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ABSTRACT

This algebraic manipulation system solves an input expression by
meta-level inference [Takewaki 85]. Itisshown that using meta-level
inference drastically reduces search spaces and, leads to clear object and
meta-level programs.,

In this system, meta-level inference is realized by a mela
programming approach.  Meta-programming is a widely wused
programming technique in logic programming. The advantages of the
meta-programming approach are (1) it is easy to distinguish clearly an
object-level programs and meta-level programs, (2) it is easy to
understand both meta level and object-level program and (3) it is also
eagy to modify. A disadvantage is that execution speed is slow. Partial
evaluation [lakeuchi 85] can overcome this problem. This paper
presents an application of partial evaluation to the system and an
evaluation of a specialized program by partial evaluation.

Keywords: Algebraic manipulation system, demo predicate, meta-level
inference, meta-programming, partial evaluation

1. Introduction

Expert systems are special cases of problem solving systems where the
emphasis is on domain specific knowledge. Algebraic manipulation systems
are problem solving system which use algebraic knowledge. The system
presented here solves input expressions by applying a refined method, which
employs rewriting rules.

Meta-level inference is used for selection from the set of rewriting rules.
Meta-level inference is controlled by meta-knowledge which guides the system
towards the best way of solving an expression. The unlimited use of rules for



mathematical problem solving will result in an explosion of eomputation
volume and exhaustion use of search space. Consequently it becomes
extremely difficult to solve the problem in real time. Furthermore, it cannot be
generally said that the search is oriented always in the optimum direction.
There is, therefore, a need to minimize wasteful search by a selective use of
search space and directing search in what is believed to be the best direction.
Object-level inference consists of the application of rewriting rules to input
expressions.

The system solves equations of elementary functiong of one variable,
and differentiates and integrates single variable elementary functions. The
expressions are largely taken from high school texthooks and examination
papersin Japan. Some typical expressions are shown in Figure 1.

In section 2, the system is introduced and its main features and guiding
philosophy are described. In section 3 we discuss the meta-programming
approach. The principles of meta-inference using meta-knowledge in this
system. are given in section 4. Finally, section 5 shows how partial evaluation
is applied in this system and describes the evaluation of the program by partial
evaluation.

2. Overview of the system

The system consists of an object-level program and a meta-level program.
The object-level program consists of set of rewriting rules and a program to
apply them. These rules are called methods. The meta-level program controls
selection from the set of rewriting rules using meta-level knowledge.

4-X' 17X 4 4=0 (Expression 1)

ion 2
2-log X —3-log 2 +5=0 {Expression 2}

3ocos X +5sinX—1=0 (Expression 3)

/ " (Expression 4)
ling‘}ibt}'{ +J'l]'\ )

' X arcsin X dx (Expression 5)

J X~.="12 " (Expression 6)

Figure 1. Some typical expressions handled by the system



Expressions are soived by applying methods. The system uses methods
such as isolation, collection, attraction, change of unknown, factorization and
so on. Most basic methods are similar to those of PRESS [Bundy 81] at the
University of Edinburgh. For example, the collection method is designed to
reduce the number of vecurrence of the unknown variable in an expression.
Some typical rewriting rules of the collection method are

U-V+U-W — U+ (V+W)

sin U-cos U — 1/2-sin(2-U)

all of which collect with respect to U.

Meta-level control of object-level programs reduces the number of
applicable rewriting rules. Because the search space at meta-level inference is
usually much smaller than the search space at the object-level inference it is
controlling and this helps overcome the combinatorial explosion.

In this system meta-level control of the object-level program is called
meta-level inference. Meta-level inference is the heart of the system, It
significantly increases the system's efficiency.

Meta-level inference employs meta-knowledge. The system used a
variety of meta-knowledge for inference strategies and to select methods. The
general solution procedure use meta-level knowledge about the expression to
find an appropriate method to solve it.

The kinds of knowledge about expressions used by the system are the
number of ceceurrences of the unknown warigble in the expression, the
argument positions at which they occur,classification of functions in it, degree
of polynomial, operators in the expression and others.

This system uses a meta programming approach and a partial
evaluation technique to realize a two-level structure. Meta-programming
improves readability and maintainability of program while partial evaluation
increases execution speed.

3. Meta-programming approach

Meta-programming is often used in logic programming. For example,
the algorithmic program debugging system [Shapiro 83] involves a lot of
meta-programming and, APES [Hammond 83] is a tool for building logic based
expert systems, which utilizes meta programming. A meta-program can be
defined informally in the following way. First, the meta-program handles a
program as data. Second, the meta-program handles data as a program and
evaluates it. Third, the meta-program treats the result of a program as data.
The most well known example of a meta-program is the demo predicate of
Bowen and Kowalski [Bowen 83]. In this system, the demo predicate is valled



solve,

A meta-programming approach enables the construction of powerful
programming environments as most meta-programs are realized as meta-
interpreters of object-programs. Lisp and Prolog make it easy to write
interpreters for the languages themselves, For instance, an explanation
facility can be realized with meta-programming by adding an extra
argument to the predicate solve two arguments.

Figure 2 is a meta-interpreter with an explanation [facility. The
predicate solve contains three arguments. The first argument iz the domain
world name, the second argument is a goal to be solved and the last argumentis
trace information on the goal when it is solved.

The first and second clauses provide the solution procedures when a
goal is in the form of conjunctions and disjunctions, respectively. The third
clause is assumed to be true, if Goal is truc in the domain world. The fourth
clause actually solves the goal using the predicate clause__world. The fifth
clause is used when a goal is a built-in system predicate in Prolog.

This meta-interpreter can be easily modified to handle the cut operator,
and to execute a Prolog interpreter in Prolog.

The meta-programming approach has several advantages. First, it is
pasy lo distinguish clearly an object-level program and meta-level program.
‘This clear separation of object program and meta program makes it easy to
understand the system (readability), and system modification is also easy
(maintainability). However, execution speed isslow.

solve{World, (Goall,Goal2),(Proofl,Procf2)) :-
solve(World,Goall,Proofl),
solvelWorld,Goal?, Proof?).
eolve(World, (Geall;Goal2),Proof) :-
solve{World,Goall,Proof);
solve(World,Goal2,Proof).
golve{World, true, truel,
solve(World, Coal,implies{Proof,Goal,Body)) :-
clause_wcrid[Wnrld,Gcal,Body},
solve(World, Body,Praoof).
solve{World, Geoal,system) :-
system{Goal),
Goal.,

Figure 2. Meta-interpreter with an Explanation Facility



4. Control of the system

Meta-level inference is controlled by meta-knowledge which guides the
system toward the best way of solving an expression. Figure 3 shows a part of
the predicate strategy for selecting a method on the basis of such meta-
knowledge. The predicate strategy contains five arguments. The first
argument is the input expression, the second is the selected method name, and
the third is the unknown variable. The predicate strategy determines a
method to be applied using meta knowledge.

® The first elause determines that the isolation method will be used when the
right hand side is free of unknown variables (predicate free__ of), there is
a single oceurrence of an unknown variahle in the left hand side (predicate
singleocc), and its position is known (predicate position).

® The second clause determines that the factorization method will be
selected when the main operator in the left hand side is multiplication
(predicate main__op__ mult) and the right hand side is zero (predicate
zero).

The process of solving expressions is controlled the predicate
method__demo. Figure 4 shows the predicate method__demo used in this
control. Argument of method _demo indicate the input expression, the
unknown variable, the control information for the input expression, the past
history and the solution.

® The first clause checks for an infinite loop in History. If the analysis is
positive, a Find infinite loop message is returned and operation is
suspended,

strategy( LHS=RHS,isclation,Unknown,Control,
[position{P)|Control]) :-
free of (Unknown, RHS),
singleccc(Unknown,LHS]),
position(Unknown, LHS,P).
strategy(LHS=RHS, factorization, Unknown, Control,Control}) :-
main _op mult(LHS),
zerc[Rng.

Figure 3. Part of The Predicale "strategy"



method demo(Expression, , ,History,'Find infinite loop') -

loop check(Expression,History).

method demo(Expression,Unknown,Control,listory,Answer) :-

end_check{Expression,Unknown,Control,Ans).

method _demo(Expl or Exp2, Unknown,Control,

History,Ansl or Ans2) :-
method demo(Expl,Unknown,Control ,History,Ansl),
method_demo(Exp2,Unknown,Control History,Ans2).

methed demo(Expression,Unknown,Control,History,Answer) :=

strategy(Expression,World,Unknown,Control NewControl),
solve{World,
apply(Expression,Unknown,New Exp,NewUnknown},
CutMark,Explanation),
explanation(Explanation},
method demo(New_Exp,New Unknown,New Control,
[Expression|Historyl,Answer).

Figure 4. Predicate method__demo

The second elause breaks down the problem into its component expressions.
Component expressions are created when the system  applies the
factorization method.

The third clause judges whether the expression was solved. The judgment
is made by checking the condition contained in the Control. For example,
given the request to solve equation X?-4=0, the answers are X=2 and
X=-2. But, if a condition X >0 is stipulated, then X =-2 will not be a
solution.

The fourth clause determines the applicable rewriting rule with the
predicate strategy and applies the rewriting rule when using the predicate
solve. The predicate explanation hasthe system explain the reason of the
object-level program (a rewriting rule), and the predicate method__demo
processes the expression recursively.

The predicate solve is a meta-interpreter with the cut operator and

solves the goal apply(Expression, Unknown, New__ Exp, NewUnknown) in
Lhe domain world.



5. Application of Partial Evaluation

As stated above, the meta-programming approach makes it easy to
develop a system, but execution speed is slow. Partial evaluation can remaove
this problem when used in translating a meta-program to a efficient program.

Partial evaluation of programs involves making the original program
more specific using information about the run time environment. The
meta-interpreter plus the original object program is converted into the

solve(World, (P;Q).,V) :- [(solve(World,P,V);soclve(World,Q,V)).
solve(World, (!',;Q).,V) = cubt(V),

(V==cut, |; solve(World,Q,vV})).
salve(World, (P,Q),V) = Py\== 1,

solve(World,FP,V), solve(World,Q,V).
solve(World, ! ,CUT) :- cut{CUT}.
solve(World, true, ).
solve(World,not(P), ) := 1, if(solve(World,P, ),fail,true).
solve(World, P, V) :-

clause world(World,P,Q},

enlve(World,Q.v),
(V==cut, 1, fail; true).
solve(World,P,V) :~- sub system(P), P.

solve (World,P,V) :— systemi{P), P.

cut(_).

cut(cut).

if(1f,Then,Else) := If, !, Then.

if( _, _rElse) :- Else.

clause world(World,P,Q) :- X=.. [World,R], X,

clause_body(R,P,Q).

clause_bedy((P :- Q),P,Q) :— 1.
clause body(F,P,true).

sub_system{tidyl(_, )}.
sub_system{condition_check(_}).

system{_ is }.
system{_ =:= }.

Figure 5. (a) Meta-interpreter



specialized object program by partial evaluation and program obtained is
executed much faster than the original program. In fact, since an object
program can be regarded as input data from a meta-program, the meta-program
can be specialized by partial evaluation if the object program is given, Thus, the
specialized program has no interpretive code, which improves the efficiency of
the program.

This can be best explained by example. Figure 5isa general meta
interpreter in Prolog with the cut operator for all methods and an object
program of isolation method. sub__system and  system are recoghizer
predicates that succeed when they are the basic predicate in an algebraic
manipulation system and a built-in predicate, respectively. Each clause of
Figure 5 (b) is expressed fact in Prolog as isolate(Clause). Figure 6 lists the
instructions for partial evaluation specified by an user. Figure 7 is the
specialized program of the original by partial evaluation, The general meta-

apply(L=R,Ctrl,Ans,N Ctrl,Hist) :-
member (unknown{Unknown) ,Ctrl),
remove{position(P),Ctrl,Ctrl 1),
isolate(P,L=R,Rnsl,Cont, Hist),
tidyl{Ansl,.Ans),
append(Cont,Ctrl 1,N Ctrl),!.

member (%, 1%]_]) = L.
member{E,[“|Y]] 1= member({X,Y¥).

remove (¥, [X]¥],¥) = 1.
remove(X,[¥|z2]),[¥|wWw]) := remove(X,Z,W).

igolate([Car|cdr],FX=W,RES,N Ctrl,[(RuleNo,Wait)]) :-
isolax{RuleNo,Wait,Car,FX=W,RHS,Ctrl,Condition),
condition check(Condition),
add information(Cdr,Ctrl,N_Ctrl).

append([],L,L} = 1.
append([X|L1]),L2,[x|L3]) :- append(Ll,L2,L3).

add_information([],Ctrl,[end|Ctrl]).
add_infcrmaticn{P,C,[next{isolate},pusition{P}|C]} i= Ph\==[].

igolax(isco02,1,1,V+0=W,V=W-0U,
[explanation([Explanatien])],true).

Figure 5. (b) Object Program of lsolation Method



interpreter is transformed into an exclusive meta-interpreter for the isolation
method.

Table 1 is a comparison of the execution times of wvarious programs.
Fxecution times are compared with the execution time required by the
program p1.

The program p1 is the meta-interpreter plus object program, that is the
original program produced with the meta-programming approach (two level
structure program). Program p2 is the specialized program generated by partial
evaluation of program p1. Lastly, program p3 is written with the one-level
structure approach, thatlis a mixture of meta-level and object-level program
combined as an object-level program.

Program p1 has good readability and maintainability of the program
but its execution speed is slow. Program p3's execution speed is fast, but

type(A=B, t) :- var(A),var(B},!.
type(A=cut. t) :-!.

type{A=B, s} :-
type(!l,
type(system(A).
type{call(A),
type(A h== 1,
type{cut(A),
type(A==cut,
type(fail, .
type(sub_system(A), e).
type(clause world(A,B,C).e).

nonvar(A) ; nonvar(B} ).

o+ e+ D~ D ot
e e o o M P B!
s w4 5w ow

type(solve(Worid,(8.,C),0).q)
type(solve(World,true, B),e)
type{soluel[wur"ld,faﬂ, B).t}.
type(solve(World,!, Ay.g).
type({solve(World, A\==[].B},q)
type(solve(Worid,B, €y,g) :- sub_system(B).
type(solve(World,apply(B.C,D,E,F), G).g) :- nonvar(Worid).
type(solve(World,member(unknown(A),B), C),a).
type{solve(World, remove(positi n(A),B,C).D).g}.
type(solve(World,isolate(A,B=C,D,E,F}, G).g).
Lype[sn'lve{'ﬁluﬂd.isD]ahﬁﬂ,Bi,UfE,F.G.H} 1).0).
type(solve(World,add_inform tion(A,B.C), D).0).
type({solve(World, append(A,B,C), D).g).

inhibit unfolding(solve(World, (!, Goal),
inhibit_unfolding(solve(World,,
jnhihiL_unfﬂ1ding{501ve[wurTﬂ,member{unknown{A},E},
1nhihit_unfn1ding{SD1VE[WﬂP1d.FEMOVE{PﬁﬁitiDﬂ{ﬂ)~B1C}-
inhibit unfolding(solve(World,isolate(A,B=C.D,E.F),
jnhibit_unfnTHing{sulve(wﬂrld,isulax{A.B.E.D=E.F.G~H],
ﬁnhihit_unfalding{501ue{ﬁur1d.add_ﬁnfurmation{ﬂ,ﬂ,t},
inhibit unfolding(solve(World,append(A,B,C},

COEGOC 20
e S P i it Wit it N
™ S Vo W ! ol i S

Figure 6. Instructions for Partial Evaluation



readability and maintainability dre poor. Thus, advantages and disadvantages
of both programs are complementary. This complementary relation reflects

solve(isolate,apply(A=8,C,D,E,F),G} :-
solve(isolate ,member{unknown(H),C
solve( isolate, remove(position(I),
solve(isolate, isolate(I.A=B.K,L,
call(tidyl(K,D)),
solve(isolate,append(L,J.E).G).
solve{isolate,!,G),
(G==cut, !, fail; true}.

solve(isolate,member(unknown(A),[unknown(A)|B]).C) :-
solve(isolate,!,C}),
(C==cut, !, fail; true}.
sn]va(isulate.memher{unknawn{h].[ﬁ|E?}.D} i-
solve(isolate,member{unknown{A),C).D),
(D==cut, !, fail; true).

solve(isolate, remove(position(A), [position(A)[B],B), C) :-
solve(isolate,!,C),
(C==cut, !, fail; true).

solve(isolate, rﬂmnve[pnsition{ﬁ].[BIC].[B|D}}, E) :-
solve(isolate, remove(position{A}),C,D),E),
(E==cut, !, fail; true).

solve(isolate, isolate([A|B].C=D.E,F,[(G ,H};]. I) :-
solve(isolate, isolax(G,H,A,C=D,E,J.K}, 1},
call{condition_check{K)),
splve(isolate,add information(B,J,F},1),
(I==cut, !, fail; true).

solve(isolate,add_information([].A.[end|A]).B) :-
(B==cut, !, fail; true).
solve(isolate,
add information(A,B,[next(isolate),position(A)|B]), C) :-
ca?T{nH==E]}.
(C==cut, I, fail; true}.

so1ve{iso]ate.append{[},ﬂ.ﬁ].E} -
solve(isolate,!,B),
(B==cut, !, fail; true).
salve{isulate,append{[ﬂ[ﬁ],C.[A|DH),E} H
solve(isolate,append(B,C,D}.E},
(E==cut, !, fail; true).

solve(isolate,
isolax{is002,1,1,A+B=C,A=C-B,[explanation({[D])].true),
E} :-
{E==cut, !, fail; true).
solve{isolate,! A} :- cut(A).

Figure 7. Specialized program
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Table 1. Comparison of Execution Times

F1 P2 Pa
Execution 1.00 5.01 6.21
speed-up
Readability, i 0
Maintainability

pl: Meta-interpreter + Object Program
p2: Specialized Program by Partial Evaluation
pd: One-level Structure Program

the trade-off between efficiency in p1 and readability and maintainability in
p3. Program p2 overcomes the irade-off by partial evaluation, it has the
advantages of both programs with out the disadvantages of either. This is
because p1 is used to modify the program, while p2 is used in its execution.

6. Conclusion

we described an application of partial evaluation to the algebraic
manipulation svstem using meta programming. Meta-programming plays an
important role in logic programming because of its expressive power. Partial
evaluation will make meta-programming more practical by improving the
execution efficiency of meta-programs.

Building on this research, we will seek to develop an algebraic
manipulation system in a parallel logic programming language such as
Guarded Horn Clauses (KL1-¢) [Furukawa 85, Ueda 85]. Naturally, it will use
meta-programming and partial evaluation in the parallel logic programming
language.
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