ICOT Technical Report: TR-142

Th-142

Fvaluation of PSI Micro-Interpreter

by
H. Nakashima{Mitsubishi Electric Corp.).
H. Nishikawa(Matsushita Research Institute).
A. Yamamote, M. Mitsui{Oki Electric Industry).
K. Nakajima. M. Yokota. K. Taki and S Uichida
(HCOT)

Nevember. 1985

Cr1985, 1ICOT

Aita Kekusai Bldg. 21F 0 45b-3149]1 =5

IGDT f=trd Mita 1-Chome Telexs 1COT 32564

Minato-ku Tokvo 108 Japan

Institute .fnr Neﬂ;-Generation Computer Technology

le= 3

EVALUATION OF PSI MICRO-INTERPRETER

K.Nakajima ', H.Makas h:ma
H. Nllhlh‘iﬂ-

, M.Yokota"', K.Taki !, §.Uchida *

A_Yamamnm 4 M Mitsui

*1 Institute for New Generation Computer Technology (ICOT)
“2 Mitsubizhi Electric Corporaticn
*3 Matsushita Hesearch Institute Tokyo
*4 Ol Electric Industry Company

ABSTRACT

This paper describes the evaluation of the micre-
programmed interpreter of the personal sequential in-
ference machine PSI developed in the Japanese Fifth
Generation Computer Praject.

The execction speed of PSI is almost the same as
that of DEC-10 Prolog on DEC 2080, Particulariy PSI
is 2 little siower with some simple benzhmark programs
and a little faster with the programs iz whick a lot of
backtrackings may oceur.

Witk some application programs, KLO (PSI's ma-
ehine lanpuage) dynamie charaeteristics suck as *Back-
track Ratic","Predicate Call Ratic” and "Execution
Time Ratio™ in the interpreter were aiso evaluated. In
those programs, the call ratio of user-defined predicates
is pot so high (T%-30%) compared with that of builtin
predicates, however, *Execution Time Hatic™ for them
is very high (46%-TT9).

A KLO program is compiled te 2 zable-type inter-
nal eode. In order to attain fexible control and efficient
execution, the interpreter executes it directly. There is
another efficient way 1o execute a logic programming
language, in which ciauses are compiled to specially
designed machipe instructiens. We have implemented
it experimentaliv on P5SI. Though the load for com-
piiation 15 a little hezvy, the execution speed by this
implementation is about twice as fast as current ane.

1 INTRODUCTION

A perzopal sequential inference machine PSI has
been developed as part of the Fifth Generation Com-
puter Systems (FGCS) project in Japan. P51 is a tool
for software development in the preject and for a re-
search on inference machine srchitectureft]{Figure 1,2

One of the maip features of FSI i3 its ugh level
@achine language HLCG (FGCS Kernel Language Yer-
sien 0}, 2 logic besed Janguage similar te DEC-10
Prolog|zl. A KLO program is compiled to a set of table-
i¥pe imternal codes each of which ecorresponds one to
ane 1o the source clauses(Figure 3), They are executed

Figure 1. The zppearaoce of PSI
—_— Psl
DEE-EU&U| CPU i eache
. microprogram ; (SKW)
ool o [main
! nzee
|L5” 11 b (6abits*1 6K W) | E";;‘,‘:"Y
|[!{J controller | 1GMWY
=
IEEET96 bus
(BAULTIBEUS)
consele | || Imuolti-hus
processor | jmemery |
{printer '—I dizplay bitmap
JPTHERER a:{:mr-:u:ler \‘l_ilspli}.f_r/
[mouse }—l ———— e
ifixed disk __Fized disk)
ey board - eontroller |
Pk

|| uaertaee

_Tloppy ™y
\‘_dliﬂ vy

-

(Mappy dizk

— jcontroller

LAN

mtrrf‘nl:r

Figure 2. PSI Hardware System Confipulation

directly by 2 microproprammed interpreteri). About
160 builtin predicates are aiso executed by the imter-
preter. Extended execution comtrol functions of KL0O
such as “remote cut” and “bind hook” are suppeorted
as the huiltin predicates. The interpreter is stored in
G4-bit by 16 Kw control storage.

We have compleied developing the interpreter and
evaluated its performance and some dynamic charac-
teristics of KLD programs.

2 _PS] MICRO-INTERFRETER

First of all, we give a briel explanation of the PSI
interpreter.

The design of the PSI interpreter is based on the
DEC-10 Prelog interpreter, but some other mechamsms
are adopted in it to optimize performance. The DEC-
10 Prolog interpreter(s] has 3 stacks. The first is a
*Local Stack”, used to maintain the eavironment for
predicate call/return and backtracking The second is
a *Gjobal Stack”, for the information that can not be
discarded even when a predicate returns determinately.
The third is a “Trail Stack”, used to “unde” the unified
variables when backtracking.

For the PSIl, to decrease execution overhead of
inper-ciause OR, we decided to divide the conirel
infermation {rom the arguments in the spvironment
and to maintain it in apother stack *Cantrol Stack”.
And to improve argument handling in the process of
predicate cail, we introduced the “"Argument Copy”

e PCELY),

pl john X) = atom(X), ., q{X.Z).
plmary.X) == r(X].
Calles Procedure D

Caller Procedure ,.-"'* procedurs header |

/[_clause type1 |

: !,f rel |

—_———

jcode | e— atom| Jjonn
var | #2 (X} var | #0 (X)
var | buit latem| &0 |

£4 (Y

cade ——— %
{var F0 (X)) |
[var #3 (2) !

T clsuse type 2 =
rel | ____

atom | mary

var | F0 (X}

code | —_—
[var 20 (%) |

Figure 3. An Example of the Internal Code

o(X, 2, Y) = q(¥, X, 3}, r{Y), —
20 #2 #2£0 22

Caller Local Buffer
Local BulTer to call q

#0! ?alueg}(! — valuel(Y
> u:lu:ij
#EI‘WL:_:T

*Arpument Cu py"

. yred as Callee Loeal BulTer
after unification

Figure 4. Argument Copy

method(Figure 4). In this method we use two “Local
Huffers” (each is 32 w) on a register file, one to main-
tain the “larmer” environment in Local Stack and the
other for the “new” environpmen:. Defore a “unifica-
tion™ in the predicate call process, the vaiues of the
caller variable arruments are copied from the curremt
epvirenment (whick will be “former”) into the “new”
Local Buffer, and constant arguments are directly puat
into the “new” Local Bufer. By this method, the cur-
rent environment ¢an be released immediately alter the
Argument Copy operation if the predicate call is deter-
ministie. Furthermare, even if the wnification fails, the
“new" Local Bufer can be reused for the other unifi-
cation with the alternative clause, because its content
is independent of callee clause arguments.

Te deerease the number of the memory accesses,
we aiso have a buffer for the Trail Stack on the same
register file as the Local Buffers. This “Trail Buffer”
(32 w) merely maintains the top part of the Trail Stack.

There zre two major methods te treat struciure
data. The one is “Struecture Copying” method which
is simple and fast for small strueture data. The other is
“Strueture Sharing” method which, for large structure
cdata, requires less memory and is faster than Structare
Capying method. As PSI should cover larpe applica-
tion, PSI's interpreter chose Structure Sharing methed.

The interpreter supporis somé time-consuming
fupctions for PSI's cperating system [SIMPOE: Se-
quential Infereace Machine Programming and Oper-
ating System) sneh as memeory mapagement, process
contrel and interrupt handling. As a builiip predicate,
garbage collection is aiso carried out by the interpreter.

The ioterpreter cnnsis'r.s of about 12 Kw: 2.5
Kw for basic control, 7.5 Kw for builtin predicates
(including 1.5 Kw Guhaoe collector} and 2.0 Kw for
sthers such as SIMPOS support functions mentioned
above.

3 EVALUATION

3.1 Performance Comparison of PSIand DEC-10 Prolog

We evaiuated the performance of the PEI inter-
preter with some benchmark programs like “Mreverze
(Naive reverse)”, "Quick sort” and "8 queens™. Al-
though the detailed specification of KLO differs from
that of DEC-10 Prolog, we compared the executicn
time of PSI with that of compiled code of DEC-10
Frolog on DEC 2060 as a criterion of performance.

Table 1. shows that PSI has almost the same per-
formance as DEC-10 Prolog. However, DEC-10 Prolog
is a little faster than PSI with the simple programs,
erpeciaily with “Nreverse® in which optimization by
compiler iz rather effective. In Zontrast, with nozm-
deterministic programs such as *Tree traversing™ and
“Beverse function®, PSI is a little faster than DEC-
10 Projog. This i3 mainly becauze PS[": Argument
Copy methed iz effective when backtracking oceurs fre-
quently.

3.2 KL0O dypamic characterisiics and apalysis of P35I
inmterpreter
We measured and evaluated some dynamic char-
acteristics of practical application programs in KLO
to exiracty the items that affest the execution speed.
Furithermore, we analyzed the behavicr of the PSI in-
terpreter for the programs. 'We selected four programs;

(1) Window Subsystem WINDOW] ... 2898 clauses

This program creates one window on the bitmap
display, displays a character “A" on it and then
deietes the window.

P51 DEC
Test Program (meee) {m“c”[:ECJFSI
MNreverse i
(30 eiements) 136 o8 i o7
Quick Sort &
{50 elements) 2] 1467 08
Tree Traversing B
(40 times cons) 37 612 H
Lizp loterpreter a024 4360 1.08
(Tarai 3) i
Lisp Interpreter 169 402 1.09
(Fibonacci 10) :
Lizp lnterpreter 173 104 112
{MNreverze))
-] Qu::n:_ 96.9 97.5 1.01
{1 solution)
& Queens 1570 | 1580 1.0
(=il :n[gunn:‘j]
Heverse Function 183 1.7 1.09
Slow Reverse
(6 elements) 99.4 49,0 0.20

Table 1. Execution Specd of Benchmark Frograms

{2) & Pugsle (FUZEZLE) 97 clauzes

A pame to find a zhortest zeguence to move 8§
square tiles on a 3% 3 board from one fxed situa-
tion to another. The breadth-first strategy is
used.

(38) Bottom Up Parser (BUP) ... 110 clauzes

A parser for natural language understanding. It
accepts a short English sentence and extracts ils
symtactic struciure,

{4) Harmeonizer (HARMON] 467 clanses

A music expert system which generztes 3 par
barmony suitable for a given melody using some
ritlez of the harmony generation and progression.

Table 2. shows the dynamic characteristics of
these programs. “Hacktrack Hatis” is a frequency
of unification failure in predicate calls. Except for
WINDOW, the evaluated programs we chose are intrin-
gically nondeterministic in their algorithmas, and iheir
Backtrack ratios in user-defined predicate calls are as
high as we expected.

O the other hand, WINDOW iz an Input/Cutput
handling programs and rather deterministic. However,
its Backtracking ratic is oot so lew (14%). This is
because the backtracking is used frequently for im-
plementing conditional branches in WINDOW,

Backtrack Ratios in builtin predicate calls are
rejatively lower than that of user-defined predicates
a3 we expecied. The ratios of shallow-backtrack and
deep-backtrack are different largely depending on their
program logics and programming styles. The shallow-

iwindow| Puzzic | Bup |Harmon
Backirack User Pred. | 143% | 329% | 353% 0 443%
Ratio iBuiltiog-pred. 5.0 | 26% | MAT . 168%
istallow-back | $5.2% 811% . 90.5% J2.0%
\Deep-hack 4489 0 1249 ' 01% | 11.0%
Predicate (Lser Pred. I0.6% 69% | 2997%| 1565
Ratio Builtin-pred. | 820% #31% | &46% | T03%
Inner=cis R TA% | 00% | 5.7% 41%
Av. hesd orps felause .00 3_52 | 3RS L 4.53
Vaiue of Caller 3rgs | [|
variablejuadelioed) | 174% (250% | 49.0% 150%
stomic®] SAE%) 625% | 17.0% | BL3%
structure*l ;A 125% ! MO0, 19T7%
Vajoe af Calles arpe i |
variahief{undelined) 10.5% | 462% 109% | 190%
atomic®] | 876% | 42T 546% ! 614%
siructure®2 1Y% 90% | 345% . 9.5%
atomic’l 1 imleges; alom
siructore®*? : compound Lem, stach vector,

heap vector, string

Table 2 Dynamic Characieristics of KLO Applicatioz Frograms

backtrack ralio also depends on the clause indexing
strategy in the compilation. The current compiler
penerates a clause indexing code if more than three
indexable clauses exist. This is because the processing
tost of cne shallow-backtracking is almost the same
as that of one clause indexing in the interpreter, and
therefore, in the case of three cianses or lesz, average
eozt of shallow-backtracking: with non-indexing code
seems to be less than one indexing cost.

“Predicate Call Ratic™ it a ratio of calls of user-
defined predicste, bwitin predicaie and inoer-clause
OR. WINDOW and FUZZLE use more builtin predi-
cates thap others, because WINDOW uses many sys-
ter control builtin predicatves, while in PUZZILE the
positions of tiles are calculated by arithmetic and legi-
cal builtin predicates.

Average numbers of head arguments are all less
than five, =0 the size of Local Buffer (32 w) seems to te
sufficient (there was no case to exceed the Local Bufler
size in faet).

Value types of caller and callee arguments in the
unification were also evaluated. The ratios of atomie
value: of both caller and callee sre very high. In
Argument copy operation, if the caller argument is 3
wariable, a pointer(instead of its value) to that variable
cell showld be put inte the “nmew” Local Buffer with
exira steps. Exeept for BUF, these cases are not so
frequent.

Tabie 3. is the *Execution Time Ratio” in each
submodule of the interpreter. They were measured by
counting micro execution steps in each submedules,
Although the ratio of user-defned predicate calls is
less thag 30% in all programs, ihe executien iime
for them{Control+-Unify+Trail] are large(46%-TTR).
This result suggests us that there is a possibility of im-
proving the performance mere than 20% by rewriting
the erivcal parts of the interprecer,

| Submodule | Control |Uaily | Trad | Cut ;l'-F-t—lrE' Built
Window 30 1 171%] 20% 1 10.0%] 13.46% 215.2"5_
i Puzzle | 27.5% 1110%] T.5% 0 00%| 7% G 31.3%
" Bun 231 (430% 1 4T%] S6% 52% | 191
Harmun 3550 A6AR | 54T 40%, 73% | 110% |
Ceoatral ; Call/ReturnsBackirack
Upmily : Unification/ Argument Copy
Trail t Trailing
Cast : Cut

Get-arg : Argument Preparation For Duiltio-predicate
Built : Builtin=predicate

Table 3. Execution Time Ratis af Submodules in PSI lnterpreter

4 ANOTHER IMPILEMEMNTATION

Generally, there are three approaches to imple
ment a high-level language processor, The first is the
simple compilation to a machine instruction set similar
te its high-level language. The firmware interpreter
ean attain relatively high performance for any kind of
operation. The second is the compilation with medium
optimization to a specially designed high-level machine
instructicn set executed by a firmware emulator, The
third is the compiiation with heavy optimization to a
reduced instruction set that can be executed guickiy
by simple firmware, or direstiy by hardware (RISC
method).

The design of PSI interpreter is based on the first
approach malnif because we considered it most easy
to implement the extended contrel feature of KLOD
flexibly and efficiently. And common optimization
tecknigue by compiler also introduced such as clause
indexing, compact code generation and classification of
variables 1o first and second occurrence. We have at-
tained the expected performance “comparable to DEC-
10 Prelog”. Hewever, it 13 valuabie to evaluate the
other appreazh, so we made an experiment on the
second approack.

D.H.D.Warren(s) proposed a virtual Proleg machine
that executes s high-level stack ornented imstrocuion
set. We added some instruciions te it such as “sus”
to keep the KILO specification, and we emuiated the
instructions by firmware op PSI. The number of stacks
was three, and the manipuiation method for structure
data was Structure Copying as Warren's methoed. We
evaluated the performance with the benchmark pro-
grams used in 3.1,

Table 4, shows that its performance is about Twice
as fast as the eurrent PSI interpreter,

Clearly their instruction set iz rather effzetive
when optimization by compiier is Tully atiained. This

PSI* P35l
Test Program {msec) | (msec) PRL/PSI®

Mreverze |
(30 elements) 433 136 43
Quick Sort 6.73 152 226

(50 ¢lements)

Tree Traversing | a9 og £1.7 1.79
(40 times conz) . N

8 Queens 3310 | 969 | 201
(1 zolution)

Reverse Function) 259y 322 | 1.71

Elow Heverze o
(5 elements) 10.31 248 | 2

PEI* ; Prolog Instroction Set Emuolation

Execution Speed by

Table 4. "o i jog Instruction Set Emulation

is because their instructions correspond to each argu-
ment in uwnifcation, apd thus, the number of the io-
structions passing she arguments {rom caller to callee
can be reduced by skillful aflocation of srguments 1o
temporary registersisi.

Furthermore, bt reducing the number of stacks
and by Structure Copying method, the emulation
firmware becomes so simpie that we can save the
microprogratn steps statically and dynamically.

Wea are sure that the differenee in performance be-
tween the emuiation and the current FEL interpreter
should be smaller. Beeause practical programe: tend
to use many builtin predicates and use large structure
data frequently. 5till, this approach iz reasonable to at-
tain sppropriaie load balanciog between compiler and
Brmware 1o exesuting Prelog or KLO on a seguentizl
machine.

5 © USION

We have developed the PSI interpreter and eval-
uated it. The performance in execution speed is com-
parable 1o DEC-10 Prolog on DEC 2080, especially bet-
ter for nondeterministic programe. The critical paris in
the execittion time are the operatiens for user-defined
predizstes iz the ipterpreter,

Uszing these evaiuation regults, we are 2ow design-
ing the new wverzion of PS5l based on the hiph-iavel
Frolog iostruction sei. Moest of our interest is to
achieve the complete et of KL O functions 1n high per-
formance.

HEFERENCES

1 Takil. etal, “Hardware Design and Implementation
of the Personal Sequential Inference Machine{PEIF,
Proc. of FGCS'E4, 1984,

[2): Pereirm L. etal, “User's Guide te DECsystem-10
Proiog”, Uept. of Al Univ. of Edinburgh, 1975

I3): Yoketa bl et.al, “A Microprogrammed Interpreter for
the Personal Sequential Infersnce Machine™, Proc. ol
FGOER4, 1984,

|4: Warren,LH.D., “lwplementing Frolog - Cempiling
Predicate Logic Pregram™, D.A.IResearch Report,
Mo.38-40, Dept. of Al Univ. of Edinburgh, 1977,

I8): Warres DM [, “An Abstract Frolog Instruction Set”,
Technical Mets 309, AL Ceouer, SRI International 1983,

[¥L]

L

