, u, v for occurrences and 6,0, 7, 4, ¥,(, 1,0
for substitulions, possibly with primes and subscripts. = is used to denote the syntactical
identity. We denote the set of all terms on a signature L and variables V by TIEUW)
(or simply T), the set of all ground terms on a signature L by G{Z) {or simply &), set
of all variables in a syntactical object e by V{e), subterm of ¢ at an occurrence u by t/u,
replacements of a subterm of t at an occurrence « with a term # by t{u+=3], the set of all
cecurrences of non-variable snhterms of a term # by O(#) and restriction of a substitution

& to a set of variables V by o[V (see [12],[15]}.
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2. Meta-Unification for Conditional Equationai Theories

Wye generalize the concepts for unconditional equational thesries to those for conditional
equational theories first.

s 1. Conditional Equational Theories

A conditional equational theory £ is a first order theory with one infix binary predicate
=, a set of axioms,called proper axioms of £ ,of the form (m>0)

=108 Az =0 A NTm = by D7 =146
and four axioms called equality axioms

X=X,

X=Y OY=X,

X=YaY=I 2X=1,

X=Y (Z1,.. . X, ula) = f{Z,,...Y,. .,2a) forall function symbols f.

When s = t is provable in £, we denote it by =¢. The quotient algebra of § by the
congruence relation defined by all ground equations provable in £ is called the initial algebra
of £, or mere exactly, said to be isomorphic to the initial algebra.

Example 2.1.1. A theory £ with proper axioms
insert(X,0)=tree(® X,0),
X=Y ‘Jinsert(}{rtre&tL,T,H}]ztreel[L,Y,H},
less-than(X,Y)=true Dinsert(X tree(L,Y,RR))==tree(insert(X,L),Y,R),
less-than(Y,X]}=true :Jinsert.[}[JtreeiL,T,H}]=tree[L,Y,in:eﬂ{x,ﬂ}]
is a conditional equational theory.

A conditional term rewriting system % is a first order theory with three infix binary
predicates —,— and |, & set of axioms called proper axioms of R,of the form (m=>0)

T LE A L& A A, 1 6m D26
and four axioms ealled reducibility axioms

X—"X,

XoYAY='Z DX="Z,

XY D2y, X, . Za) fZ1,. .Y, ,2n) forall function symbols f,
X+"Z AY—="Z DXL Y.

Example 2.1.2. A theory R with proper axioms
ingert{X, @) — tree(®,X,0),
X | Y Dinsert(X tree(L,Y,R]) = tree(L,Y,R),
less-than{X,Y) | true Dinsert(X tree(L,Y,R)) — tree(insert(X,L),Y,R),
less-than{Y X) | true —insert(X tree(L,Y,R}) — tree(L,Y insert(X,R))
is a conditional Lterm rewriting system.

A binary relation — on the set of all terms T is said to pe stable iff ¢(s)—o(t) for any
substitution o when s—+¢ and said to be compatibie iff r{ue=s]-—=r{ut=t] for acy occurence
u of r when s—+t ([12] p.809) Let B =(—,T)bea compatible stable relation and —" be
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the refiexive transitive closure of —. R i3 said to be confluent when for any terms ¢,fy,t5
such that t—+"t; and t—"ts, there exists a term ' such that t,—"¢ and t;—"t'. When
R = (—, T}is confluent, & dsefines a binary congruence relation =g which is the reflexiove
symmetric transitive closure of —. £ is said to be terminating when for any term tg there
iz o infinite derivation in & tg—t;—+f3—--- guch that #;—t;4, isin B (0<i{). A term 2 is
gaid to be in R-pormal form when there is no ¢ such that s—t isin R. A term ¢ iz called
R-normal form of a term » and denoted by # | when s— "t holds for R and ¢ is in R-normal
form. A substitution g iz faid to be R-normalized iff n{X) is in R-normal form for all X.
(By abuse of notation,we uze the same symbol R and £ to denote both theories and concrete

relaticns.)

Example 2.1.3 Let E be a relation on T such that a—¢ iz in K iff it is a logical consequence
of a conditional term rewriting system R with the following proper axioms.

a— b

a—+¢,

f(b) — glc).

fY) L glY) Db — 0.

1Y} 1 g(Y) Dc — 0.

f(Y) | g(Y) 21X} — sue(X).

1Y) | glY) DglX) — suc(X).
Then it is trivial that K is confluert and terminating. §/ =p is isomorphic to the set of all
natural pumbers N.

2.2. Meta-Unifleation
2.2.1. Meta-Unifleation Preblem

Let £ be a congruence relation on T. & and ¢ are said to be £-unifiable i there exists
a8 substitution # such that #{s) =, &#(t). Such a substitution & is called an £-unifler of # and
t. The set of all £-unillers of r and ¢ is denoted by Ug{s,2). In general the most general
£-unifier does pot always existz when £ is not the syntactical identity.

To show a generalization of the most general unifler, we iztroduce an ordering. For s, 2 €
T(EU V), & <, il there exists p such that p(s) =, ¢t. <, is extended to substitutions by
g =<, r[V] iff there exists a substitution g such that peg{X) =; r{X) for all X € V, where
V is a sct of variables. (When £ is the syntactical identity all these definitions correspond
to the usual definitions of # = t and o = r[V]. See [1Z] pp.B06-R0E.)

The set of all variables X such that o{X )= X is called the domain of ¢ and denoted
by D(r}. The zet of all variables in o{X) for ali X = Do) iz called the variables introduced
by ¢ and denoted by J{r). A substitution o is said to be away from & set of variables W
when J{og)[ W = 0.

Let 1 be a set of variables containing V = Vi{a) [ J V(¢). A set of £-unifiers I is called
a complete set of £-unifiers of & and t away from W iff it eatisfien the following conditions.
{(Uge of W is technical fer avaiding conflicts of variable names.)
{a) YO CU (P(6)CV & #is eway from W)
(b) U C Ugls,t).
(c) Voclg(s,t)30Ccl 8 <, c[V].

Complete sets of £-unifiers always exist ([15]).
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Example 2.2.1. Let & be the equational theory of the aszociativity,ie. £ ={(X oY )e i =
X o (Y « Z)} or the minimum congruence relation on T satisfying the theory. Let a,t be
terms X » a and a» X respectively. Then

g, == Xi=gelow(ce - (awa)]) >
are all £-upifiers of & and t, where the term substituted for X and ¥ consists of § a’s.
There is no =< relations between these substitutions. Hence there is no finite complete set
of £-unifiers of s and ¢. A complete set of associative unifiers is not finite in general.

2.2.2. Narrowing

Let B be a conditional term rewriting system, 4 be a term, W be a set of variables
containing V(s) and a—f be an instance of the head rule which is provable in R and
pumbered k in some numbering. A substitution @ is called a logical narrowing substitution
of & away from W, if a nonvariable eubterm a/u and the left hand side a is unifiable by a
most general unifier £. We azsume V(a) is away from W by renaming away the variables
in a—f from W. s is said to be logically narrowed to ¢t = f{slu¢=5]) and denoted by
Akt 10 particular,when s8=(q x o)t 30d §)V(s) is the empty substitution <>, & is
said to be logically reduced to t = 8{s|ut=#]} and denoted by s—+(u,k gt Note that the
logical reduction is included in the logical parrowing, i.e.,— & A~. The set of all narrowing
substitutions for 5 away from Wis dencted by N5(s, W).

The logical reductions in R define a relation Ton T. Let Ko, Ry, Ra,... be a sequence
of relations as follows.
Ko = 0.
R4y = compatible closure of
{p(7+6) | there exists a proper axiom
T i '51 M2 H EI foe M Tm lfm :)".f_"ﬁ
such that p(7y & &), {12 4 &2)i- a0 é.) hold for K4}
Note that T C Ry C R2 © -+~ T is defiped by U, R4 An atem in Kg is said to be
with logical degree Jess than or equal to d. It is easy to see that s =g iff 4 =g t when K is
confluent.

The previous definition is logical in the sense that it depends on the concept "o — 4 is
provable in R7. We need to define it operationally, i.e. show how to compute 8(s[ut=7])
without proving the atom a—f all the way. We define operational parrowing and operational
meta-unifiability mutually recursively as follows,

(a) Let & be a term, W be a sel of variables containing V(s) and 4—+¢ be an unconditioal
rule numbered k in R. Then 3 cubstitution o is called a pre-narrowing substitution of s
away from W, if a nonvariable subterm &/u and the left hand side 7 of the head rule is
unifiable by a most general unifier o. We assume V() is away from W by renaAminE awWay
\he variables in y—#& from W. g is said ta be operationally narrowed to t = a(alus=E])
with operational degree 1 and dencted by #8= [ k, < = oo|l-

(b} Let s be a term, W be 3 set of variables containing V(&) and m L S1A72 L fah - ATm L
£, O q-+§ be a conditional rule numbered k in R. Then a substitution & is called a
pre-parrowiog substitution of & away [rom W if a poovariable subterm s/u and the jelt
hand side 7 of the head rule is unifiable by a most general unifier . We azzume V() is
away from W by renaming away the variables in 31 ) f1A72 & f2h - ATm L D y=b
from W, s iz said to be operationally narrowed to =7 e ofs[ut=4]) with operational
degree d +- 1 and dencted by s 1w,k as)t when the instance of two terms composed
of the condition part o(hm(7:, 72, -+ Tm)) and olhm(b1, 82, 6m)) are operationally
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metaurifable with operational degree d by r away from W + o), where A, is a fresh
m-ary function symbol.

(¢} Let sy and o be two terms, Wy be a set of variables containing V{sp) [J V(to) and Az be
a fresh binary function symbol. Then s, and fg is said to be operationally meta-unifiable
with operational degree d by 8 e (ro— 0 6a—1) 0+ o(r 0 01)c{ry o 0a) away from Wh
when there exists a sequence

hﬂ{"ﬂl EQW|UU.1H.'¢ﬁﬂn=h={31: 11W|h,,t1,71ﬁﬂ1!' ) J\"I“u—i.lu—.hf-—:l'ﬂﬂ'n—;]hﬂfa'ﬂ-l :ﬂ-}
such that each A, i, rino,) i5 3 narrowing with operational degree less than d away
from W; and &, and t, are unifiable by a most general unifier &, where Wy, = W; 4
Ilriemy).

In particular, when sy § oyt a0d v o u|V{#) is the empty substitution < >, s iz said
to be cperationslly reduced to t = v o p{s[ut=8]) and dencted by #— |k eut. Again
the operational reducticn is included in the operational narrewing, i.e.,— © M~. The set
of ail pre-narrcwing substitutions for a away fromm W is dencted by N5Sp,.[s,W). This is
computable from s and the conditicnal rules of R directly.

The operatiorpal reduciions in X define a refation & en 7. Let £5,E,, E4,... be a
sequence of relations as follows.
Ru =0,
R4 = stable closure of
{s-+t! g—t is an operational reduction with degree less than or equal to d}.
Note that Ry C R, € By € ---. R isdefined by Jj_o Ry Ry is not necessarily confluent
even if R is confluent. But £, is alwsys terminating when £ is terminating and a term # is

in R -normal form when it is in £-normal form.

Note that B, = K, because the rule in the definition of R, is unconditional and
the narrowing can go without the meta-unification of the condition part in this caseie.
NS“JM = Nsprl“: W

Example 2.2.2. Let s be snsert(A, inzert(B, tree(®, 1, §))) and u be the occurrence of inseré(B,
bree(@,1, 87} Dezzuse inzert(H, tree(2, 1, §}) is unifiable with the left hand side of the third
rewrite rule in the definiticn ef tneert by an magu e =< BeXy, 55, XX, L0, YV =1,
F+e=5, > and the condition part i3 satisfied by r =< X;4+=0 >, # i3 narrowed to &, =
rool insert{A treelinsert(B,0),1. 5))), i.e. insert{A, tree{inzert(0,8),1, 51)). NSpre(s, W)
inchudes another two pre-narrowing sebstitutions eorresponding to the second and the fourth
rewrite rules. For gy, we nave four pre-parrowing substitutions corresponding to the occur-
rences of &, itsell and fnaert(0, G

2.2.3. An Extension of the Fey-Oullot™s Algorithm

The fallowing iz an adaptation of the nondeterministic £-unifcation algorithm by Fay
'5] {revised by Hullot [15]) for unccnditional equational thecries. W is initialized to W
(= Vi, t)) before meto-unify(s, ¢} and global during the computation. Note that at then
brapches unnecessary search detected in the If test 5 pruned away.

Example 2.2.3. Let & be insert[A, insert{B. tree(l, 1, 5))) and ¢ be frec{tree(d, C,0),1,T).
Because s and ¢ are not vnifiable, the Fay-Hullot's algorithm selects the second when since
NS,,.(t, W) =0 Then # czn be narrowed to

#y = inzert(A tree(ineert(D 0}, 1, 5,1}
by o |V =< B+=0,8+&=5, >. Aher appropriate two succeeding narrowings, we have

4
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gy = treeftree(®,0,0), 1, insert(suc(suc(Aa]), 5500
Thep in the next repctition, a3 is unifiabie with t = tree{tree(d,C,0),1,T) by 0 =<
A;%:AhS;:as.l,(.‘ﬁﬂ,Thinatrt{auc{:u:{m]}..51,} =. Hepce

< Ae=suc(suc(Aq), B0, C&=0, S8, Teinsert(suc(auc(Ay)), Sq) >
is a meta-unifier of 8 and t. There are another four meta-unifiers

< At:ﬂ,Bd:su:[auc[Bl}],C¢=ﬂ,5t:5.,Thinsurt{m:{au:{ﬁ,]‘}, Ss) >,

< A0, B0, Ce0, 858, T8, >,

< AE1,B+0,C=0,8E8,, TE5 =,

< A0, B, CE0,558,,TE5 =,

meta-unify(s, t.term) : substitution;
=<
repeat
when s and { are unifiable by # away from W
stop with answer # o 8
when N S;..(s, wWi+e
select 0 € N Sy (s, W) and let the corresponding conditional rule be
oo L Eg ATz L B AIm L Em D76 (ol7) = olafu));
W = W + I(c); let 1 be meta-unify(e{hmlm1, 72, - o m)), Elhm (B, 2, Em)));
If there exists a variable X € W for which re g(X) iz not in R-normal form
then stop with failure
else 5 := roo(sjuc=b]); t :=roo(t) §:=(roa]ef
when Nsp'r:{tr W)#0
select & € NS, (¢, W) and let the corresponding conditional rule be
Sy | Ei AT L EaA- At L Em D187 (a(7) = o(t/v));
W .= W + I{g); let r be meta-unify(a(hn(71,72, oY)}y = oy, 62, Em)));
If there exists a variable X € W for which r o ¢(X) is not in R-normal form
then stop with failure
else & ;= roa(sju=t]); §:=(rog)ed
endrepeat

Figuare 2.2. Extended Fay-Hullot's Meta-Unifieation Algorithm

2.3. Consisteney and Completeness

We have deficed different narrowings and reductions, l.e. the logical ones and the opera-
tional ones. Corresponding to each reduction, we have two binary relations on T(EU V).
Onpe is R corresponding to the operational reduction. Ancther is X corresponding to the
logical reduction. R € R holds in general (see Lemma 3), but they are not necessarly
identical and the proof of consistency and completeness of the algorithm does not go in the
completely same way as by Hullot [16]. (The diztinction of these two is necessary becauze we
are eonsidering conditional cases. When £ and R are unconditional, these two are identical.)

Now on,we assume £ is confluent and terminating. This means £-uormal form is unique
and R defines a congruence relation =g, that is, the reflxive symmetric transitive closure
of the operational reduction —. We define =, similariy to one in 2.2.1.

We introduce a concept, which is abstracted from the theorem by Hullot [16] pp.323-
6




324 and gencralized for conditional cases. It says any operational Ay=-derivation issuing
from n(s) without instanciation of variables in J{n) may be "projected” on an operational
A~-derivation issuing from & and any operational Ay-derivation issuing from & may be
considered as the “projection™ of a certain class of operational Ap+-derivation ([16] p.322).
The popdeterministic meta-unification algorithm mets-unify is said to be projectable for
R4 when it satisfies the fellowing condition.
(a) Let s be aterm, V be a finite set of variables containing V(s) and 5 be a R-normalized
substitution with D(n} © V(s). Consider any operational A--derivation with opera-
tional degree less than or equal to d izsuing from n{s) :

!I'j'(.‘.:‘} — tu%[ha,tu,h’nﬂ#n]tl‘\r'[u'u.h.vjﬂ'#:]' ' 'A'f'[ﬂn—h*-—l.lr'nr-l.ﬂ'ﬂn—-ﬂt“' [1]
such that no variable in I(n) iz instanciated in the narrowingeie. D{v;= w) ) J(n) =
@ for all 0<i < n. Then there exists an associated operational Ap-derivation with
operatiopal degree less than or equal to d issuing from & ¢

&= d‘n'\""[qﬂ.,khrnuua]IIJ\(’[uhthrlngl]' ) 'N{"[u__l,t__n'r.,_lna,._;]anr (2)
and for each ¢,0<¢<n, a substitution r; and a finite set of variables V5 such that :

(i) D(ni) € V5,

(i1) m; is B-pormalized,

(i) (n [ V)=A(ni=8:) | V),

(iv) mi{s) = 1,

where fy =< > and #;41 = (oo} o 8.
(b} Conversely, to each operational Ap-derivation (2) and every n such that 8, < nlV],
we can associate an operational —-derivation (1).

MNote that the operational My+-derivation (1} is an operational —s-derivation treated in
the Hullot's original Thecrem 1, wher J(n) = V{s) and V(&) C V(7) for all conditional
rules used in the derivation. The first lemma is a generalization of the Theorem 1.

Lemma 1. When R is confluent and terminating, the meta-unify is projectable for R,
(0<d).

Froeof. The proof is also a generalization of the Theorem 1 in Hullot [16] pp.323-324. We
prove it by induction en cperational degree.
Base Case : When d = 0,the proof is vacantly true.
Induetion Step : We have to prove that the meto-unify is projectable for R;,, assuming
the meta-unid fy is projectable for A,
The =t-part (a) is by induction on &.

Base Case : For 1 = 0 it is obvious taking gp = 5 and ¥ = V [ D{n).
Induction Step : Let us assume (i) to (iv] bold for . Since t; A=y, s, 10pti=1, We have

Bil7) = palti/us),
where ", | &3 Az L8z Ao Atm | fm Zrp—£7 is the k;-th rule and renamed away from 17,
From assumptions {ii),[iii},{iv) for { and the fact that variables in J{g} are not instanciated,
we get u; € O(t;) and therefore

T}I.(Ef.'(ul.} = H‘ll{"ﬂ
Let us consider p = 7, |J g, We have

plaifui) = pl7).
Let a; be a most general unifier of 4, /u; and 4. Then there exists a substitution ¢! such
that g = ¢’ o g;. Therefore

ni = ({¢" = ai)[V3).
and vy e ¢' 15 & B -unifier of ou(hn{71, 72, - -, Ten)) 208 oi{haly, b, .. ., En)). Now let
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s = o halhm{T1, T2, - - o T, B3, 62, E])),
U=(V,UV(mn | &iAv2 L B2 - AT } 6m D7—=6)U I(03)) — Pleid),
¢ = ¢V,
Then I/ is a finite set of variables containing V(s'). Now,let us consider X in U.There are
two cases :
(a) X € I{e;); then 3Y € D(eo;) such that X € V(oY )),and m(Y) = ¢ledY)) pormalized
implies ¢{X) normalized.
(b) otherwize o;(X) = X since X € D(e,) and therefore ¢(X') = 5,(X) is normalized.
which proves ¢ is R-pormalized.
Consider the operational A+-derivation giving the meta-unifier »; with degree less than or
Equa‘l tod iSEUinE frem ul'{h?{hm{rfl: Tae- 'Tm}r hmtﬁh 52. + = ﬁm}]]
pilhz(hmlT, 12,0 Trads hfﬂ':ﬁi- fa,....Em))) = EAREA "V"”lm [211
Then ) = ¢(«') and no variable in I(g) is instanciated in the operational Ay=-derivation,
since mo variable in J(n) is instanciated in £ [u ke popid it Because of the induetive
assumption,we have a corresponding operational A+-derivation with degree less than or
equal to d issuing from o'
o = e A Ao (ny
which gives r; such that
31‘N*[u¢,ki.rgun¢]3|'+1r
o0 < p[Vil.
Thus there exists a substitution 5 such that g = o’ e (. 2 0;). Therefore
n = (' o (rie m)}lV5,
Now let
Vigr = (ViU V(i L fihma Load - Am | b D=8 ) e ei)) — D(riea),
Mit1 = T 1Vit 1,
We get (i) and
7 = (gix1e(rioo)} Ve (*)
(We impose D(riee}NI(rie o) = 0.
Now similarly to variables in U, let us consider X in Viy . There are two cases :
(a) X € I{rico;);then 3Y € D(n;) suck that X € V(ryo0,(Y)),and (YY) = niy irioei(Y))
normalized implies 7;4 (X} normalized.
(b} otherwise r; o oy{X) = X since X ¢ D(r.ee;) and therefere g:41(X) = ni(X) is
normalized.
which proves (ii). We now assume (iii) for i
nlV = (2 6}V,
and show it for ¢ + 1 From (*) above,we get
(my e Et]'lv - u‘[ﬂi-{—l o {'l'.' o [-',}]11!"] o BV
From the definition of #;,we get J(§) € Vyand V T Vil P(8). The above expression
simplifies therefore to
(Meg 1o (riee)e )V = (nige e fisallV,
proving (iii).
Finally we get easily V{s;) C V; from which we get
Tir (8 1) = i © (7 0 o)(asuit=E]) = mifaiui=6]) = tiyy,
proving (iv). Note that because of (iii) every &,V iz normalized.

The ¢=-part (b) is as follows. Let uz consider any operational Ap-derivation (2) and
any substituticn 5 such that &, = nIV] in the definition of “projectability” Let p be such
that gV = (p = £,)|V. We define substitutions n; for 0<i<n—11by

fiv = ﬂ“{l"nup‘n]ﬂ{pn—l @ - 1}“"'5{”!"_".“{]'-
and substilution n. as being p. With t; = n;{s;), it is easy to show by induction on i,that
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Now tg = no(s0) = no(2) = fin © 8a(s) = n(s), since V(s) T V.

The second lemma guarantees consistency and completeness of the extended Fay-
Hullot's algorithm.

Lemma 2. When R is confluent and terminating,

[ﬂ.) #(s) | {t) holds fer R when a substitution # is generated by the meta-unify.

(b) The meta-unify can generates a substitution # such that § <, #iV] for any substitution
pif pls) | p{t) holds for B, where V = V(s,1). -

Proof. The proof iz a slight modification of the Lemma 1, Lemma 2 and Theerem 2 in Hullot
[16] pp.324-325.

The proof of consistency (a) is as follows. Suppose meta-unify(s,t) returns 8. Let d be

the the maximum operational degree used in the Ap-derivation izsuing from hy(s, t):

hals, ) = s0h\e 814 s2Av= - Ay s = hals',¥),
guch that &' and ' are urifiable by a substitution # and let 4, is the composition of substitu-
tions along the derivaticn. Then using the condition {%) in the definition of “projectable
for B, with 5 = §@,, we can associate to this Ap-derivation the follwoing operational
—-derivation with degree less than or equal to d.

ha(Bals), 6a(t)) = to—ti—ta— =i, = hals",t"),
and thus,we have

0.(s)—=" 8" & .(t)"t".
Moreover since 1, =< >> in this case,we have ¢ =4 & " =¢'. Thus

ﬂ‘ a an-{s.] l F e ﬂh{:}u
in R, since two terms are operaticnally —-reducible to the same term.

The proof of completeness (b} iz as follows. Suppese pisa B-unifierof sandtandpiza
R-normalized substitution of p. (We rename some variables by 5 50 that D(n) = V(ha(s,1)).)
Then by U5 o £4 = R, there exists an operational degree d such that the derivation isuing
fraom Ra(n{s), n{t)) to hz(r,r) isin £ ie we have an operational —-derivation with degree
less than or equal to d

haln(s), 5(2)) = to—ti—tg—s- - =ty = ha(r,r),
By the condition (a) in the definition of “projectable for £ ", the corresponding operational
M~ -derivation with degree less than or equal to d is such that

fin(8n) = Baln.{s'), 7a(t')) =t = halr,r).
Thus %, is a unifier of s, and t,. Let & be the most general uniller. Then there exists p
such that g, = p o § therefore

(poflofafV = (e faV)=(nV])=¢ (piV),
that is, # e, <, pIV].

The third lemma says that the logical reduction relation® is ideatical to the cperational
reduction relation R under the condition B be confluent and terminating. Then R and R
define a stame congruence relation. We denote ib simply by =, and define =<, similarly to
one in 2.2.1.

Lemma 3. When £ is confluent and terminating, e+t ¢ 8 iT s+t ¢ R, thatis, R = K.

Proof. Both proofs are by induction on degree.
B C ¥ holds without the condition that £ be confluent and terminating.
Base Case : Let s—t be in 8, Then R, C ¥ is trivial because R, = K;.
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Inducetion Step : Assume B4 € K and let s+t be in R4y Then #fu is an instance by
some substitution g of the left hand side of the head of a rule 1 | SsA72 L s e |
£, O 7§ and plhm(71, 20 Tm)) and p(hn(fy, 62, .. Em]) are meta-unifiable by some
substitution » in Ry. Because of the inductive assumption, ¥ o glAn{71,72,- - Tm)) and
voulhm(by, bz, ... Em)) are reducible to a same term in X. Then s—tisin K by the inductive
definition of K44y Therefore R, is included in X.

® C R needs the condition that R be confluent and terminating.
Base Case : Let s—t be in £;. Then Ry C R is trivial becauzse Xy = R;.
Induction Step : Assume Ky C R and let s—t be in Ruyy. Then #/u is an instance by
some substitution # of the lefi-hand side of the head of a rule 1 | SiAa L B2 -ATm L
b O 7—F and B(hm(71, 1200 T} | 8(hml6y, b2, ..., 6m)) bolds for K4 Because of the
inductive assumption, they are also reducible to a same term in R. Let p = 8]V(7—6),0 =
popand V = Walha(hmit, 72, ), Benl€1, 62, -, Em)))). Now,since R is confluent
and termipating, we can use Lemma 2 and w(hen (11,72, - - - )} a0d plhm(fy, b2, .., fm))
are meta-upifiable in R by a substitution v such that v =, plV] and v instanciates no
variables in V(s(7—8)). Then s—t iz in R by the inductive definition of R. Therefore Kai
ie ineluded in E.

Now we have almost firished the proof of that the extended Fay-Hullot's algoritkm is
consistent and complete.

Theorem 1 (Consitency and Completeness) When R is confiuent and terminating,
Ufs, t, Wo) = {81V | meta-unt fy(£o) with initialization W := W stops with answer 8}
is a complete et of £-unifiers of £o away from Wo, where Wy 2 V = V(s) | V(t).

Proof The theorem is,s0 to say, the consistency and completeness w.r.t. logical reduec-

tion that is,

(a) 6(s) | 8(¢) holds for R when a substitution 8 is generated by the meta-unify.

(b) The meta-unify can generatesa substitution @ such that § <, p[V] for any substitution
pif p(s) | p(t) holds for K.

But it is trivial by Lemma 3 and Lemma 2 when R is confluent acd terminating.

FRemark. The coanverse of Lemma 3 does not heldie. even if B is confluent, B is not
necessarily confiuent. For example,let £ be a conditional equational theory

a="h
f{§¥ gle).

f(Y) =g(Y) b =10

(Y) =g(¥Y) De=0

1Y) = g(¥) DI(X) = =ue(X).

1Y) = g(Y) DglX) = suc(X).
Though X is confluent and terminating, R is a strict subset of X and not confuent.
(f(0)—suc(0) is not included in R.) Hencethe completensss does not hold even if R is
confluent and terminating. For example,s:ppose we meta-uni’y f(A4)and suc{A). Then though
< At=0 > is a meta-uzifier, we can’t compute any meta-unifier subsuming it by the ex-
tended Fay-Hullot' meta-unifieation algerithm.

3. Syntax of Talos

3.1. Defnition of Data Types
10



Definition of data types is similar to the algebraic specification of abstract data types
except the separation of constructors, Constructors are operators from which every instance
af the type is freely and uniquely constructed. For example, a data type list has two
constructors nil {| 1) and eons ([ |]). (We follow the DEC-10 Prolog-like syntax [18].) The
choice of constructors is left to programmers.

Example 3.1. A data type number is defined as follows,
data number = new.,
conatructor.
ZCro.
suc{N:number).
operator.
add{M,N:pumber):number,
MA-0=M.
M (N14+1)={M+N1)+1.
less-than{M,N:number):boole.
0< Nt 1=true.
M < 0=false.
M4+1<N4-1=M<N.
end.
We aszume a data type boole is already defined. 0,4+, 1, < are built-in symbols and sue'(N)
is represented by N -} 1.

3.2. Deflnition of Funetions

Functions are defined by & 2et of conditicnul equations of the form
4 =4§& where 7; = &1,72 = f2,.. .\ Tm = .
When m = 0,the condition part (including where) is omitted.

Example 3.2. A function ipserting an elemnt into a binary tree labelled with oumbers is
defined as follows,
funetion insert{}:number T tree):tree,
insert{X,0)=tree(d,X,0).
insert(X,tree(L,Y,R))=trec(L,Y,R) where X=Y.
insert{X tree(L,Y R))=tree(insert(X,L),Y R} where X <.
insert{X tree(L,Y R))==tree(L,Y insert(X ,H}) where Y <X,
end.
The compariscn of the element being inserted and the root element is done in the condition
parts. We have added syntactic sugar for boolean-valued functicn p to denote p(t,, t2,...,t,)
in place of pit,,ta,..., 1) = true.

3.3, Query

A query is a conditional term of the form
ot when 5; =1, 8: =13, ... 8m=1lm.

Example 3.3. A query to request searching an instance of C satisliving insert{A, insert(H, tree
(@,1,5))) = tree(tree(®, C,0),1,T) iz given as follows.
*- C when insert(A insert(B tree(@,1,5))) =tree(tree(d,C,0),1,T).

4. Meta-Unifleation for Conditlonal Equational Theorles with Consiructors
11



We present a nondeterministic equational algerithm for meta-unification with construe-
tars and its property.

4.1. Conditional Equational Theories with Constructors

By separating comstructers in the definition of data types, we have the signature B
partitioned inte C & 0. We call cperators in C the constructors. (We assume there are
at least one constant constructors.) A constructor term is a term en C. The set of all
constructor terms is dencted by Te and the set of all ground constructor terms is denoted
by Ge. A semi-constructor term is either a variable or a term whese root function symbol
is a constructor.

The conditional equational theory & corresponding to a Tales program F is a conditional
equational theory with proper axioms as follows.

4+ =& for all “y = 6" in the definition of data types
1= Az =8 AN Am = D7=§
for all *y = & where 73 = §,,72 = 2, . Tm = fm" in the definiticn ef functions

The conditional term rewriting system R corresponding to a Tales program P is a
conditional term rewriting system as follows.

q-+§  for all *y = § in the definition of data types
7y L BiAga L ATm | Em D16
for all =7 = & where 7, = §;,72 = f2,...Tm = §m" in the definition of functions

Example 4.1. The conditional cugational theory and the conditional term rewriting system
corresponding to the definitions of the data types boole,number, tree and the functlion tnsert
have four constructors zero 0,successor function suc, empty tree @ and tree constructor tree.

We assume £ and R satisfy the following three conditions.

(A} R is cenfluent and terminating.

(B) Every left hand side of the head equation in £ (or the head rewriting rule in £} is not
a semi-constructor term.

(C) For any ground term & € &, there exists a pround constructor term ¢ € G such that
g

The condition (B) implies for every ground constructer terms »,f € G we have » =, t only
if 5 = t. The condition (C) with the condition (D) guarantees that the initial algebra of )
iz isomorphic Lo Ge.

Remark. Several sufficient syntactical conditions of (A) are inpvestigated. But the suflicient
condition *left-linear and nonoverlapping” for the usual term rewriting systems {[11],[12]} is
oo longer sufficient and we need more explorations. A sufficient syntlactical eondition of (C)
for usual term rewriting systems is investigated in (13

4.2. Meta-Unification with Constructors

Now let us consider a conditional equational theory £ with constructors and £-unification
of a set of equations &;. The logical and operational narrowing and meta-uniflability are
defined similarly to those in 2.2 and we use the same notation. By combining the well-known
equational unification algorithm and the Fay-Hullot's meta-unification algorithm, we obtain

12



a nondeterministic equational algeorithm for metaunifications with constructors as follows.

meta-unify,(£o:set of equations) : substitution;
=< >;
while £, P delete one of the equations in &
when the equation is of the form X = X
do nothing.
when the equation is of the form X = tort = X (X does not occur in ¢)
apply variable-elimination to X arnd £
when the equation iz of the form s = ¢ (either s or ¢ is a non-variable term)
if root function symbols are different constructors
then stop with failure
else apply term-reduction to s and ¢
endwhile
return §.

variable-elimination{X:variable t:term);
let & be a renaming of variables in ¢t away from W and r be < X+=o(t) >;
apply recgto &g # = (rea)ed, W:=W 4 I(r)
term-reduction(s t:term);

when 5 and ¢ are of the form f(s;,52,..., ¢m) and f{t;,t2,.. ., tm) {f i3 2 constructor);
add &) = {),83 =t3,...8m = tm 1o &

when NS, (s, W)5#0
select & € NS, (2, W) and let the corresponding conditional rule be
"1l finma LA Adm L Em D=8 (o(7) = a(s/u));
W= WL I(o]; let r be meta-unily (e({m1 = 61,72 = f2,...,Tm = Em};
If there exists a variable X € W for which r o 0{X) is not in 2-normal form
then stop with failure
else add sfut=f] =1 to &; apply rec to &; F:= [rea)cd:

when N .35g.(t, W)70
select 0 £ N 5, {t, W) and let the corresponding conditional rule be
nléiArz l BaA - Atm L En D" (o) = o(t/v));
W= W 4 I{g); let r be meta-unifly.(o{{m =&, 2 =82, .., Tm = Sm})1;
if there exists a variable X' € W for which r o o{X} is not in R-nermal form
then stop with failure
elie add s = t{ve=f) to &; apply rec to £ 8 .= (roo)af;

otherwise
stop with failure

Figure 4.2. Equational Meia-Unifleation with Construetors

e e

Example 4.2. Let 5 be inseri(A, insert(B, tree(d, 1, 5))) and ¢ be treetree(d, C,8),1, T). The
meta-unification process proceeds similarly to Example 3.2.2 except peeling off root construe-
tors and generating simultaneous equations. For example if the narrowing to insert{A, tree
(insert(0,0),1,S,)) in the second repetition is applied at the root using the fourth rule, we
have three equations

tnsert(0,0) = tree(, C,0), 1 =1, insert{suc(suc(Az)), S2) = T.
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Remark - Note that the “occur cheek”™ defers some binding. For example,when the equation
selected from £p is X = [car{|A[X]}Y] ([A|X]is a list with head A and tail X'}, this equation
is forced to be transformed to X = [A]Y] in the third when once, becaues X occurs in
lear(JALX )Y .

4.1, Censisteney and Ground Completeness

The algorithm in 4.2 is a specialization of the Fay-Hullot's algorithm. But it is too
special to keep its general completeness. For example,consider the meta-unification of
{insert(A, §) = insert{A, T)}. Our algorithm won't generate the meta-upifier << S=W, T=W >
_ Nevertheless it still keeps enough completeness to guarantee the equivalence of the opera-
tional semantics and the model theoretic semantics of Talos. Before explaining it,we prepare
three lemmas.

The first lemma sars that once a prefix (oceurrences near the root) of a term is filled
with constructars in apy —-derivation issuing from a term tp te a term t, in our conditional
rewriting system, the fuction symbaols at these occurrences in ¢, are determined. (This lemma
justifies the peeling off of constructor symhbols at root in the eguational meta-unification
algorithm with constructors in 4.2.)

Lemmsa 4. Let £ and R be a conditional equational theory and a conditional term rewriting
system satisfying the three conditions in 4.1,

tn_’[“u-"ﬂ.Vnﬂ'#urti_'[ﬂ'.gh-#-.ﬂﬂﬂ' ’ ‘_"[ﬂn_1,|=n—1.,v._;uu._;]in
be any —-derivation issuing from f; and ending with t,. If root function symbols of &, /v are
constructor symbols for all v < v, then u; A vp for all 125 and the root function symbols
of t;/v and t, /v are identical for all v < ve.

Proof. We prove the lemma by structural induction on f,. Let t; = flay, 22,...,8,) be
the first term in the Ay-derivation whose rost symbel f is a constructor. Because of
the condition (B) in 4.1, the succeeding narrowings pever occur at the root. Henee t, =
FF1, 7200 0 o), 81—+ 71, 23—+ T2, ..., 8= Te, a0d r1,73,...,Fm are all smaller than t,,.
Hence from induction hypethesisthe lemma holds,

We specialize the concept "projectable” in 2.3 to ground eases. The meta-unify. i3 2aid
to be ground projectable when all terms tg,ty,.. ., ¢ I0 the M+-derivation (1) in 2.3 in the
definition of *projectability™ are ground. {Hence it is a —-derivation.)

Lemma 5. When 2 apd £ satisfly the conditions in 4.1,

(a) 6(s1) ) O(ty), 822} | B(t2), .., 8(sm]) | #(t.) hold for § when a substitution # is generated
by the metg-uni fy, for fo = {81 = t1, 82 =1z,..., 6m = tm}

(b) The meto-unify. can generates a substitution @ such that § =, p[V] for any substitu-
tion p if plsy) | plta), ple2) 1 pltz), .- plem) | p{tm) held for R and p instanciates
Eo = {87 = t1,82 = t2,. .., Bm = tm} to 2 set of ground equations, where V = V(&)

Proof. (a) is trivial. As to {b},the =-part (aj in lemma 1 must helds when the first term is
ground. We only need to consider the ground projectability due to the following three facts.

(a) Let n be a R-normalized meta-unifier of # and ¢ such that nls) and nit) are ground.
Because of the condition {C) in 4.1, there iz a —-derivation (1} in 2.3 which issues from a
grouad term Ag{n{s), n(t)) and ends with a ground eonstructor term Balr,r). When fis a
subetitution which instanciates all variables iz the —+-derivation to any E-normal ground
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terws. Then Fon is a R-normalized meta-unifier of s and ¢ and Hen =g o[ V()L V(£)].
(b) Contider a A-derivation which is for operational meta-unification of the condition part
of a ground reduction and gives a meta-unifier ¥. When it starts from ha(s,t) and 7 is
4 substitution which instanciates ail variables in the first term n(hz(a, t)) to K-normal
ground terms, Foy is alzo a meta-unifier of the condition part. Because it is for the
condition part of the ground redustion, ¥ has no effect to the original ground reduction.
{¢) Two ground terms & and t are reduced to a same ground constructor term if & =g ¢
because of the condition (C) in 4.1. In such a case, the G-unifier in the last step of the
Fay-Hullot’s algorithm can be computed equaticnally in our algorithm. (Note that our
algorithm can only compute most general P-unifiers of two terms when root function
symbols of corresponding ponvariable subterms are identical constructors, We can't
compute @-unifiers in general, while the Fay-Hullot’s algorithm does it directly in the
first when.)
The proof goes similarly to those of Lemma 1 and Lemma 2 except the peeling off of
comstructor symbols in term-reduction. This manipulation is justified by lemma 4, i.e. once
root symbols of t,/1v and t;/2v are identical constructor for all v < vy in an operational
—s-derivation, they are determined and thereafier there occurs no reduction inside wo,ie.,
u; Avg if €¢<j. Hencethe correspondence between ground operational —-derivations and
operational Ay+-derivations is not lost even with the peeling off. We omit the details due to
gpace limit.

Lemmsa 6. When R is confluent and terminating, there exists a ground operational reduction
s+ iff thore exizts a ground logical reduction s—t.

Proof. The proof goes similarly to that of Lemma 3 except the peeling off of constructor
symbols in term-reduction. The correspondence between ground operational reduction and
ground logical reduction is not lost even with the peeling off. Due to space limit,we also
omit other details.

A zot of £-unifier U is called a ground complete set of f-unifiers of a set of equations
£ away from W iff it satisfies the condition (a) and (b) and a medification of (c) in 3.1.3.

(a) VA€ U (D(6) TV & §is away from W).
(b) U C Ug(o)
(c) Vo€ Ug(&o)(Fe=1t€ Lolols) E GAo(t) € G) DIbEUS =, o[V])

Theorem 2 {Consistency and Ground Completeness) When R is confluent and terminaticg,
U(fa, Wa) = {8|V | meta-un: [y (&) with initialization W := Wy stops with answer g}
is a ground eomplete set of £-unifiers of £ away from Wp, where Wy 2 V = V(a) U V(t).

Proof The theorem is,so to saythe consistency and ground completeness w.r.t. logical
reduction. The prool goes in the completely same way as Theorem 1.

Remark. Again the metg-unify, is not complete even if K is confluent and terminating.
The example in the remark of 2.3 is with two constructar zero 0 and successor function suc.

5. Semanties of Talos
5.1. Operational Semantics

A query of the form
-4 when 5, =t 53 =t;,.. . Im =tm-

15



it a request to prove

3 Xy, Xa,. .., Xq (s=tAs; =t Azg =lah - Adm =tm)
for some constructor term &, where Xy, X3,..., X are all variables in the conjunction of
equations.

When the Talos interpreter receives a query -t when &y = 1,83 = {3,.. .0, = 1,,.%,
it generate a set of equations &g = {!Value = t, 8, = 1,83 = 13,..., 8, = tp}, Where
IV alue is a special variable Value annotated by *!*. (Variables annotated by "I" are called
eager variable, while those without it are called lazy variable) Then it compute a meta-
unifier § of £ away from V(£o) nondeterministically and returns 6]V(£) as the result. The
meta-upifier is extended to treat the distinction of lazy and eager variables. It bebaves in a
manper similar to one in 4.2 except variable-elimination as follows.

|

exccute( o set of equations) : substitution;
=< >,
while £g720 delete one of the equations in &
when the equation is of the form X = X or 1X =X
do nothing.
when the equation is of the form X =t or t = X (X does not cccur in t)
apply lazy-variable-elimiration to X and ¢
when the equation is of the form !X =t or t =!X (t is 2 semi-constructor term)
apply eager-variable-elimination te 'X and ¢
when the equation is of the form & = t (either s or t is 3 non-variable term)
if root function symbols are different constructors
then stop with failure
else apply term-reduction to s and ¢
endwhile
return §.

lazy-variable-elimination(X:lazy variable t:iterm);
let & be a renaming of variables in ¢ away from W and r be < X &o(t) >;
apply r o o to all equations in &g; f:= (rea) e W:i=W+ Hreo)
gager-variable-elimination(!X:eager variable t:term);
when ¢ i5 a variable ¥ (either lazy or eager)
et < Y«'!Z > be a renaming of the variable ¥ away from W
and <X +=!Z > be a renaming of the variable 'X away frem W,
apply <'X&!Z,Y<!Z > to all equations in &;
o =<\X&!Z2,YEZ > o0, W:=W {12}
when tis f(ty,t2,. .. tm) (J i 3 constructor)
add le = E_-_|1.x: = Ia,.. ,!Xm = L LO EDJ
apply < X &f(1X,,'X3,. .., 'Xw) > to all equations in £a;
o ~—{'X1=f[')f~. . 1....‘{-:, . 11',“} :} eg, W = W —'- {!Jﬁ, !X:,. . 1.I.Ffﬂ.}
('X,,'Xz,..., ' X, are frech eager variables)

Figure 5.1. Talos Iuterpreter

Example 5.1. When the Talos interpreter receives a query
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. ¢ when inseri(A, insert(B, trez(d, 1, 5))) = tree{tree(d,C,0),1,T).
one of the answers is

Walue=0,

i“=‘i‘{+21

B=0,

C=0,

5=54,

T=insert[Ay+2,54);
by meta-uaniflying {!Value = C,insert(A, inseri(B, tree(d, 1, 5))) = treetree(0,C,0), 1, T)},
while the corresponding answer ia

Walue=[0,tree(d,2,0)],

A=12
bB=0,
C=0,
5=,

T=tree(,2,2);
wher the query is

1. |, T) when insert(A, insert(B, tree(d,1,5))) = tree(tree(®,C,0),1,T).
because it meta-unifies {WValue = [C, T, inzert(A, tnsert(B, tree(0, 1, S))) = tree(tree(®, C,€),1,T}}
and *!'" iz propagated to force evaluation of T. Note that the Talos interpreter needs non-
deterministiz search, though data types and functions themselves are deterministic.

Remark. So far we have described a pondeterministic algotithm. In its sequential implemen-
tation, we make the meta-unification a self-recursive program and search meta-uniflers using
Prolog-like backiracking. We need to choose an appropriate equation in the meta-unification.
We keep a set of simultanecus equations in a stack. The equation at the lop is popped at
each meta-unification call and processed. It is either simply erased (possibly with some
application of substitution) er it gecerates severa! new eguations and the generated equa-
tions are pushed at the top. Then new meta-unification is cailed with the new stack. We
also need to cheose an appropriate pre-narrowing subsztituticn ¢ in term-reductico. Belore
choosing it, we set the backtracking point there. Depending oo the choice of the ccocurrence
at which nasrowing is applied, we can integrate various evaluation strategies into Talos such
as call-by-valuecall-by-naine,call-by-need,lasy evaiuation and eager evaluation. Once some
occurrence is chosen, the rewriting rules in the definition are tried from top to bottom fol-
lowing the control of Prolog. When we encountered “stop with [ailure™, we backtrack to
the latest backtracking peint and try another allernatives.

5.2, Model Theoretle Sementies

The model theoretic semantics of Talos i3 defined by the set My of all ground equations
valid in all models of £ (¢f.[8]}. This formulation is located between the initial algebra for
algebraic data type specifications (cf. Goguen and Meseguer [8]) and the minimum Herbrand
model for Prelog {van Fmden and Kowalski [4]).

The Gxpoint semantics of Talos is defined similariy to that of Prolog. Let T be a
transformation of sets of ground equations associated with the set £ of guational definite
clauses defined by

T{I)={s=1t|sandtisaground term &
there is some ground instance &; = tj A8y = A Aty =t 28 =1
such that sy = ty, 89 =12, ..., 85 = by are all in I}
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Then it is obvious that Mp is the least fixpoint of T and U7~ o T'(®) = Mo (cf.[6]).

Example 5.2. A Talos program F consisting of the definitions of the data types boole number tree
and the Tunction fmsert defines a!l the set of equations Mp heiding between ground terms
denoting boole,number and tree in our common sense. The quotient G/ My is isomorphic to
the et of ground constructor terms denoling boole, number and tree.

5.3. Equivalence of Two Semantics
Now we prove the most important theorem for the semantics of Tales.

Equivalence Theorem
When £ and R satisfy the conditions in 3.1, T-¢ stops and return: a ground constructor
term & satisfying & = ¢ for any ground term t.

Froof. Because the *!" annotation is propagated only to force instanciation, it anawers
correctly when it stops, Moreover it is evbious that this annotation does not prevent any
computation of ground meta-un:fiers from termination, because any ground term is reducible
to a ground censtructor term.

6. Discussions

Several attempts bave been done to amalgamate relational programming languages and
functional programming languages. Bellia 12] introduced Horn clanses with equalty into
relational program, but their language is substantially completely deterministic functional
programming language Fribourg 16] used equational Horn clause ard clarified its seman-
tics based on the paramodulation, which 13 very gimilar to the general narrowing. But
because he did not impose any conditions (like confluence and termination), his complete-
ness theorem peeded superposition between programs and additional functional reflexive
axioms. Moreover the narrowings was not restricted to those at cccurrences of non-variable
terms. Tamalki |20) introduced a reducibility predicate into Prolog and defined its semantics
based on source-level expansion of nested terms to conjunction of atom:. Because he did
not impose the termination condition, he had to add the reflexivity of —" to the expanded
programs, which plays & very important role. Goguen and Meseguer [B] suggested the nze
of parrowing in computation in their functional-relational language Eqgleg bazed oo rigouros
logical basis of many sorted logic (8]. They allowed general algebraic specification of abstract
data types and.used the general narrowing.

We claim our coptributions in this paper are the following two. First, our equivalence
theorem is a one-step advance towards the completeness of more general languages using
the narrowing such as Eglog [8] and SLOG [6]. (The completeness of “SLD-resolution -+
meta-unification® in Eglog is left open. See comment in [8] pp.206-207 and [6] p.173).
Secondly our framework makes the programming reasonably easy as well as the interpreter
reascnably efficient. Egleg's general data lype specification indeed gives high expressive
power. Though Talos lacks such generality, exisience ol comstructors is helpfull not only
for programimers but also for the meta-unification process. To programmers who uses such
languages as programmirg languages, it gives concrete sTmbolic objects to manipulate and
conceive easily iz mind. From the meta-unifcation process, it alleviates the Loo {requent
check of unifiability and enzhles us to compare corresponding terms cnly when they are
semi-constructor term. (Note that we always have Lo compare correspending terms at the
first when iz the Fay-Hullot's algorithm. ef. comment in 5] p.206). The constructor terms
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in Talos exactly do play the same role as general terms in Prolog do.

We have shown only one of the feature of Talos,i.c. conditional eomputation. Tales has
another three prominent features, nondeterministic computation, *call by need” computation
[14),17],110] aud computation with stream [1]. The first version of Talos was implemented in
MACLISP from April in 1982 to March in 1983. The language features and implementation
details are explained in enother paper [17].

7. Conclusions

We have presented a computation mechanism *zomputation by mets-unifleation with
constructors™ stemed from the behavior of an interpreter of an eguational programming
lapguage Talos,
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