ICOT Technical Report; TR-145

TR-145

Making Exhaustive Search Programs Deterministic

by

Kazunori Ueda

MNevember, 983

L1985, 1COT

Mite Rokusai Tdg 21F 51 456=3191 5

“ CJ I I=2% Mlia 1-Chome elex WOT 32064

Minare-ku Tokvo 108 Japan

Institute for New Generation Computer Technuloéﬂr_

Making Exhaustive Search Programs Deterministic
Kazuncori Ueda

IC0T Research Center
Institute for Hew Generation Computer Technoclogy
1-4-28, Mita, Minato-ku, Tokyc, 108 Jepan

RBETEACT

This paper presentz a technique for complling a Herp-clause
pregram intended to be wused for exhaustive search drtc a GHC
{Guarded Horn Clauses) program. The technique can be viewed alsc
as a transformetion technigque for Proleog programs which
eliminates the ‘bagof' primitive and non-determinate bindings.
The class of programs to which our technique is applicable is=
shewn with a statie checking elgorithm; it is rnontrivial and
cowld be externded. An experiment on a compiler-based Frelog
system showed that ocur trapsformeticn technique improved the
efficiency of exhaustive search by & times in the case of =
permutetion gemerator program. This transformstiop technique is=
impertant alsc in that it expleits the AND-parsllelism of GHC for
parallel search.

1. INTRODUCTION

We ofbten use the Horn-clause lopic, or more specifically the lsenguage
Prolog, to obtain &ll sclutiens of =cme preblem, that is, to obtain all
answer substituticns for the variables in & poal to be sclved. Under this
fremewcrk, however, it dis difficult to "ecollect' +the cbtained soluticns
intec a =ingle envirornment din which to make {urther proceszsing such as
counting the number of the scluticns, comparing them, classifying them, and
50 On. Thi= i& because these seoluticns correspond to different,
independent pathe of a search tree. For this reasscn, many of FProlog
implementations suppert as primitives system predicates for cresting a list
of solutions of a geal givern as an argument; examples gre "setof' &nd
"bagof' of DEC-10 Prolog. [Nzish B5] centains a2 survey of all-scluticns

predicates in vericus Prolog systems. These predicates, however,

interpally use =cme extralogiesl features to record the cbtailped scluticns.
S0 it should be an interesting questicn whether it is impessible to do
exhaustive search without such primitives.

inother motivatien 4is that we may scmetimes wish to do exhaustive
searen in GHC [Ueda 85) or other parallel logic programming languages which
do not directly support exhaustive search. In this case; parallelizm
inherent in GHC should be effectively used for the search. ({We amit the
deseription of GHC in this paper; it can be found in [Ueda BE] and a wvery
brief eyplapstion can be found alsc ip [Ueda and Chikayema 851.)

One possible way to achieve the above requirements 1is to directly
write a first-crder relation which states, for example, that "S is a list
of all scluticns of the N-queens problem". It 1is almost evident that =such
a relaticn can be described within the framewcrk of the Horm-clause logic.
However, in practice, it is much harder 1o write it manually than to write
a program which finds only cne scluticn at 2 time. A pregrapming tool
which sutcmatically generates an exhaustive search program could resclve
this situation, and this is the way which we will purswe in this paper.

2. OUTLINES OF THE METHOD

Our metheod iz to compile & Horn-clause [rogran intended to be used for
exhaustive search by means of backtracking or OF-parallelism intc a GHC
program or & deterministic Frolog program which returns the Same
(multi-)set of sclutiens in the form of & single list. Here, the werd
‘deterministic' means that & veriable cnce instantiated is never unbound.
Frolog programs in this deterministie subclegss are interesting from the
viewpolnt of implementation, since a trail track need not be prepared to
execute them correctly. Furthermcre, the determiniem in this sense hazs &
similarity with the semantical restriction which GHC imposed to Horn
clauses to enable all asctivities to be done in a gingle emviropment. This
similarity is reflected by the faet that 2 transformed preogram can be
interpreted both as a GHC program and &as & Frolog program by the slight
change between the '}' {commit) operator and the ty1' {eut) epersteor.

There are two possible views of this transforpation technique. One is
to regard this as compilation from & Horn-clause pregrap (with nc concept
of sequentiality) to a2 guarded-Horn-clause program. By compiling
OF-parasllelism inte AND-parallellsm, We eliminate a mdtiple environment
mechaniem which is in general necessary for parallel search since each path

of a search tree would create 1ts own binding envirenment. The other view

e

i= te regard it as transformation of & Prolog program. This= transformation
serves a5 simplification in the =ense that the predicate "begef" and the
unbinding mechani=m can be eliminated. Moreover, this transformation may
remarkably lomprove the efficlency of & search program, as we will see
later.

Qur technique hasz ancther important meaning. By making =earch
performed in a single environment, we get the possibility of extending an
object program to introduce a mechanism for '"controlling' the search. That
iz, our technique may provide & =taring point for realizing more
intelligent search.

p transformed program, viewed as a GHC program, emulatez the
OR=parallel and AND-sequential execution of the coriginal preogram. The
criginal OF-parzllelism is compiled into AND-parallelism as stated above,
and the segquential executien of copjunctive geals is realized by passing a
continustion arcund. The AND-parallelism of GHC we usze 1s a =zimple cone,
gince twe conjunctive goals solving different paths of a search tree have
no interacticn except when sclutions are collected.

A continuatien 15 a data structure which represents remsiping tasks to
be donme before we get a solution. The necticn of continuation wWas
effectively used alsg in a Concurrent Prolog compiler on top of Prolog
[Ueda and Chikayama 85] to implement a goal guewe, The difference is that

cur centinuation iz &8 stack, not 2 gqueue.

3. PREVIOUS RESEARCH

Ionplementetion techbnigque of exhaustive search in parallel logic
programming languages can be found irn [Birakawa et al. E4] and [Clark and
Gregory 85], Their approach is to deseribe an interpreter of Hern-clause
programs in Concurrent Prolog [Shapire 83] or FARLOG [Clark and Gregery
841, but the following problems could be addressed to this approach:

{1} The interpreter approach loses efliciency.
(2) Multiple enviromment mechanism iz implemented as a run-time creaticn of

variants of terms.

where & varisnt iz = term crested by =ystematicelly replacing all the
ccourrences of the wvariasbles in an original term by new variables.

Problem (1) will not be sericus, =ince it could be resclved by =2
partial eveluation technique. Alternatively, we could directly write a

3

compiler which corresponds to those interpreters without much difficulty.
On the other hand, Problem (2} 2eems sericus.

The reascn why we need multiple envircpments is that different szets of
unifiers can be generated when we rewrite a goal in twe or more ways by
using different candidate c¢lauses st the sape time. Therefcre, when we
interpret an exhaustive search [program, Wwe make & neceszsary onumber of
variants of the current set of geals and the partially determined solution
prier to that simultanecus resclution. The above interpreters made some
optimizaticn to reduce the amount of varlants to be created, but they do
not aveid run-time creaticn of them.

However, run-time creatien of varliants is a time=-sensitive operation.
That is, the geoal for creating @ variant, say "copy(T1,T2}", cannot be
rewritten to the cenjunction of twe goals 'T1=T3, copy(13,T2)' although it
seems that both must have the same declarative meaning. This rewriting is
the reverse cperation of wusual substituticn, and GHC is designed so that
its semantice is irnvariant with respect to this rewriting. Therefore, in
the framework of GHC, the semantice of the above 'copy' predicate cannot be
defired ratienally. In the framework cf sequential Prolog also, the
predicate 'copy' should be considered extralogical, because it cannct be
defined without the extralogical predicate 'var' which checks if its
argument is currently an uninstentiszted variable. The use of extralogical
predicetes should of course be discouraged, since it iniroduces semantical
complexity and it hinders the descripticn and the suppert of prograoming

systems.

4, & SIMPLE EXAMFLE

Te illustrate the difference between the previcus method and curs, let
ua consider the example of decomposing & list into two using the wusual
‘append' predicate:

:= appernd(U, v, [1,2,31).
append([], Z, Z). {1)
append ([A1%1, ¥, [£12])} :- append(X, Y, Z). {2}

From the head of Clause (2), we get a partial solution Us[1:iX]. Then we
get three instances for X, namely (], [2], and [2,3], by recursive calls.
However, these three scluticns canpnot share the commen prefix r[11', a=

long as the value of a varisble is represented by a reference pointer

#

rather than by an assccisticn 1list, and this is why we have tc make
veriants of the partisl smelution [1(X].

Our method, on the other hand, first rewrites Clause (2) as follows:

append (X2 ¥, [A1Z])} := append(X, ¥, Z}, X2 = [A1X]. (2v)

The predicate '=' unifies its two arguments. This can be defined by a
single unit clause:

!:xn

We assume that body goals are executed from left to right, following head
unificaticn. Then, while Clause (2) geperzfes answer substitutions in a
top-down manner, Clause (2') gemerates them in & bottom-up manner, that is,
by combining ground terms only. The first output argument X2 remalns
uninstantiated until the first recursive goal, which may fork because cof
the two candidate clauses, succecds. Therefore, we need not make varlants
of the partial sclutiecn upon that recursive call. Clause (2%) 1s ne more
tail-recursive, so we must instead puah the remaining task, the tazk of
consing & with X to cobtain X2, onto the stack representing a continuation.
However, =since the varisble £ oust have a ground value, the informpation to
be stacked can be represented as a ground term, and hence the econtirnuaticn
need not be copied even when the 'append! goal forks.

Now we are prepared for nopdeterminism elimination. Figure 1 thows 2
GEC prograr which returns the result equivalent (up to the permutation of
sglutiens) to the following DEC-10 Preleog gosl:

= wany bagof({X,Y}, append{X,¥,Z}, 5}, ...

The search corresponding to the two c¢lauses of the original 'asppend' is
perfermed by the conjunctive goale "epl' and "sp2'. Their ergumentis are g
follows:

(1) the input (third) argument of the ocriginal program,
{ii) the continuvetion,
(iii) the head of the difference list of s=eluticns, and
{iv) its tail.

Since Clause (1) i= a wnit clause, the corresponding predicate ‘api!

activetes the ‘'remaining tasks! by calling the predicate ‘'cont' for

“y

t= ..., ap(Z, 'LO', 8, [1), ...
ap(Z, Cont, S0, S2) :- true | apl(Z, Cont, S0, 1), ap2{Z, Cont, 21, 82).
ap1(Z, Comt, S0, S1) :- true | econt(Cont, (1, Z, 30, S1).

ap2([A!Z], Cont, SO, 1) :~ true | aplZ, *L1'(A,Cont), 50, 51).
EPE{Z, 1 E'D'p 51} :- ctherwisze I 20=51.

cont ("L1'(4,Cont), X, ¥, 80, §1) := true | cont(Cont, [4i%1, ¥, s0, 31).
cont ('LOY, X, ¥, S0, S1) i~ true | S0=0(X,Y){81].

Fig.1 List Decomposition Program

LN

ecntiruvation processing. At that time, two output results, [] and the
input srgument itself, are pessed to the ceptinuation processing goal. The
predicate "ap2' activates the first recursive goal with the infermation
used for the second goel sttached to the coptinusticn 1in case the input
argument has the form [A!Z]. Otherwise, the unificatiocn of the input
ergunent fails and the empty difference list i= returned immediately.

The predicate ‘'comt' ds feor continuaticn proceszsing. If the
continuation has the form "L1"(A,Cont), it pushes & in front of the ocutput
% and calls 'cont' to process the rest of the continuation, "Cont'. If the
continuation has the form "LOY, it inserts the two outputs it received inteo
the differepce list. The function syombols which construct the continuaticn
can be regarded as indicating the locaticns of the criginsl program: Lot
indicates the end of the top-level goal, and "L1' indicates the end of the
recursive call of Cleuse (2'). Interestingly, the predicate 'copt' is very
gimilar to an efficient (mon-naive) list reversal program, and the continu-
ation in this example iz essentielly & 1list which represents the first
parts of all the sclutiops (each of which is & peir of lists) im & reversed
form. Different solutions to be collected are crested by different calls
of 'cont' which reverse different substructures of the shared continuation.

The program in Figure 1 collects the scluticns from 'ap1' and "ap2' by
the concatenation of difference lists, but this is not & feir way of
collecticn. For example, if the first clause of some predicate produced
infinite number of scluticns, we could not see any scluticne from the
second clause. When we peed 2 failr ccllecticn, we must collect scluticns
by using a 'merge' predicate implemented fair.

We can interpret Figure 1 alsc asz & Frolog program, provided that the
'i'" operators are replaced by the '!' operators, that the 'ctherwise' goal
in the =ecoend clause of ‘'ap2' 1s deleted, and that thiz clause is
guaranteed to be the last clause of 'ap2'.

5. GENERAL TRANSFORMATION PROCELURE

This chapter first presents the class of Horn-clause programe to which
the technlique as illustrated 4in Chapter U can be easily and mechanically
applied, and then briefly show the transformation procedure. We use the
rermutation program (Figure 2) a3 an example.

First of ell, we show the c¢lass of Hern-clause programs to which our
transformation technigue 1= applicable. 4 program in this class must have

the fcllowing property when the body goals in each clause are executed from

7

left to right, following head unificaticon:

¢ The argumentz of every goal appearing in a program can be classified
intg input arguments and output arguments. When the goal is called,
its input arguments must have been instantiated to ground terms, and
thern the goal must instantiate its output arguments to ground terus

when it suocceeds.

Although the above property may lcok restrictive at & glance, most programs
which do not use the noticn of 'multiple writers' (see Chapter &) or the
notien of a difference list (whieh i= an incemplete data structure) will
enjoy this property. Programs which do use 'multiple writers' require
pre-transformaticn as deseribed in Chapter 6. On the other hand, programs
which make wse of difference lists could be handled by extepnding the above
noticn of input and output, as long as they allow static deteflow apalysis.
This conjecture is based on the observation that when we write a Prolog
program which handles difference lists, we wusually fully recognize how
uninstantisted varisbles appear in the datz structures.

Ope way to give input/cutput medes te a program would be to let the
programmer declare them for every goal arguments appearing in the program.
However, a more realistic way will be to let the programmer declare the
mode of (the arguments of) the top-level geal only and t¢ "infer' the medes
of other goals according to the fellowing rulesd

{a) Arguments which have been instantiated to grocund terms upen call are
regarded a= input arguments (though they could be classified
otherwise).

{b) All the other arguments are regarded as output argumepts.

The mode inference and the check whether the program belonge to the above
tranaformable clase can be dene in & =simple static analysis. We must
perform the following apalvais for esch cleuse and for each mode in which

the predicate containing that cleuse may ke called:

(1) Mark all the wvapiasbles appearing in the inpput head arguments &2
Yground'.
{2) While there is 2 body gecal Yyet to be apalyzed, do the fcllowing
repeatedly:
(L) Datermine the mode of the next body goal according to the above

inference rules (a) and (b). Here, those terms which are composed

i}

perm{[], (1.
pern{[H{T], [#|P]) := del([H|T], &, L), perm(L, F).

del([HIT], H, T).
del ([H|T], L, [H|T2]) :- del(T, L, T2).

Fig.2 Permutation Frogram

Given Declaraticn: permi+, -).
("+': input, '=': output)

+ -
perm{ [], 1.
+ - + - - + =
perm([HiT]), [A|P]) :- del([H!T], &, L), perm(L, E).
. - -
del([HIT], K, TJ.
- = = + = =

del{[HiT], L, [HiT2]) := del(T, L, T2).

Fig.3 Mode Anelysis of the Permutation Program

only of variables marked as 'ground' and functicn symbols, and
only those, are regarded as ground terms.
{1i) Then mark all the variasbles appearing in the cutput arguments of
that gpoal as 'ground'.
(3) Check if the variables appearing the output heed erguments are all
marked as 'ground'. If the check succeeds, terminate the analysis of

this clause with succeszs; otherwise report failure.

Initislly, oply the mode= of top-level goals are known; possible modes of
octher predicste czlle are incrementally obtained during the above analyais.
Therefore, the whole algorithm of mode analysis should be as follows. In
the following, S denctes & =set of 'moded' predicates. & moded predicate i=
a predicate with a mode in which it is called; different modes of =scoe

predicate correspond to differept poded predicates.

(A) Let 8 be = set composed of the 'moded' predicates whose calls appear in
the (declared) top-level goal. Mark those prediceates as 'unanalyzecd'.
{B) Repeatedly do the following until no 'unanalyzed' predicate remains in
S. That is, take an ‘'unanalyzed' predicate from 5, unmark it, and
analyze all its clauses using the above aigorithnm, adding te 5 with the
mark 'unanalyzed' =1l moded predicates whose cslls are newly found

during the executien of Step (2) .

Figure 3 shows the analyzed permuteticn program. It is easy to prove,
by inducticn on the number of steps cof resclution, that & successfully
analyzed prcgram instasntistes the output zarguments of each goal to ground
terms uper successful terminaticn, provided ground terms are given to the
input arguments.

! =successfully analyzed program is then transformed according to the

following =teps:

(1) If there is any predicate to be called in twe or more different modes,
give & unique predicate pame for each mode.
{2) Rewrite ezch clasuse inte the normal form.

(3) Transform each predicate in the program.

Step (1) removes multi-mede predicates. This transformeticn altaches
the ccncept of mode to each 'predicate', not to each predicate "call'.

Step (2) iz made up of the following steps:

i

{(2-a) For each c¢lause other than unit clauses, replace output head
arguments T1, ..., Tn by distinet pew variables Vi, .., Vn, and Tplace
the goels V1=T1, ..., Vp=Tn &t the end of the clause.

{2-b) For each goal in the body of each clause, replace its output
arguments T1, ..., Tn by distinct mpow variables V1, ..., ¥n and place
the goals V1=T1, ..., Vp=Trn immediately after that goal upleas Ti1, «.«y
Tn are already distinct variables not appearing io the previcus goals

or the clause head.

The purpese of Step (2-b) is to simplify cutput srguments. It i= clear
that 2 program which has passed the mode analyseis and then has been
rewritten according to Steps {(2-a) and (2-b} is still in the tranaformable
claas, igure U shows the normal form of the permutation program.

Now we will show the outline of Step (2), the main part of our
tranaformaticn method. Figure & =hows the result applied to the
perputaticn program of Figure 4, In the following, we indicate in braces
what in the example of the permutation program are menticoned by each term

appearing in the explanation.

{(a) The arguments of a transformed predicate are made up of
¢ the input arguments of the original predicate,
o the continuaticn, and
o the head and the tail of the differepce list for returning sclutions.
Each transformed predicate is responsible for doing the task of the
eriginal predicate, fellowed by the task represented by the
continuvation.

(b) For a predicate {'pern'} of which at most one clause can be used for
resgluticn of each goal, the transformed predicate is composed of the
transformed clauses {1, <2>} of the criginal ones (See (i)). Fer a
predicate {'del'} of which mere than one cleuse mey be applicable for
respluticn, we give a separate subpredicate name {'di', 'd2'} to each
transformed clause {<5>, <T>}, and let the tranaformed predicate {'d'}
call all these subpredicates and ccllect scluticns.

{c) The body of the clause {<1», <5»} transformed from & unit cleuse calle
a goal for continueticon processing {'eontp', ‘contd'l. This geal is
given as arguments the ocutput velues {[], (H, TJ} returned by the
criginal umit clause.

(d) The body of the clause {<2», <7>} transformed form a non-unit eclause
calls the predicate {'d'} corresponding to the first body goal {'del'}
of the criginal clause (See (e} and (j)).

/

permi[], [1).
perm([HIT], X} :- del{[H)T]1, &, L), /%1%/ perm(L, F), /%L2%/ X=[4|F].

del([H!T], H, TJ.
del([H)T]}, L, ¥) := del{T, L, T2), /OL3%; X=[HITZ2].

Fig.4% Normel Form of the Permutation Progream

<1> pll], Cont, 80,81) :- true | contp(Cont, [], S0,81).
<2» p([H{T), Cont, 50,51) := true | &([H|T], 'L1'{Cont), S0,51).
<3» plL, . 50,51} i~ ctherwise | S0=51.

<4» d(L, Cont, 20,32) := true | d1(L, Cont, 20,31), d2(L, Cont, S51,52).

<5» d1([BiT], Comt, 20,21) :- true | contd{(Cont, H, T, 50,31).
<6> d1i(L, ¥ SG,51) := otherwize | 20=31.,

<7> d2([HiT], Comt, 80,31} := true } d(T, 'L3"(H,Cont), S0,51).
<8» dz(L, s S0,51) :- otherwisze | 20=21.
<9> contp('L2'(4,Cont), P, S0,S1) :- true
<10> contp('LO', F, 30,51) := true

contp({Cont, [4iP], SO,51).
S0=[Fisi1].

<11? contd('L3*(H,Cont), L, T2, 50,51) i=- true |
coptd{Cent, L, [H|T2], S0,51).

€12* contd('L1'(Cont)}, A, L, 50,81) :- true |
p(L, 'L2'(A,Cont), SO, 31).

Fig.5 Transformed Permutation Program

JZ

{e) When calling a (tranaformed) predicate {e.g., "d" in <7>} corresponding
to the i-th body goal Gi {the recursive call of 'del'} of =cme clauss,
we push the label {'L3'} indicating the next pgoal Gi+1 together with
the input data {E] used by the subsequent geals Gis1, ..., OGn
{¥=[Hi{T2]}. When wecslling a predicaste {'p"} corresponding teo the
top=level goel {=say 'perm(L,X)}' where L iz some ground term}, we give
a5 the initial value of the continuation the label {'L0'} indicating
the termination of refutaticn together with the date {nomel for
creating a term to be colleected {X}.

(f) Predicates for continustion processing are composed eof clauses {<0>»,

<10>, €11», €12*} each corresponding to the label pushed in Step {e).
These clauses are classified according to the predicates immediately
before those labels and are given separate predicate names {'contp',
"econtd'}.

(g} Each clause {e.g. <12»} ef a rpredicate for continustion preocessing
mekes lnput data {L} for the goal {perm(L,F)} indicated by the received
label {'L1'}, by using the informaticn {none} =satacked with the Llabel
end the output {4, L} of the last goal. Then it calls 2 predicate
{'p"} which cerresponds te the above goal (See (e) and (j)).

(h} The clause {<10>} to process the label {'LO')] indicating termipaticn
generates a term to be oollected {P} from the output {F} of the
top=level goal &snd the informaticn {none} stacked with the label, and
returns a difference list having that term as & scle element.

(i) For those tranaformed predicates {'p', '¢1', 'd2'} which may fail in
the unification of the input arguments, backup clauses {<3», <6>, <83}
are generated which return eppty difference lists in case the
unificatien fails.

(J} In apite of the above rules, no transformed predicatez are pgenerated
for '=' and other system predicates, but they are processed
immediately 'on the epot', followed by the mext task (<9, <112},

It i= worth noting that in spite of our restricticn, s transformed
precgram can handle scme non-ground data structure correctly. That is, the
portien of an input dats structure which iz only passed sround and never

examined by unification need not be a ground term. For example, when we

execute the following goal,
t- p(la,E,C], 'LO', s, [1).

5 will be correctly instantiated to a list of =ix permutations:

/3

({#,B,C],[A,C,B],[B,4,C},[B,C2],[C,8,B],[C,B,A]]

6. ON THE CLASS OF TREAKSFORMAELE PROGRAMS

For the technigue described above to be effective from the practical
point of view, the tranaformable elass of Horn=clause programs defined in
Chapter 5 must be large enpough to express our problems naturally. The
probler in this regard is that we often make use of the noticn of 'multiple
writers'. By 'multiple writers' we mearn twe or meore goals sharing some
data structure and tryimg to dinstentiate 1t cooperatively and/or
competitively. In Prolog programwing, =such & data structure is usually
represented directly by 2 Prolog term and it is operated by the direct use
of Prelog unificatien; a typleal example is the copstructicn of the output
data of a parser program.

However, this programming techoique has problems from the viewpoint of
the applicakility of cur transformaticn:

{1) It is pgenerally impossible to statically analyze which part of the
shared data structure is instantiated by which goal.

{2) The shared data structure may not be instantiated fully te a ground
term.

Item (2) is considered & problem alse from & semantical point of view.
¥hen extracting some informatiop from the shared data =tructure generated
by & search program, we have to use the extralogical predicate ‘var' to see
whether some portion of the data structure is left undetermined. One may
argue that we need not use the predicate 'var' if we analyze the dats
structure after making it ground, that is, after instantiating its
undetermined porticns to sowe ground terms such as pew constant symbels.
He may further argue that making a term ground never ocalls fer the
predicate "var' since we can accomplish this by tryving to unify every
subtern of it with a pew constant. However, then, the search program which
gererates a non-ground result and the progranm to pake it ground will be in
the relationship of multiple writers, and the latter program should pever
start before the former program has finished because the latter program
pust have a lower priority with respect to ipastapntiation of the shared data
structure. This means we have to use the copcept of eeguentiality or
priority between conjunctive goals, both of which are concepts cutside the

/¥

pure Horn-clsuse logic.

Anyway, we must mpake some pre-transformation to sueh a Horp-clause
program 1p order to apply cur transformation technique. That is, we Dust
change the representetion of the shared data structure to a ground-term
representation--a list of binding informaticn genmerated by each writer.
Each writer must receive the current list of binding infermaticn and return
@ new one ag a separate argument. When a writer i1z to add scme binding
information, it must check the conaistensy of the current and the new
information to be added. This checking could be done by trylpg to
construct the original representaticn from the scrateh each time, but it
could be done more efficiently by adopting appropriate data structure
(poasibly other than a list of bindings] to represzent the binding
infermation.

Comparing the original and the propesed implementaticn schemes of
multiple writers from & preseticel point of view, the proposed scheme 1=
apparently disadvantagecus 1in the ease of prograoming. However, the
difference does not lie in the specification of the abstract date but only
in the ease of its implementation, which shouwld not be sc essentizl =
problem in the sense that accumulation of programming techniques and
program libraries should alleviate the difficulty.

Efficiency is another point on which comparison should be made. The
original representaticon ig advantagecus for the consistency check in
sequential Prolog. However, although the original representaticn dis
suitable for the execution using backtracking, 4t requires & multiple
environment mechanism for OR-parallel execution instead of the backtracking
mechanism, ecausing additional complexity and overhead. The proposed
pre=transformation may make the consisetency checking somewhat expenaive.
but will make parallel execution much easier =ince no multiple environoert

mechanism 12 necessary.

T. FERFORMANCE EVALUATION

Table 1 showsz the perfeormence of the criginal and the transformed
programs. The programs measured are those described above, and an N-gueens
program with N being 5, 6, 7 and 8. The MN-queens program we used iz the
one dezeribed in the transformable class shown in Chapter 5.

411 programs were measured using DEC-10 Prelog on DEC2065. For each
eriginal program, the execution time of exhaustive search (by forced

backtracking) without any collection of solutions wes measured as well as

/5

Table 1 Performance of Exhaustive Search Programs (in msec.)

PROGEHAM ORIGIKAL TRANSFORMED NUMBER OF
{bagof) (Search Only) SOLUTIONS

[—————————————————————— ey S PR PR e g f s B D E L et

List Decompositon 836 4 27 51
(50 elements)l

Perputation Geners- 354 34 57 120
tion (5 elements)

E-Queens 4g 20 28 10
&=~Queens g0 75 106 y
T=Queens 41 325 446 4o
B=Queens 1796 1484 1964 g2

e e o e e S e i S e

/&

the executicn time by the "bagefl' primitive. The 'setof!' priwitive was not
considered because the sorting of sclutions is inessential for us. Each
program was measured after possible simplification which took advantage of
the fect that Prolog checks candidate clauses sequentially.

b= Table 1 shows, the proposed program transfermaticon lmproved the
ef ficiency of exhaustive search by & times for the permutation program and
by more than 30 times for the list decomposition program ('sppend'). This
remarkable speedup wag brought about by specizlizing the task of collecting
sglutions to fit within the framework of the Horne=clause logic, while the
"bagef' primitive uses a extralogical feature sipilar te 'assert' which an
optimizing compliler cannot help. & program such as N-gueens, which has
only a small mumber of scoluticns compsred with its search space, cannot
therefore expect remarkable speedup; the transformed N-queens program get
elightly slcwer excapt fer the casze of S-gueens. After some manual
optimization, however, the transformed 6-queens program surpassed the
criginal 'bagof' versicn.

Enother importent point to note 15 that in the case of B-queens, the
transformed program was only by 25% slower than the origiral program which
does not collect sclutions and which makes use of the dedicated mechaniem
for ssarch problems: automatie backtracking. This suggests that the
transformed program couwld not be improved very much without changing the
search slgorithm.

E. CONCLUSIONES AND FUTURE WORKS

We heve described a method of transforming a Heorn-clause progrem for
exhaustive search intc a GHC pregram or a deterministic Prolog prograc.
Although not stated above, the method which wuses the concept of
continuation can be applied also to the case where only cpne sclutien is
required., Our method also provides the poasibility of introducing a
control mechanism of search, since all sctivities are made to be perlormped
in a =ingle ervircnment.

We restricted the class of Horn-clause programs to which ocur methed is
applicable, However, this clase is pever trivial and it 1s expected that
we should not bave sc much difficulty in writing & program withino this
class or its natural extension., FRather, we believe that it i= prectically
important to show the class of Horn-elsuse programa which cen be
transformed without lese of efficiency and witheout any use of extralogical
predicates.

4

The less of performance by not using such dedicated mechapisms as
automatic backtracking was small. Conversely, we found that our technique
may greatly improve the efficiepey of exhaustive search which haz been done
by using the '"bagel' primitive.

The proposed tranaformation eases persllel search in that it
eliminates the need of multiple environments, but it never eliminates other
problems ¢n rescurce management. Resource management is still an important
problem for realizing parallel search. Therefore, our results need not and
should not be interpreted as reducing the significance of OR-parallel
Prolog machines: Specialized hardware can always perform better for a
special class of programs. While cur purpose was primarily to extend the
peesibility of efficient search on & general-purpose parellel machine, we
do expect also that our technique will be utilized for improving the
efficiency of OR-parallel Prolog machines. Compariscon of these twoe

approaches should be an interesting research in the pear future.

ACENCWLEDGMENTZ

The author would like to thank all the members cf the ICOT Research Center

who attended the discussicons on the tepie and made useful suggesticns.

REFERENCES

[Clark and Gregory &4] Clark EK.L. and CGregory &S., PARLOG: Parallel
Frogramming in Logie, Research Report DOC BLi/4, Dept. of Computing,
Imperial College of Science and Technology (1984).

[Clark and Gregory 65] Clark K.L. and Gregery S., Notes on the
Implementation of PARLOG, J. of Logic Frogramming, Vol.2, No«l,
pp.17=42 (1985).

[Hirakawa et al. B4] Hirakawas H., Chikaysma T., and Furukawa K., Eager and
Lazy Enumerations in Concurrent Proleg, Proc. 2nd Int. Logie
Programming conference, Uppsala, pp.B9-100 (1984).

[Neish B5] Maish, L., 811 Soluticns Predicates in Prelog, Proe. 1G85
Symposium on Legie Programming, IEEE Computer Sceiety, pp.T73=77 (1965).

[Shapirc B3] Shapire, E.Y., & Subset of Concurrent Prolog and Its
Interpreter, ICOT Tech. Report TR-003, Institute for Hew Generation
Computer Technology (19683).

[Ueda 85] Ueda, K., Guarded Horn Clauses, ICOT Tech. Hepeort TR=103,

/7

Institute for HKew Generation Computer Technology (1965). ilso to
appear in Lecture Notes in Computer Science, Springer-Verlag (19B6).
[Ueda apd Chikayama 85] Ueda K. and Chikayama, T., Concurrert FProlog
Compiler on Top of Proleg, Proc. 1985 Symp. on Logic Frogramming, IEEE

Computer Sceiety, pp.119-126 (1985).

