ICOT Technical Report: TR-151

[H-13]

Features of A Meta-Unilicatuon

Bused Languge Talos
by
T Kanamori
{Mitsubishi Electric Corp.)

Octoher, 1983

Corems 10

aita hookusar Blde, 21T {03y 456-3191 5

” :C] | 4-28 Mua 1-Chome Telex 1COT 132964
Alinate-ku Tokvo MR Japan

_lnstitute for New Generation Computer Technology



Absiract

In this paper we deseribe the language features of a meta-unification based language
Talos. In Talos everything is done by controlled sequences of meta-uification, as 1z by con-
trolled sequences of unification in Prolog, This is a geperalizations of the conventional term
reseriting 25 well. We present four features considered special meta-unification processes such
as {1) conditional computation (generalization of the where abstraction), (2) nondeterminie-
tic computation {Prolog-like backtracking search}, (3) “call by need” computation {control
of delay and foree of evaluation) and (4) computation with streams (Lucid-like deseription
of iterations). We describe the behaivor of the Talos interpreter by stepwise extension with
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1. Intrcauetion

Frolog [5] is a relational language based on first-order predicate caleulus. Operational
s-maatics of Prolog is usually explained br the SLD-resolution, a strategy of the resclution
compiete for Harn clauzes. D'rominent features of Prolog are procedwre invocation by
uziflication and nondeterministic search (automatic backtracking). Results of procedures are
passed through variables within cach clause, while,in functional programs like Lisp, nested
composition of functions is the main construct.

Functional programming languages are more classical and share semantical clearness
with Prolog ([4],[11],[21]). They can be considered special logic programming languages
based on equational logic. When an equation is considered a term rewriting rule, equational
logic turns into computation, which is the basis of the operational semantics of functional
programs. Though functicnal programs are superior to Prolog in some points (readability
etc), they lack some powerfull features of Prolog such as nondeterministic search. When we
accomodate these features to functional programming, we need to carry it out not by an ad
hoc device but by a unified appreack. Several such attempts have been done from different
point of views ([31,17),9],[20]).

In this paper we describe the language features of a meta-unification based language
Tales. In Tales everything is done by contrelled sequences of meta-uifications, as is by con-
trolled sequences of unifications in Frelog. This is a generalization of the conventional term
rewriting as well. Both invecations of functions by unification and automatic backiracking
are integrated inte Tales.

We describe four features and the behaivor of Talos interpreter by stepwise extension.
These computation can be copsidered special meta-unification processes. After reviewing
the basic computation based on usual term rewriting systems and the Fay-Hullot's meta-
uniScation algorithm in section 2, we introduce conditional computation in section 3, which
iz a gracralization of the where abstraction. In section 4, we present how to utilize the
interpreter to compute nondeterministic functions and show the Prolog-like backtracking
search. lb s:itiom 5, we introduce evaluation strategies and control mechanism te delay
anf force evaluation. In section 6, we introduce stream as a data type, which enables us
to program using Lucid-like description of iteraticns. Lastly in section 7, we diseuss the
relations to other works and problems left for future,

In this paper we asrume familiarity with [many-sorted) equational legic and term
rewriting systems. As syotactical variables, we vse X, Y, 7 for wariables, f, ¢, b for function
symbols, ¢, b, ¢ for constants, r a.t, 7,6 for terme, u, v for occerrences and 8,0, 7,9, ¢ for
substitutions, poseibly with primes and subscripts. = i3 used to depote the syntactical
identity. We denote the set of all terms on a signature L and variables V by T(Z|J V)
{or simply T), the set of all ground terms on a signature £ by G(L) (or simply G), sets
of all variables in a syntactical object e by V(e), zubterm of ¢ at an oceurrence u by t/u,
replacements of a subterm of ¢ at an cecurrence w with a term # by t{ué=s] and restriction
of 3 substitution o to a set of variables V by o|V. (=ee [12],[15]).

2. Preliminaries
2.1. Deflnitions of Data Types and Basie Funeticns

Definition of data types in Talos is similar to the algebraic specification of abstract data
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types except the separation of constructors. Comstructors are operators from which every
instance of types is freely and uniguely constructed. For example, a data type list has two
constructors nil ([ ]) and eona ([ | [). (We follow the DEC-10 Prolog-like syntax [19].) The
choice of constructors is lelt to programmers.

Example 2.1.1. A data type number is defined as follows.
data pumber = new.
constructor.
Zero.
suc{N:number).
operator.
add{M,N:number):oumber.
M+0=M.
M-+ (N+1)=(M+N)+1.
less-than{M,N:number):bocle.
0 < N4-1=true.
M < 0=false.
ME1<N41=M<N.
end.
We assume a data type boole is already defined. 0, +, 1, < are built-in symbols and suc’(N)
is represented by N +i.

Basic functions are also defined by a set of equations.

Example 2.1.2. A function appending two lists is defined by equations as follows.
funetion append(L M:list):list.
append(| |, M)=M.
append([X/L},M)=[X|append(L M)].
end.

The equations in the definition of data types and functions form the axioms of an
equational theory £ corresponding to the Talos program P. These equations are considered
rewriting rules from the left hand side to the right hand side, which forms the axioms of a
term rewriting system R corresponding to the Talos program P.

By separating constructors in the definition of data types, we have the signature L
partitioned into C & 0. We call operators in C the constructors. (We assume there are
at least one copstant constructors.) A comstructor term is a term on C. The set of ali
constructor terms is denoted by Te and the set of all ground constructor terms is denoted
by Go. A semi-constructor term is either a variable or a term whose root function symbol
iz & constructor.

A binary relation — on the set of all terms T is said to be stable iff o(s)—+o(t) for any
substitution o when s—t and said to be compatible iff rlut=s]—r|ut=t] for any occurrence
u of r when s—¢ ([12] p.8C3). Let R=(—,T) bea compatible stable relation, —" be the
rofexive transiuive closure of — znd | be a relation based on — such that & | t iff there
cxists r satisfyizg s— r azd t—+"r. P iz said to be confivert whenfor any terms ,fy,f2
such that t— ¢y and t— fz, there exisis a term ' such that t,—"t and t;— t'. When
R = {-+, T)is confiuent, £ defnes a bipary congruence relation =g which is the reflexive
syrmmetric tracyitive closure of —. R is zaid to be terminating when for any term to,there is
so infinite derivation tg—sfy—izg—- - such that f;—4, 4 it in B (0<i). A term & is said to
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be iz ©-pormal form when there is no £ such that s~ isin B A term tis called B-normal
form of a term s and denoted by s | when s—"t holds for £ and ¢ is in R-normal form. A
substitution n is said to be B-pormalized iff n(X) iz in R-normal form for all X,

2.2, Meis-Unifieation for Equational Theores with Constructors
2.2.1. Narrowing for Equational Thecries

Let £ be an equational theory. & and t are said to be £-unifiable iff there exists a
substitution § such that 8{s) =, 6(t). The set of all £-unifiers of & and ¢t is denoted by
Ug{s,t). In general the most general unifier does not always exists when £

Example 2.2.1. Let £ be the equational theery of the associativityje. £ = (X o (Y o Z) =
(X «Y}» Z} and #,¢ be terms X «a and a « Y respectively. Then

6, =< Xi=ae(ae(ae---{aea))), Yae{as(as---(awa))) >
are all meta-unifiers of # and t, where the term substituted for X and Y consists of § a's.
There iz no < relations between these substitutions. Hence there iz no single most general
meta-unifier of & and £,

The set of all variables X such that o{X)2X is called the domain of ¢ and denoted
by D(e). The set of all variables in o{X) for all X € D(o) is called the varjables introduced
by ¢ and dencled by J{r). A substitution g is said to be away from a set of variables W
when J(g)1W =10.

Let & be a term, W be a set of variables containing V(s) and y—¢& be a rulain R. A
subistitution o is called a parrowing substitution of # away from W, if a nonvariable subterm
5/u and the left hand side 7 is unifiable by a most general vnifier . We assume V() is
away (rom W by renaming away the variables in v—& from W. s is 2aid to be parrowed to
t = r(s'ue=£]) and denoted by sA~t. The set of narrowing substitutions & of s away from
W is denoted by N5(s, W), In particular,when sA~t and o[V (s) is the empty substitution
<>, s it 2aid to be reduced to t = o(s[ut=£]) and denoted by s—£. Note that the reduction
iz included iu tke narrowing, e, — C A,

Example 2.2.2. Let 8 be append(A, b, ¢]) and u be the occurrence of # itzell. Because
append(A, [b, el} is unifiable with the left hand side of the second rewrite rule in the definition
of append by an mgu. 0 =< A=X'|U]| XX, Liel!Me[b, ] >, # is narrowed
to ef[X|append(L, M), ie. [X'|append(L', [b,¢l)]. Because there is no other narrowing
substitution, N 5(s, W) includes only one substitution. (In general N §(s, W) may be empty
er inzlude more than two substitutions.).

The reductiops for a term rewriting system R define a relation £ on T by
R = {s—tls—1 is an instance of a reduction in B}
We azsume £ and R satizfies the following thres conditions.
(Al K is confluent and terminating.
(£3} Ewery left hand side of the equations in £ is not a semi-constructor term.
() Fcr*an}' ground term s € G, there exists a2 ground constructer term ¢t € §o such that
5= L

Hemeark. The condition (B} implies for every ground constructor terms s,t € G- we have
s ==y tonly if # = ¢. The condition (C) with the condition (B) guarantees that the initial
elgebra of £ is isomerphic to Go. A sufficient condition for (C) is investigated in [13].
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7.2.2. Fay-Tiullot’s Meta-Unifleation Algorithm

Suppose we have a confluent and terminating term rewriting system R corresponding
to an equational theory £. Then the following algerithm iz a nondeterministic £-unification
algorithm by Fay (8] (revised by "luliot [16]), which is complete in the zense that, for any
F-unifer p, vhere exisis a path to generale a [ unifier § mere general "modulo &7 than p.
Note that W is initialized 1o W 12 V(s,t)) befcre meta-unt fy(s,t) and global during the
computation,

meta-unify(s, :term) : subsiitution;
§ =< >;
repest
when g and ¢ are unifiable by ¢ away from W
stop witk answer §' e §
when N Sis, Wi
seiect ¢ © N 5(s, W) and let the corresponding ruie be *7—&* [o{7) = ols/u));
if there exists & variable X € W for which o c #(X) is net in R-normal form
then stop with failure
else 5= olojue=E|) ti=olt) § =08 Wo=W 4 o)
when N S(t, W)ED
celect ¢ € N §(t, W) and let the corresponding rule be “q—&" (ol{y) = o(t/v));
if there exists a variable X € W for which ¢ o #(X) is not in R-normal form
then stop with failure
else 5 ;= o(s); t == o(tlve=é]); § =0 ;W= W+ Ig)
endrepent

Figure 2.2.2. Fay-Hullot’s Metia-Unifleation Algorithm

Example 2.2.3. Let s be append(A, [b,¢]) and ¢ be [a|B]. Because s and t is not unifiable
sud NS(t,W) = @, the Fay-Hullot’s slporithm selects the second when and # is nar-
rowed 1o 'E'lappend L', (5 c]]] BY ¢V =< A=E'|L'] >. Then in the next repetition
it ie unifable with [giB] by & =< X'=a, L'+ L", Beappend(L", [b,¢]}) >. Hence <
At=leil"], Bi=append{L", b, cl} > is a meta-unifier of & and £.

Pemark. At then branches in the Fay-Hullot's algorithm, unaecessary search detected in the
it test is pruned swsy. We call the check normalization check. Note that even without it,
\he meta-vaification algorithm s still complete.

.33, Inverpreter for Basic Computation

A query ig a coditiopal term of the form
W hen 51=;1:52=12|' - -hsmzl“rﬁ-
Far such =oguery the Lalos inlerpreney gouorates a set of equations

| L T e T =1 . — —
dp=—y vdaoEs 'L,..--J—:],E-:—--‘.I_,...Jifr‘—...,irl
»

woere |V ziue 18 a rpecizl vanabie annoualed oy “". (Variables with annotations are
calies eager vaniablis Yariables winoul somotaticns are called jazy variables. The
anholanion S ol w beTiaic L s ILDerlel W Valladies ib &, waenever iX iz imstanciated Lo
t.} Theu the Tulot imiarpreeer imiaaiize Wote Wal D V([ig]), compuie & = ezeculie(fy) and
returns 8] V(&) as the resuit. Because we 355uIe COLSLIUCLOnS and treat eager variables, the
Fay-Hullot’s mewa-unifeation algorithm is modified as follows.

a&yn
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—
ex=cute(£y set of equations) : substitution ;
g:=<>;
while £;,70 delete one of the equations from &
when the equation is of the form X = X or 'X =1X
do nething.
when the equation is of the form X = tort = X (X does not occur in ¢)
apply lazy-variable-elimination to X and ¢
when the equation is of the form 'X =t or t =X (t is a semi-constructor term)
apply eager-variable-elimination to !X and ¢
when the equation is of the form & == ¢ (either s or ¢ is a non-variable term)
if root function symbols are different constructors
then stop with failure
else apply term-reduction to & and ¢
endwhile
return &,

tazy-variable-elimination(X:lazy variable t:term);
let & be a renaming of variables in ¢ away from W and r be < X =clt) >;
apply roogto & 0= (roc)of, W =W L [{rog)
eager-variable-elimination(!X:eager variable t:term);
when ¢ i3 a variable ¥ (either lazy or eager)
let < ¥Y+4=!Z > be a renaming of the variable ¥ away from W
znd <X =12 > be a renaming of the variable 'X away from W,
apply SIX =12, Y &2 > to &) § =< X2, VEIT > o, W =WL {12}
when tis f{t;,t2,. ., tm) (f is & constructor)
add 'xl == th Ex-z = E;J . 'r!xl'ﬂ- = tm io Eu:
apply < X=X, 1Ko, . 1X ) > ta &y
o= NI, X, X ) = of, W= W4+ {1X), X, .., ' X )
e 1A 1K are frezh eager variables)
term-redu-tion(s.t:iterm);
when £ and ¢ are of the form f{sy,25,...,8,) and f(¢,,ta,...,t,) (f iz a constructor)
add 8=, 8y =1z, . 8y =1y10 Eﬂ
when N5{s, W0
select o € N5(s, W) and let the corresponding rule be *7—£" (o(7) = o(s/u));
if there exists a variable X € W for which o & 6(X) is not in E-normal form
then stop with failure
else add s{lue=f]) =tto Lo applyoto &g, 8 =g, W =W 4 I(0)
when NS{f, W)=
select @ € N 54, W) and let the correspending rule be “g—§" (o) = ot /v));
If there exists a variable X € W for which o ¢ #{X) is not in B-pormal form
then stop with failure
else add s = t{{ve=£]) to & apply o ta &, 0 =g ol W =W + I{o)
otherwise
sicp witlh failure

Figure 2.2.3. Talos Interpreter for Basic Computation




Remark Note that in the second when of ezecute, it s checked whether X occurs in t or not.
We call the check oreur check, The cceur check defers some binding. For example,when the
equaticn deleted frem o It X = [car{]A|X])|Y], this equation is forced to be transformed
to X = [A]Y]in the third when once, becaues X occurs in [ear{[A|X])|Y]. For efficiency we
did pot implement the oecur check.

2.2. An Fxample of Basie Computation
Suppose we have given a query
t. A when append(A,[b,c)=[s[B].
to the Tales interpreter. Then the Tales interpreter generates a et of equations

{ "Value=A,appendlA,[be]j=[aiB] }

whick is procceses as follows. The urderlined expressios are processed.

{ "aiue=A append(A,bc]j=[aB] }
i eager-variable-elimination
{ append(!A,[bc)={aB] i
4 term-reduction
{ 1E'lappend{!L’ [b,ci)i=1alB] }
| term-reauction
{ \E'=a appead('L’,{b,ec]}=B }
|| eager-variable-eliminatien
{ Eppend[!L’,[b.c’]:E }

lazy-variable-eilminaiien

1]
an

The iptecpreter Felurns ah antwer

Walue=|ajL,,
A=falL],
B==append(L b}

“ote that the assignment to B is more general than that for a query -append(A, (b, ], [a| B])
in Prolog. It has the effect Lo localize the backtracksearch because the answer substitution
iz kept more geperar The "I apnotation forces the evaluation to semi-constructor terms
and the computation gepends on the top variables, For examplesuppose we have given a

quetf
*/AB| when appenc(A,[b,e])=[aiB].

to tue Talos interpreses. Then the generated set of equations is processed as follows.

-]
f Wo=B,u aa b c={alB; }
L tager-vanahie-elimination



{ ...2B'V,=]}append(iA,[bc)=[alB] }
& eager-variable-elimination
{ V=1 |,append(!A, b,c))=[al!B] }
I eaper-variable-elimination
{ append('A,'b.c]}=[a|'Bj }
4 term-reduction
{ ['E'lappend['L’,[b,c])]==[al!B] }
I term-reduction
{ IE'=a.append(!L!,[b,c])='B }
[ eager-variable-elimination
{ appead{'L’,jbc])=!B }
i term-reduction
{ bel—1B)
|l eager-variable-elimination
{ 'B,=h,'B=[c| }
| eager-variable-elimination
{ 'Bz=lc] }
i eager-variable-elimination
{ Ba=c,'Ba=[]}
4 eager-variable-elimination
(Be={])
[l eager-variable-elimination

{}

The interpreter returns an answer

!1"'“["]"=i:3].-ii'w::!;

A=Tz}

1k
B=ir el

Bemark Pecsuse we bave followed the algorithm faithfully, it takes 5 eager-variable-eliminations
to delete b ooue = [ 4, B] and [, ¢ =!B. Of course in our actual implementation, we per-
farm these rteps in one step. In addition, we used the well-known structure sharing tech-

riegue so that we were able to satisly the scemingly cumbersome condition ®*away from W™
very easily.

3. Conditionsl Computetion in Talos
A1 Definition of Conditionsl Funections
Conditicna! functions are defined by a set of conditional equations of the form
=4 where 7y = &, T2 = 82, ..., Tm = &m.

When m = 0.the condition part (including where) is omitted. Corresponded to these
defipiticrs, ypyverzal formulas of the form

M =&hm =i N =, 27=§6
are added to the axioms of the equational theory £ and univerzal formulas of the form
e L E e LESA AT | e D=
T



are added to the axicms of the term rewriting system R.

Example 2.1.1. A function inserting an elemnt into a binary tree labelled with numbers is
defined as follows,
function irsert{X:number, Titreej:tree.
inseri{X,0)=tree(8 X 0}.
insert{X,tree{l, Y R}}=trec{L Y R} where X=Y.
insert{X wree(l Y R})=tree{ipsert(X,L),Y,R) where X<Y.
iuse::i)ﬁ,'.:ec{LJYlPujjztrce(L,Ylinsert[x,ﬂ]} where Y<X.
end.
The comparizon of the element being inserted and the root clcment is done in the condition
parts. We have added syniaclic sugar tar boclean-valued function p to dencte pity, t2,.. ., [y
in place of pity, ta, . Jta) == Erue.

Example 310, where has Deen used @5 svnuactical sugar to avoid writing same eXpressions
Bue e eondional rewriting is a mere expressive generalization, which
makes imphici cebauinions pussive Yar exampie,we can cefine a function computing pairs
of the head eiemeni and the last elemesnt ol Hats at Tollows,
fupetion ecge{l iist)iist,
edgel; )={ 1
edge( [ XL!!=[X,Y] where reverse([X|L!)={Y{M].

end.

Remark Belia et &l [2] aleo used conditional equations, but they imposed the restriction

that gach eguation 10 7 = &y, 72 = fa, .., Tn = fn be of the form “constructor term =
term™. Note that we imposed no restriction on the form of terms in the condition part.

3.2, Meis-Unifieation with Consiruc:ors
3.2.1, Narrowing for Cenditional Equetional Theories

We define parrowing and meta-unifiabiity for condition al term rewriting systems mutually

recursively as foliows.

{a) Let s be awerm, W De a set of variables containing V{s) end ¢—§ be an unconditioal
rule pumberes £ 1n 2. Then a subsutation ¢ is called a pre-parrewing substitution of
e wway from Wil & Tenverishle subterm £y and the ieft hand side 7 of the head rule
iz enifiobie o3 & most general wnifler o We assume V() is away from W by renaming
away the variabis 1mopeef from WL & is rald o be parrowed to t = o{s{ut=f]) with
degree L and denoted LY & juk, < oot

(b} Let s be a term, W be a set of variables ecntaining V{s} and 7y L &1AT2 L f2A- - ATm 4
bm O 7—+§ be a concditional rule pumbered k in 2. Then a substitution o is called a
pre-merivw.ng substiiution of £ oWaF from W, i7 & noovariable subterm s/u and the left
i L. nnioatwe oy & most general unifier oo We assume Yi7)

kana Lice 7 @

15 wwar from v way the variabies in 7y fiarz L&ah o Am fm =
m—i from Wl Carrewes Tof 2= e gls ued)) with degree d + 1 and
ArLolén o3 VN~ acseld Weoil .t LLETBLTE &1 TWO LRI composed of the condition
DAl Gy e e Tt RRL CRmig iz, oo Emy BTE metaunifable with degree d by
7oawar {rom e a0 . gy 16 @ iresi m-ury [UDCLIOR sFmbOL

(21 Lf. g ownloT. Lt e WL T owsowosed of Tamahies coDLAMming Visg) L Vito) and ha

P

o v freon poney fnoves srimool Then sp oauc {c 1z said 1o be meta-unifizble with



degree d by 8' o (fa—1 00n—1)0 - a1y 00y) 0 (70 0 0g) away from Wo when there exists
a sequence
hal2o, to N luo, ko, raea ha(ay, f|}”\f"‘;u,,i,,r1w,|' : ""\r"[u.‘_,,,h.._,,,r.._;-w.._.|h:{3n, tn)
such that each Ay [y, k. roo,| 13 3 Darrowing with degree less than d away from W, and
s, and t, are unifiable by a most general unifier ¢, where Wiy = Wi - I(r; o ;).
In particular, when sAw |y g oyt and (v o p)|V(s) is <>, 8 is said to be reduced to t and
denoted by $—+[y,x,vuout. Again the reduction is included in the narrowing, ie.,— C A
The set of all pre-narrowing substitutions for s away from W iz denoted by NSF,,{J, W
This is computable from & and the conditional rules of £ directly.

The reductions for a conditional term rewriting system K define a relation R on T by
R = {s—+t|s—t is a reduction in K}
We assume £ and R satisfies the conditions (A),(B),(C) in 2.2.1.

Remark. The introduction of conditional rewriting rules makes it difficult to guarantee the
confluent property of the reduction. For example, the conditional term rewriting system
corresponding to the following definition

JIX,Y)=o0awhere X =7

g(X) = J (X, g(X))

¢ = glc}
is not confuent, though the left-hand side of them are linear and non-overlapping.

1.2.2. Extended Fay-Hullot’s Meta-Unifieation Algorithm

The following algorithm is an adaptation of the Fay-Hullt's £-unification aigorithm for
conditional equational theories.

meta-unify(e, t:term) : substitution;
=
repeat
when 5 572 t are unifiable by # away from W
stop with answer §' o @
when N Sp, (s, W)=0
select o € N Sp,.(8, W) and let the corresponding rule be
.Tl l 61-""?2 l EE-’""' ' '.l""-Tm l JH:T_'E- {E[’ﬂ = a’{afu]};
W= W - I{o); let 7 be meta-unify(elhm{T, 72, .- T }) Clhm(§1, b2, ..., B )]s
if there exists a variable X € W for which (reg) ¢ 8(X) is not in R-normal form
then stop with failure
else s = rocfelu=é it =rea(t);f =(rec)ed
when NS, (t, W)20
select o € N S, (t, W) and let the corresponding rule be
Sy L B AT L B2 Am | B Dy—E7 (o) = o(t/v));
W= W + I{g); let r be meta-unify(e{hm(m1, 72, - - Tm)), O(Am{f1, 62, .., 6m)));
If there exists a variable X € W for which (re g) = #(X) is not in E-normal form
then stop with failure
else s :=roa(s), t:=roo(tiv=f]),d :=(rca)ed
eandrepeat

Figure 2.2.8. Extended Fay-Hullot's Meta-Unifleation Algorithm



Example 3.2. Let s be insert(A, insert(H, tree(D, 1,5))) and ¢ be tree(tree(®,C,0),1,T).
Decause & and ¢ are not unifiable, the Fay-Hullot’s algorithm selects the second when since
NSF,,U,W} =— @, Then & can be narrowed to

5, = insert(A, tree(insert(0,0), 1, 54))
by < B+0,5&8; >, After adequate two succeeding narrowings, we have

55 = tree(tree(0,0,0), 1, insert{suc(suc(Ag)), 53)).
Then in the mext repetition, #3 is unifiable with t = tree(tree(d, C,0),1,T) by 0 =<
Azi=Ay, 3454, C=0, T=insert{sue(sue(Ay)), S4) >. Hence

< A%:sur[su:{.»l*},H#:ﬂ,Cc:ﬂ,S%-EhT'¢=1’na:rt{auc{auc{ﬂ4}],54] >
is 3 meta-unifier of # and t. There are another four meta-unifiers

< A0, Bi=suc(suc(By)), CH=0, 55y, Te=inzert(suc(sue(By)), Ss) >,

< A0, B=0,0:0,5:5,, T8 >,

< A+=1,B=0,C&0,5+5,,T&8, =,

< A=0,Be=l, 060,55, TE5 >,

3.2.3. Interpreter for Conditional Computation

The Talos interpreter behaves similarly to one in 2.2.3 except that the narrowings are
done in a slightly complicated manner.

execute(Sg:set of equations) : substitution ;
§:==<2>,
while £5“0 delete one of the equations from £
when the equation is of the form X = X or 1X =X
do nothing.
when the equation is of the form X =t or t = X (X does not occur in t)
apply lazy-variable-elimination te X and ¢
when the equation is of the form !X =t or t =1X [t is 2 semi-consiructor term)
appiy eager-varisble-elimination to ‘X and ¢t
when the equation is of the form & =t (either s or tis a non-variable term)
if root function symbols are different constructors
then stop with faliure
else apply term-reduction to s and ¢
endwhile
return f.

term-reduction{s,t:term),
when s and ¢ are of the form f(#1, #2,..., %) and f(fy, 13, e bm) [f i3 a constructor)
add g, =1, 82 =3, I =1nto &y
when N S...(s, W)7#0
| select 0 £ N 5,,.(2,W) and let the corresponding rule be
“qp | By A2 b BA - ATm L Em D= E" (o) = ofafu));
Wo=W-+ Joplerbeezecuteic{im =h,m=4f,...Tm= Eal));
if there exisls a variabie X € W for which (r ¢ o) o (X iz not in R-pormal form
then stop with faijure
eise add sjue=f] =t to &y, eppiy reo to &y, §:=(r caled

o -
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when N5, [t W)=0
select 0 € NS, .(t, W) and let the corresponding rule be
Syl B A L Eah ATe L Em DY 8" (o) = alt/v));
W =W+ I(o); let 1 be execute{o{{n = &,73=1Ff1,...,Tm = Em}}};
if there exizts a variable X ¢ W for which (r e o) o #(X) is not in E-nermal form
then stop with failure
else add & = t|r=F] to fp; apply rec to L, §:=(rog)ed
otherwise
stop with failure

Figure 3.2.3. Talos Interpreter for Conditional Computation

Remark. As is proved in [18], for any given ground gquery T- ¢, Talo: answersz a ground
constructor term s satisfying & =, t. We call this property ground completeness.

3.3, An Example of Conditional Computation
Suppose we have given a query
- C when insert(A,insert(B tree(d,1,5))) =tree(tree(d,C,8),1,T).

to the Talos interpreter. Then the Talos interpreter generates a set of equations
{ Walue=C, insert{A inzert{B, tree(d,1,5))}= tree(tree(®,C,0),1,T) }

which iz processed as follows. The underlined expressios are processed.

{ Walue=C, insert[A insert{B,tree(®,1,5)))= tree(tree(0,C,0),1,T} }
o erper-variable-elimination
{ incert[A ‘nzert(B tree(C,1,5)))= tree(tree(0,iC,0),1,T) }
Il term-reduction
{ insert(A tree(insert(0,0),1,5))= tree(tree(d,/C 0},1,T) }
"L term-reduction
{ treefinzert{D,8),1 insert{suc{suc(A,)),S))}= tree(tree(,'C,0),1, T} }
I term-reduction
{ inzert(D Bl=trea(d'C 0}, 1=1, insert(suc(suc({A,}),5}=T }
[ term-reduction
{ tree(d,0,0)=tree(8,'C,0), 1=1, insert(suc{suc(A,)),5)=T }
T term-reduction
{ 8=0, 0='C, 0=0, 1==1, insert{suc(suc(A,)),S}=T }
L term-reduction
{ 0=!C, #=0, 1=1, insert(suc{suc({A}),5)=T }
! eager-variable-elimization
{ =0, 1=1, insert(suc{suc({A,)),5})=T }
I term-reduction
{ 1=1, insert(suc(suc{A;)),5)=T }
[ term-reduction
{ 0=0, insert{suc(suc{A)},5)=T }
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1 term-reduction
{ insert(suc(suc(A;)),S5)=T }
[ Tazy-variable-elimination

{}

Note that the third equation of the definition of snsert is used in the first term-reducticn,
while the fourth equation is used in the second term-reduction. One of the answers is

Value=0,
A=A42,

B=0,

C=0,

S=51l
T=insert{A;+2,5:);

Again,the computation depends on the top variables. For example suppose we have
given a query

- [C,T] when insert(A jinsert(B,tree(8,1,5))) =tree(tree(0,C,0),1,T).
to the Talos interpreter. Then the corresponding answer is

Walue=0,
A=2,

=D'
o=0,
§=251,
T-=tree(0,2,0);

Note that we need nondeterministic search of desirable substitutions, though the definition
of data types and functions are deterministic. How to search the soluticn is described in
section 4 and 5.

Femark. Againbecause we have followed the algorithm faithfully, it takes many steps to
delete tree(insert(0,8),1, insert{suc{suc(A,)),5)) = tree(tree(0,!C,0),1,T). In our actual
implementation, we generate insert(0, ) = tree(0,'C, Q) in one step from it.

4 Nondeterministic Computation in Talos
4.1. Definition of Nondeterministle Funetions

As is seen, the Talos interpreter search the desirable solutions for a given query. We
can define functions with this mechanism by permitting nondeterministic functions. A
nondeterministic function is an n-+1-ary relation whose fixed n arguments are always inputs
and the remaining one argument is always output. Hence it is not a function in its strict
sense and causes confusion in mathematical semanties if it were treated as a function. But
we can compute such a nendeterministic function staying within cur functional {ramework.
‘The Talos interpreter behaves ia the completely same way as previous.

Example 4.1.1. A nondeterministic function computing some member of lists ({the member
relation with mede declaration (—,+) in DEC-10 Proleg) is defined as follows.
nondeterministle function one-of{L:list):element,
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ste-of ([X|L])=X.
one-of ([Y[L])=one-of(L}.
end,
Of course, = does not necessarily mean the true equlity wiien one hand side of an equation
contains a nondeterministic function symbol, though we pretend it for simplicity.

Example 4.1.2. A nondeterministic function computing some prefix of lists is defined by
pondeterministic Punction initial{L:list):list.
initial{L}=M where append{M,N}=L.
end,

Hemark, One might say permitting such notations of nondeterministic function is confusing.
But we claim that such notaiions show the fiow of information explicitly and is superior to
pureiy relaticnal languages in readability. Of course, we do not claim that relations are
unnecessary, though we guess the relatios we need are nodeterministic fuctions in many
cases.

4.2, Backtracking Search

The nondeterministic Talos interpreter is transformed to a sequential one with the depth -
first search and the backiracking by the following modifications.

(a} We make the body of the erecute (except initialization of 8 to < >} a sell recursive
routine (rewrife-equations).

(b) We let the term-reduction eoumerate alternative narrowings.

{e) We inzert backtracking control at appropriate places.

4.2.1. Selection of Equaticns

We need to choese an adeguate equation in the rewrite-equations. Following the controi
of Prolog, we choose the leftmozt equations, We keep 2 set of simultaneous equations in a
stack. The equation at tke top is poped at each call and processed. It is either simply erased
{possibly will scme applicaticn ef substitution), or it generates several pew equations and
the geaerated equalions are pushed at the top.

Remark. In general.a procf procedure, which i1s nondeterministic in selecting the processing
units and enjoy: some property 2, iz said to be stromgly  with respect to the selection
when the proof procedure with an arbitraly selction rule still enjoys ¢. For example, the
SLD-resclution is said to be siropgly complete with respect to the selection of atome from
cezjunciion of atoms. Though we have not yet proved formally, we expect with certainty
that ezecute is strongly ground complete with respect te the gelction of an equation from
conjunction of equations. Then this selection ruie for equations *from left to right” does
oot loose the ground completeness.

4.2.2. Enpumeration of Alternative Narrowingzs

We alzc need to chocse an adaguste narrowing substitution # in term-reduction. Depernding
oxn the choice of the eccurrence at which a narrowing is applied, we can integrate various
evaluation strategies izto Talos such as call-by-value csll-by-name cali-by-need lazy evalua-
tion and eager evaluation [see [14]22]). But we deler the discussions on the selection rule
for narrowing substitution to the next section. Before choosing it anyway, we set the back-
tracking poict there. Once some occurrence ig chosen, the rewriting rules in the definition
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are tried from top te bottom following the control ef Proiog.

Femark. This sclection rule for rules “from top to bottom”™ obviousiy looses the ground
completeness, as does in Prolog.

4.2.3. Interpreter for Nondeterministic Computaticn

The Talos interpreter behaves similarly to ome in 3.2.3 except that now we search
desirable solutions sequentially as follows.

r

execute( £y : stack of equations) . substitution ;
§ =« > return rewrite-equations{£o)

rewrite-equations (& : stack of equations) :
ifé =10
then return < >
else pop &p;
when the equation is of the form X = X or X =iX
apply rewrite-equations to &g recursively,
if it is in failure
then undo the pop and fail
when the equation of the form X =t or t = X (X does not occur in t)
apply lazy-variable-elimination to X and t;
apply rewrite-equations to &g recursively;
if it iz in failure
then unde the lazy-variable-elimination and the pap and fail;
when the equation is of the form !X =tort =X (tisa semi-constructor term)
apply eager-variable-elimination to X and t;
apply rewrite-equations to &g recursively;
if it is in failure
then undo the ezger-variable-elimination and the pep and fall;
when the equation is of the form & =t (either sor t is a non-variable term)
while alternative choices of term-reduction are not exausted do
apply term-reduction to & and t;
apply rewrite-equations to £p recursiveiy;
if it is 1o failure
then undo the term-reduction
endwhile
unde the pop and fail

endifl

Figure 4.2, Talos Interpreter for Nondeterministie Computation

4.2. An Example of Nondeterministie Computation

Now we present an example of nondeterministic functions The problem we consider
is taken from textile manufacturing (cf. {17]). A satin weaving pattern is one of the three
basic weaving patterns. Textile is an interlacing of warp {thread in the horizontal direction)
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and woof (thread in the vertical direction). There can be two states of interlacing,ie., (1) a
warp is on a woof (called OP dencted by balck square) and (2) a woof is on a warfl {denoted
by white square). A satin weave consists of the minimum unit of repetition {ealled *repeat”)
satisfying the following conditions.

(a) “repeat” ie a square pattern, i.e., it consists of & warps and k wooves,

(b) there exists exactly one OP on any warp or woof in “repeat®,

{c) there is no pair of OPs diagonally connected in textile.

Of course we don't distinguizh two patterns superpozable by translation and 90°, 180°
and 27(F rotations. The problem is to “"generate a repeat of satin weaving pattern consisting
of & warps and 8 wooves.”

First of all, note that a “repeat” is expressible by a permutation of the pumbers from
0 to k-1 by numbering threads {the uppermost leftmost corner is (0,0) point), e.g. {3,1,4,2,0]
represents a repeat in the figure below. Note also that we can assume the uppermost leftmost
corner is an OF by trapsiation of “repeat” and it removes the ambiguity by geometrical
congruence,

0 D00 Ced0oOaoOo
R0 00C®eO0000SD
:I."_'IDI_DEIEJTIIEIDE
CeEcOoOOmOOCCCOE
ODoOOoOwCOCGoOROO
DOwmooCzOoOwloO0Ooo
lﬂﬂ;DDIDD|UD!D
ODJCwmOoOOoOO0DOEOONO
OsCOONeOCOOE
SLUCcCeEOOO0CEDO
ComO0OnOCwWO0 00O
E0 O DORCOOCORD

So we cai take ao approach similar to one for the *Eight Queen” problem. We need
to take two factors imis considerations : (i) the warp on which we are searching an OP
{Warp) and (2) the set of the candidates for OPs,ie., wooves on which the warp can be
{Candidate). The erucial part is easily programmed as follows. (We use some syntactical
sugar for readability.)

nondeterministie fonetion weave(Repeatilist;Warp number, Candidate:list):list.
weave(Repeal, Warp, Candidate)= weave(Next-Repeat, Next-Warp, Next-C andidate)
where 0 < Warp, Now=last{Repeat), Next=—one-of(Candidate),
Next-Repeat=append(Repeat,[Next]),
Next-Warp=Warp+1 mod 8,
Next-Candidate=subtract{inhibit(r elease(Candidate, Now), Next) Next-Repeat).
weave(Repeat 0, [)=Repeat
where Jump=|irst{Repeat)—lasi(Repeat)|, 1 < Jump, Jump < 7.
end.

Definitions of relecse and inhibit are simpir

release(C,I)=add(C,/11,12]) where I1=I-1 mod 8,12=1-41 med 8
inhibit{C,J)=subiract(C,{J1,J2]) where J1=J-1 mod 8,J2=J-+1 med 8
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where add and subtract are for union and difference of two sets. The answer is computed
by a query T-weave(l0],1,[2,3,4,5,6]).

Femark: The program absve can boe still opiimized considering efficiency (e.g. representation
of Repeat in the reverse order). But it makes quick construction of the understandable
programs easy before further optimizations,

5. “Call by Need® Computsatlon In Talos
£.1. Defipition of *Call by Need” Funetions

Kote that in the defrition of append in 2.1, the form of the first argument decides
whieh rule applies to the term and the second argument has oo contribution at this peint.
Hence if append(s, t} is given, the rewriting of the first argument s is innevitable, while that
of the second argument ¢ can be delsyed until it is actually necessary. We declare the need
for each argument of functions by —+ and —.

Example 5.1.1. The append functicn delaying the evaluation of the second argument is
defined as follows.
funetion append(L -M:list):list.
append{l | L)=L.
append| XL M)=X{apperd(L M]].
end.
As iz known from the first argument [, we stipulate that the default is =+ for functions.
Hence all funciions defined so far are evaluated in the “call by value® strategy.

Needs are olso declared for data types.
i

Example 5.1.2. The datas type list is defined as follows.
data sl = new.
constructor.
nil.
cons{X:element, L list}.
operator.
length(L:list):number.
lergth{! I}=0.

leastz{X|L]}=length{L)+1.
end.
We stipulate that the default is also + for operators, while it is — for construetors. Hence all
operators defined so far are evaluated in the “call by value” strategy, while all constructors
defined =o far are evaiuated lazily.

5.2, Control of Evaluation by Needs and Annotations
5.20.1, Index for “Cali by Need" Computation

Now we iniocuszé & seiesuion rula for the parrewing substitutien in NS (s, W) or
NS, i, W) i the previcu: ziperith= . An cccurrence of subterm of 8 s called an index
when 1he subiesio must be parrowed 1p order that a semi-comstructer lerm is derived from
5. A selcctior suie which alwaye narrow the cutermost index (i.e., at the Jeast peourrencea)
at each Larrowing i called call by need strategy (cf. [14]).
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Wz wezuvme every semi-constructor term has no index and every non semi-constructor
term with roct symbel f has indices for any non-constructor symbol f. Hence any subterm
5! of ris narrowed in the “call by need” derivation from s iz only two cases. One is when
the root symbol f of & = fla;,#2,...,4,) is a non-constructor symbol and
{a) &' is & itself or
(b} there exists a proper subterm afu at s's outermost index u and & is narrowed in the

“¢ail by need” derivation from #/u.

Anpother is when the root eymbel fof 8 = f(s;, #2,..., 8] 15 2 constructor and #' is narrowed
ic the “zall by need” derivation from some s; after f is peeled off in term-reduction applied
los = f{a'h.#;, R Jm} and t = f{tllfz,. . .,tm].

The following is a well-known example to demonstrate the power of lazy evaluation
(i81,[10}.

Example 5.2.1. Let integers and second be [unctions defined by
integers{ N}=IN|integars{N-+1)}
secend(L)=car{edr(L)).
respectively. The usual “call by value” rewriting in Lisp does net terminate for second(integers{4]).
second{integers(4})
1 term-reduction
second([4]integers(4-+-1}])
1 term-reduction
second([4|integers(5])])
| term-reduction
second([4,5integers(5+-1)])
1 term-reduction

while “lazy evaluation” terminates properly.

second(integers(4))

i termereduction
second([a.n.egers{4+1)])

1 term-reducticn
car{cdr{[4/integers{4-+1)]])

1 term-reduction
car{integers(4—+-1}]

{ term-reduciicn
car{integers(5)}

IMerm-reduction
car(|Siintegers(S+1)})

L term-reduction

5

A conditional equation in the definition of eperators and functions is said to observe
peed declaration whern the left hand side of the head satisfies the {ollowing conditions.
{a) It iz not a semi-consiructor term.
(b} It is a linezr term,ihat is, there appears no variable at more than two occurrences.
{e) Each argument with need + must be a term of the form f{X, X;,..., X,) where f is
a constructor and Xy, X3, ..., X, are distinct variables.
(d} Each srgument with need — must be a variable.
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When some conditional equation does not satisfy the conditions above, it iz first preprocessed
and converted to one satisfying the conditions.

Example 5.2.2. Let fibonacei be the well-known function compnting the fibonacei sequence
as Tollows.
function fibonacci{N:number):number.
fibonacei{0)=1.
fibonacei{l)=1.
fibonacci[N+2)="fbouacci(N)4fibonacci{N+1).
end.
The needs of the argument of fibonacei are all - by the default. But it does not saticly
the condition mentioned above. The definition must be once converted to
funetion fibonacci{N:numhber)number.
fibonacei{0)=1.
fibonacci(M—=41)=1 where M=0.
finonacei{N-+1)="fhonacei(M)+fibonacci(N) where M=N+1.
end.

Slightly strogthening the condition {B) in 2.2, we assume £ and R satisfy the following
conditions.
{A) B iz confluent and termicating.
(B) Eack definition observes need declaration.
(C) For any s € §, there exists t € Gc such that s =¢ L.

Remark: The necessary conditions enabling “call by need” strategy have been not yet fully
ipvestigated. In [14] R is assumed to be a linear and nonoverlapping term rewriting system.

5.2.2. General Eager Annotation

Uniform “lazy evaluation” is sometimes inconvinient. For example the rewriting of
append((1],12,3]) stops at [1|eppend(]], [2,3])] and the final result [1,2,3] won't be computed.
For more minute control, we permit the generalized use of the *!" annctation. So far, the
wse of the *I" annotation was allowed only for the Talos interpreter. An eager variable
appearing in the processing was either the top level variable Value or a variable to which
“1* i3 inhrited from 'V alue. We permit programmers to annotate any variables by *!" freely.
In addition, we also allow not to annotate the the top level variable Vialue by *I". When a
given query is conditioned by where in place of when as follows

1.t where s'l.=':"1r5==t'2r . .'sztm.
the Tales interpreier generates

{ Value = tlsl:tlr53=t=r --rsﬂﬁ:t'ﬂ }

Example 5.2.3. When Talos iz giver a guery
7. X when zppend(append(| },12,17),cdr([4,3,5])}=[X]'L]
meta-unification preceeds as follows.
{ Walue=X append(append(] 1.12,1]),edr{14,3,5]})=1X|'L] }
| eager-variable-elimination
{ append(append(] ],[2.11),cdr({4,3,5]))=['X|'L] }
{ term-reduction
{ append{iz,1],edr(}4,3,5])}=[X|'L] }
[ term-reducticn
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{ [2append([1],cdr(l4,3,5]))]=["X|'L] }
[ term-reduction
{ 2=!X,append([1],cds([4,3,5]))='L }
1 eager-variable-elimination
{ append(|1},cdr(]4.3,5]))='L }
If ! were not an eaper wariabie, append([1], cdr([4, 3,5])] would be bhound to L and the
computation would stop. But here meta-unification continues as follows.
|} term-reduction
{ [1|append([ |,cdr([4,3,5]))]='L }
|l eager-variable-elimination
{ 1='A, append{| |,cdr([4,3,5)})='L, }
Y several eager-variable-elimnations
{ nppend{! !.Cdr[[‘i,3,5]}]‘=!1.1 }
{ several term-reductiona and eager-variable-eliminations

{}
and 'L is [1,3,5)].

Example 5.2.4. The Talos interpreter answers
Value=|{a|L},append(L,[b,c])l,
A=[a]L],
B=append(L, b,c};

to - [A, B} where append(A, [b, ¢]) = [a| B, because it meta-unifies
{ Value=[A,B},append(A, [b,c])=[a]B] }.

Remark : The eager annotation of the top level variable Value never makes terminating
computations nob-terminaiing. Other eager variables may do it.

3.2.3. Rerpreter for “Call by MNeed™ Computation

[N

For a given query of the lorm
-t when s{—1y.53=t2,. . . .5m—tm.
the Talos interpreter generates 2 set of equations
Ea = {Walue =1t g4 = Iy, 83 = ¢2,.. aBm =t}
and for a given query of the form
-t where 0y=1t; sa=tz,. . 5:m=tm.
the Talos interpreter generates a set of equations
fo={Value =1 8; =1#, 82 =ta,. .. 8m=1In}
Then the Talos interpreter behaves similarly to cne in 4.2.3 except both sides of the selected
egualion are cenlinuouzly parrowed unptil the both become semi-constructor terms and the
backtracking points are zet in it as follows.

£ term-reduction(s,t:term);

I when s and ¢ are of the form f{s;,02,. .., 8m) and f(t:,t2,.. ., tm) ([ is 2 constructer)
| add 8, =1, 80 =1t3,...8m =t to &g

| when either s or £ is not a semi-constructor term

i add narrow-up(a, -+) == narrow-up(t, ) to &

L

19



narrow-upls need)
ir # is & semi-construcior term of need is —
then return 3
else lct 5 be flsg, 82,.. ., 8.);
for i from 1 to n do t; := narrow-up{a;,+-th need of f);
while rulez whose heads are unifiable with 8(f(t1,%2,.. ., ts)) are not exhausted do
lei the mgu away from W be ¢ and the corresponding rule be
“q1 L E ATz L BaA - ATm L Em DT,
W= W + Ie); let r be execute (e({Ty = &, 712 = F2,.. ., Tm = dm}));
if there existe a variable X € W
for which (7o 0) e #(X)is pot in £-normal form
then fail
else apply oo to fo; f = (ree) e f; return narrow-up(r e o{f), need)
endwhile
fail

Figure 5.2. Talos Interpreter for *Call by Need" Computation

Remark. Our strategy may caute more instanciation than is expected. For example, when
the selecied equation is ¢dr{(X |L]) = append(M, N), the interpreter generates a binding not
< Legppend(M,N) > but < Me[],L=N > or < M=[X"|M"], Lt=| X" |append[M',
N} >

5.3. An Fxample of “Call by Need” Computatien

New we show “Call by Need™ Proleg. It can be considered a Prolog augmented by
functiona! netation and “call by peed” strategy.

A basic data type boole iz defined as follows.

dete bocle = new.
consirucior.
Lrue,
falze.
operator,
and(X,-Y:boole):bocle.
truepY = Y.
falsenY = false.
end.

Suppose we have specified gppend with the heading
function anpendil -5M:list)list
and reverse is acfined as 3 bipary relatiorn as follows.

nondeterminisiie funetion reverse(L -Mlist)-boole.
reverse!] | M} where M= .
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reverse{[X[L), M) where reverse(L N}, append(N, [X])=M.

end.
Then,in order fo compute Lhe jast element of a list, we may give a query
- X when reverse{;2,1,2] [X|M]}.

The Tales interpreter trys to meta-unily the condition part recursively and it proceeds as
follows. (The indented sets of equations are generated from the condition parts in term-
reductions.)

{ Walue=X reverse([3,1,2],[X|M[)=true }
[l eager-variable-elimination
{ reverse(]3,1,2] ["NIM))=true }
1
{ reverse(11,2,Ny)=true,appead(Ny [3))=[XIM] }
i ki 1}
{ reverse([2],Ny)=true,appernd(Ny, [1]}=N; }
i
{ reverse(] |Na)=true,append(N3,[2])=N3 }
4
{ Na=[]1}
1 laz¥-variable-elimination
{}
il
{ true=true append(] | [2]}=Nz }
! term-reduction
{ append([ },(2))=Na }
I lazy-variable-elimination

0

{ trus=true append{append([ |, [2]).[1])=N; }
I term-reduction
{ append{append{{ |,[2])[1]}=N; }
4 lazy-variabie-eliminaticn
{}
ﬂ *
{ true=true append(append(append(| J,[2]),[1]},31=[XM] }
4 term-reduction
{ append{append(append(] },[2]},11]),[2]}==[1X|M] }
I term-reduction
{ append{append/i2},11]),13])=[X]M] }
I term--educt:ion
{ append{(Ziappend(] |{1])],[3])=["XIM] }
I term-reduction
{ [2jappend{append(] ,[1]),[3)]=I'X[M] }
I term-reduciion
{ 2='X,aprend{append{] [,[1}],[3])=M }
L 3 eager-variatble-eliminations
{ append{append(] |,11]),i3))=M }
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1 lazy-variable-elimination
{}
i
{ true=true }
| term-reduction

i}

Hence the Tales interpreter answers

Walue=12,
X=1,
M=append(append(] |,{1]},13]};

Mote that it has not copstructed the full reversed list and the computation has taken linear
time as to the length of the first argument of reverse.

Remark. A reducticn method, called graph reduction ([14],[22]), can avoid rewriting subterms
of the same form more than twice by sharing same arguments in directed acyclic graphes
(DAG). In the current versicn,we did not implement such sharing.

B. Computation with Streams In Talos
g.1. Definition of Funectione with Stream

Larzy evaluation makes 1t possible to use infinite data structures explicitly. An infinite
data structure in Talos it & stream. A variable denoting a stream, called a stream variable
and denoted by X, ic always a lazy variable. Stream variables can be used to show an
infinite sequence of values denoting the history of a usual variable, which,with conditional
rewriting rules,makes Lucid-like pregramming possible (cf. *DO" in MACLISF).

Example 6.1. A program computing TN 4% using stream (Asheroft and Wadge [2]) is
represented in Talos as follows.

function square-sum(N:number)number.

square-sum{N)=S" asa I" >N where I"=[1]I"+1],8"={0S" +square(i’)]

end
where we have used the list motation [X|L) for X fby L (followed by) in Lucid and asa
is an infix bipary funciion intended for “as zoon as®. Functions are applied to streams
elemens wise and result in streams when they are not ones specific for stream processing. For
exampie /" -~ 1 denotes a stream obtaized by applying AX.X + 1 to each element of I

B.2. Stream Processiog
6.2.1. Szream Processing Primitives

Wher the Teoios program is given & guery including streams or stream processing
functicos, it processes thems by wsicg the fellowing definitions for the data type stream (see
"1}, if B then L eise /7 oo min-dx nowetion of if-then-else(B, L, R).

nondeierministis funesionm asal-X -Y:istream}element,

asa XU YT = if LrsalY ") then first{X7) else ata{next(X"),next(Y")))
end



function if-then-else{B:boole,-L -R:element)-element.
if true then L elte R = L.
if falze then L else R = H.

end.

Cther primitives are defined by the following equations.

first({[E|S"]) = E.
pext{[E|S"]) = §".

Useing firet and nest, elementwise application of a function A is done as follows.
h{i*)=[h{first(1"))/h{next(I"})].

femark. Talos has several built-in primitives. Especially,arithmetic computation is done in
a model, i.e. ,the machine representation of the patural numbers. For example,it is stupid
to peel of 10000 sue’s for X <4 10002 = 10000 and obtain X = 2. But the patterp: of
combinations of both sides in arithmetic equations are so various that the amount of code
in our implementatien for corresponding computation in the model is more than expected.

6.2.2. Stream Processing Process

Because stream variables are data structures specified cyelically, it is difficult to depict
the process of stream processing exactly. In the followings,we give intuitive explanations.

Example 6.2.2 The computation of square-sum(5) proceeds as follows.
{ Walue=sqguare-sum(3) }

I

(P =N1"+1],8" =10!5" Lsquare(l")] }
[l stream-variable-eliminaticn

{ “'=_=[OES'+sq1:a.rnl’_I'}] }

{1
i
{ Value=asa([0]S" +squre(I"})],[1[I"+1] >5) }
I term-reduction
{ Walue=if first([1]I"+1]>5)
then first([0]S" +2quare(l”)])
else asalnext([0|S” +square(l’)]),next([1]1" 1] >5)) }
L term-teduction
{ Walue=if first(j1>5/1"4+1>5])
then firzst{i0]S" +square(l’}])
else azalnext(|0]S” <square(l”)]), next{{1jI"+1]>5)) }
| term-reduction
{ Walue=if 1 >5
then frst{[0!S" 4-square(I")])
else aza{next(|0]5" +square(I’)]),next([11I"+1]>5)) }

I tesn-recduction

sirzzm-vatiable-elimination

[ Walue==if falze
then first{I0!5" - 5_'1'135"‘-'{1'}:1
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else asa{next(|0iS" +square({I”}]),next([1]I"+1!>5}) }
1l term-reduction
{ IValue—asa(zext{|0}S +square(l”)]),next([1|I" +1]>5)) }
| term-reduction
{ Value=if first{next{{1[I"1]>5))
then asa(next{(0}S —+square(I’)]})
else asa{pext(oext([l il'—i—lt}Elj,neﬂ{next[[mﬂ'—|—squa.re{1‘}]}]} }

i
where the notation [1}I° + 1] is inexact. It should be [1|[1[[1---]+ 1]+ 1].

Remark. In the computation above, the Talos interpreter has to process

if first(pext'([1/I"+1])) then ... else ...
In general,when first(nezt'({Io|h{I")]}) is computed, it must be once converted to firat(h"{(I"))
and then k¥(Ja) is computed. Hence without any device, we have to repeat the computation
of the i - 1-th element of !* from the first element all the way everytime, though we have
computed the i-th element just now. In this case the function A = A X X -1 is simple, but
in geperal it may be very time-consuming. We need a device to memorize the elements of
streams, once they are computed.

6.2.3. Interpreter for Computation with Streams

The Talos interpreter behaves similarly to one in 5.2.3 except the use of special functions
for stream and the “occur check® depending on the distinction of variables. For simplicity,
we show the nondeterministic version of the Talos interpreter revised for stream processing.

execute(fp ; set of equations) : substitution |
fr=x>;
while 570 delete one of the eguations from £y
when the equation is of the form X=X X=Xo'X=X
do nothing
when the equation is of the form X=tort=X"
apply stream-variable-elimination to X~ and t
when the equation iz of the form X =tort =X (X does not occur in t)
apply lazy-variable-elimination to X and t
when the eguation is of the form !X = ¢ or t =X (t is a semi-constructor term)
apply eager-variable-elimination to !X and ¢
when the equation is of the form s = (either sortisa non-variable term)
apply term-reduction to s and ¢
endwhile
return

stream-variable-elimination{X :siream variable,t:iterm);
let & be a renaming of variables in ¢ awsy from Woand 7 be < X' =olt) >;

appiy recto S Fr=(reg)e i W = W+ Ilroo)

Figure £.2. Talos Interpreter for Computation with Streams
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6.3. An Example of Computation with Stream

Now we present an example of computation with stream. The example is taken from
the elementary theory of numbers. Let T(n) denote the sum of all divisors of n. Then
T(n) — n,i.e., the sum of all divisors of a number except itsell 12 as follows.

L(6)—6=(1+2+4346)—E=F6,
T{9)—9=(1-+349)—9=4,
T(12)—12=(1+2-+34+4+6-+12)—12=16,
£(28)—28=(14+2-+44T7414+28)—28=18.

In general,a number n is called a perfect pumber when E(n) — n = n (e.g. 6 and 28), an
abupdant number when T{n)—n > n (e.g. 12} and a deficient number when E(n) —n < n
(eg. §). {Even perfect numbers are alway of the form 2*~!(2* — 1), where 2* — 1 is a
prime number,ie. Mersenne number. It is known by computer experiments that there is
no odd perfect number less than 10°°) The problem is to judge whether a given number is
perfect abundant or deflcient.

funetion judge(N:positive-number):kind-of-number.
judge(N)—perfect where 2xX N=divisors-sum{compactify(factorize(N})).
judge(N)=abundant where 2 N < divisors-sum(compactify(factorize(N))).
judge(N)==deficient where divisors-sum(compactify(factorize(N)))<2xN.
end.

It iz well kpown that

L{m-n)=TE(m) - E(n] whea m and n are relatively prime.
Tptt)=14p+pi 4 - +pttl=px E(p*)+ 1 when pisa prime number.

Hence it is easy to compute L(n) coce we know the factorization of n into primes Py -
pat--pl. We [actorize a given number as fellows,

funetion factorize{N:positive-number}numbers-list.
factorize(1)=| |.
factorize(N)=Fs where 1 <N,
I"=[21"+1),
D =sift(I"),
Fs=if N<D" xD" then [N] else [D*|factorize(Q)]
asa N<D” %D v divide[N,D",Q,0).
end.

where D7 is the siream of primes eomputed using the Erathosthenes’s sieve.

sitt([PIN"])=filter(P,N"}.
Slter{P,[X|N"[)=0lter(P,N") where divide(X,P,Q.0).
Elter(P, XN )=1X|flter(P,N")] where divide(X,P,Q R+1).

For example,28 is facterized into [2,2,7]. We use it after compactifying k duplicated faclors
p to a pair (p, k). For example, factorize(28) = [Z2,2,7] is converted to [12,21,17,1]] by the
function compactify. Then I{n)1s computed by multiplying 1+ p + p* + -+ p* for all
compactified factors p* of n.
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funetion divisors-sum(CF :pair-of-numbers-list):number.
divisors-sum(] |J—=1.
divisors-sum(||P,K]|CFs]}=X x divisors-sum(CFg)
where ['=[1]I"+1],
ps =[1|Px D5 +1],
X=Ds" asa K<I'.

end.

Note that the recurrence formula for L{p*™?) is directly programmed by DS = [1|P x
D5"). The Talos interpreter answers

Walue=perlect,

to queries ™-judge(8), 1-judge(28) or 1.7udyge{496) and
"Value—abundaznt,

to a query -judge(l2).

Remark. These programs suggest several possibilities of optimization. For example, it iz
wastefull to compute divisors-sumieompacts fy(factorize(N))) for each eguations in the
definition of judge all the way. The computed result should be saved after the first com-
putation and wtilized in the computaticn thereatier.

7. Discussions
(1} Relations to Other Works

Several attempts have been done to amalgamale relaticnal programming languages and
functional programming languages. Bellia [3] introduced Horn clauses with egualty into
relaticpal pregram, but their language is substantially completely deterministic functional
programming language. Fribourg 7] used equational Horn clause and clarified its seman-
tics based on the paramoduiation, which is very similar to the general parrowing. But
because he did not impeose any conditions (like confluence and termination), his complete-
ness theorem needed superposition between programs and additional functional reflexive
axioms. Morecver the narrowings was not restricted te those at cecurrences of non-variable
verms. Tamaki [20] introduced a reducibility predicate into Prolog and defined its semantics
based on seurce-level expansion of nested terms to conjunctien of atoms. Because he did
not impose the termination condition, he had to add the reflexivity of =" to the expanded
programs, which plays a very important role. Goguen and Meseguer 9] suggested the uze
of narrowing in cemputation in their functional-relational language Eglog based on rigouros
legical basis of mauny sorted logic. They allowed general algebraic specification of abstract
data types, which does Dot aiways assume existence of constructors, and used the general
Tarrowing.

We claim thsl our [ramework makes the programming reasonably easy as well as the
interpreter reascnobly eficlemt. Eglog's general data type specification indeed gives high
expressive power. Though Talos iacks such generality, existence of constructors is helpfull
not only for programmers but alse the meta-unification process. To programmers who use
such languages as programming languages, it gives coucrete symhbalic objects to manipulate
and conceive easily in mind, From the meta-unification process, it alleviates the too frequent
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check of nnifiability and enables us to compare corresponding terms only when they are
semi-constructor terms. (Note that we always have to eompare corresponding terms at the
first when in the Fay-Hullot's algorithm. f. comment in [9] p.206). The constructor terms
1n Talos exactly do play the zame role as general terms in Prolog do.

{2) Problems Left for Future
(i) Improvement of Implementation and Experience of Programming

Spme assignments of meta-unifiers are decided from purely equational inferences {reduction)
and don't need search [narrowing with instanciation to nonvariable terms), For example the
Talos interpreter deseribed so far tries to meta-unify the condition part of the following
query

1-N where append{L M)=[A[N],[AlL]=[a,alK].
from the left to the right as follows.

{ append(L M)=[A|N],[AIL]=[3,a[K] }

|l term-reduction by & narrowing substitution < L&[] >
{ M=[AIN],A]=[a,aK] }
“J Tazy-variable-elimination and obtain < M&[A|N] >
{ [Al=[a3K] }
1 fail the meta-unification of A’= [a,a|K] and backtrack
But if the second equation is meta-unified [without variable instantiation) first, it goes
without backtracking as follows.

{ append(L M)=[A|N],[A|L]=[z,a!K] }

|| term-reduction and obtzain < A&a, Li=[s|K] >
{ append([alK], M}=[a|N] }

I term-reduction
{ [alappend(K ,M)i=[alN] }

I term-reduction

{ append(K M)=N }

J lazy-variable-elimination znd obtain < Né&=append{K, M} >

{}

This suggests that, it alleviates unnecessary backtracking to separate the *don’t care”
nondeterministic part {reduction without instanciation of variables) from the “don’t know”
nondeterministic part (narrowing with instantiations of variables). In our current interpreter,
we always normalize £ to £ [, L.e. the set of equations whose terms are all normalized by
E, befare rewrite-eguations is applied. But the “don't know” determinism assumes the
confiluenze property of K, which is sometimes difficult to guarantee syntactically. If the
confluence of the defipition of {unctions is guarantced by some sufficient condition, then
the order of rules is irrelevant and ignerable. Butl if not,the interpretation depends on the
sequentiality *from top to bottom” as does in Prolog. In such a case,the cptimization above
may complicate the backtracking structure.

Talos was implemeated in MACLISF from April iz 1982 to March in 1983. Several
interpreters of Tunctional and logie programming languages (Lazy Lisp,Call by Need Proleg
and Lucid) were deseribed in Talos {ef.[11]). But we need more programming experience in
Talos {o examine its advantages and disadvantages.

(ii) Extensions of Talos

Cempositian of Data Types : In the definitions of data types in 2.1, new data types are
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defined by “data - - - = new”. But we need ancther definition methods to compose from exist-
ing data types like PASCAL, e.g. suhLype,sum,pmdu:t,sequente,puwcrsct,mnpping,quntient
(by congruence), applications{instantiation of type parameters) etc. Eqglog already provides
such methods with rigorous logical base [9].

Unfree Data Structure and Set Abstraction : Free data structures are 0ot enough to express
and solve various problems. The most familiar exception is grroy and we have to resort to
the theory of confluence modulo congruence {]12],[16]). Description using unfree data strue-
tures often provides elegant solutions of considerably complicated problems like “paraffine
problem” (Turner {21]). The set ahstraction is ancther powerfull expression and we expect
it is not very difficult to add set abstraction to Talos.

{iii) Experiment of Program Trazrformation in Talos

Originally Tales is intended to be a base language for program transformation as is
HOPE [4]. For example, the “computation with stream” is included in Talos to treat
“recursion elimination® and “"recursion introduction® without going out of the functional
framework to the imperative one (cf.[1]). The “nondeternistic function” provides us to define
pondeterministic representation functions in the same way as data types and functions,
which alleviates diffieulties so far purely functional language has suffered for in defining
relations between data structures. In addition, reduction in Talos carries out the easiest
“partial evaluation”.

8. Conclusions

We have presented the language features of a meta-unification based language Talos by
stepwise extension.
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