ICOT Technical Report: TR-141

IR-141

A Model and an Architecture for a
Relational Knowledge Base

by
Haruo Yokota and Hidenori hioh

Soevember, 1985

ColaEs [O0T

Mita Rokusaa Bldg, 21F (L) As6-31491 -5

IC DT 4-2¢ Alita 1-Chame Telew 1007 132004

Minato-ku Tokyvo HE Japan

Institute for New Generation Computer Technology

A Model and an Architecture for a Relational Knowledge Base

Haruo Yokota, Hidenori Itoh

ICOT Research Center
Institute for New Generation Computer Technology

Tokyo, Japan

MNovember 1985

ABSTRACT

A relational knowledge base model and an architecture which manipulates the model are
presented. An ilem stored in the relational knowledge base is a term, and it is retrieved
by unification operation between the terms. The relational knowledge baze architecture we
propose consists of a number of unification engines, several disk systems, a control processor,
and a multiport page-memory. The system has a knowledge compiler to support a vanety of

knowledge representations.

1. Introduction

The Fifth Generation Computer Systems (FGCS) project in Japan aims to develop inference
and konowledge base mechanisms to implement a knowledge information processing system, In
the first three-year (1982-84) stage of the praject, we developed a reiational database machine
Delta [Kakuta et al. 84! and several sequential inference machines to investigale techuiques for
implementing these mechanizms. We are now in the intermediate four-year [1985-88) stage of
the project, and plan Lo develop prototypes of knowledge base machioes and parallel inference
machines. Iu this paper, we propose a knowledge model and an experimental knowledge base

architecture which manipulates the model.

The strongest motivation for knowledge base systems seems to be faster retrieval from
a large amount of knowledge. The objects retrieved as knowledge items may iake a lot of
different form:. Knowledge base systems have Lo be able to treal Lhis variety of knowledge
objects uniformly. We expect we can represent these objects using a sel of terms, well-defined
structures capable of containing a number of varisbles. Thus, the system described here can
quickly retrieve these terms. From the database point of view, if we azsume the knowledge

base system to be an enhanced database system, the improvement is in the siructure of items

in each system. We think an atom, an item treated in conventional database systems, is not
sufficient for representing object worlds. We peed more flexible structures. We choose the term

as the item to be treated in the knowledge bage system.

We propote to use a unification operation to retrieve the terms and to develop unification
engines as dedicated hardware for that operation. Since the pumber of terms manipulated in
knowledge base systems seems to become very laTge, we assume Lhese terms are stocred in secon-
dary storages (i.e. moving head disks.] When we make & system handle a large amount of data
stored in secondary storage systems, the problem arizes that there is a data processing bottie-
neck between processing elements and the secondary storage systems. We present an architec-
wure for providing a wide data stream path between the unification engines and the secondary
storage systems. We expecil we can use many technologies obtained through the development of
Delta. We have developed relational engines to manipulate data streams. Technigues for han-
dling data streams and execution contrels for the multi engines that manipulate data streams
may be used in the knowledge base system. Moreover, there are several methods for efficient
data retrievai in databases, e g., hashing, indexing, clustering. These metheds can be applied to
the knowledge base system. Our adoption of a clustering method for Deltc particularly dizsposes

us to use similar techniques,

“There are several other approaches to implementing a knowledge base system. A aeductive
database sysiem consisting of a Prolog processor snd a relational database macagement sysiem
iGallaire et al. 84, Yokota et al. 85! is one approach. A Prolog machine manipulating a large
amount of data |Sabbatel et al. $4] is another appreack. However, we think our approach is
the most flexible and can do what the other approaches can do. We show, in this paper, ihat
regolutions can be performed if we store Horn clauses in the knowledge base as a collection
of terms. Note that the resolution is merely oue of the appiications using the knowledge
base operations. The main ohjective of the architecture iz to retrieve terms from large scale

knowledge bases as fast as possible.

This paper iz organized as foilows. In Section 2 we propose a knowledge mode! for a flexible
knowledge base system. We show thal resciulions can be performed in the knowledge base
system as an application and consider the adaptability for other knowledge representations.
Section 3 presents an architecture which manipulates the model We briefly describe data
structure, each basic bardware compoanent and the software configuration of the system. The

obsarvatiop and discussion are summarized in Section 4.

—0 —

2. Knowledge Model

The reason why database systems have prospered is not only that the amount of data
stored in them has increased, but also that sets of dats have become useable by a number of
applications as a result of establishment of data models. It is also significant for a knowledge
base system to supply a number of applications with more complex structures than the data
stored in databases. Thus, we must set a knowledge model for uniformly treating knowledge

between suppliers and users of the knowledge.

2.1 Basie Coneept

The relational mode] is suitable for treating sets of data mathematlicaily. However, eack
item in relational databases oniy represents an element of a reiation defined co a finite domain
which consists of nothing but constants. An item is retrieved merely by using eguality-check

operations between constants, The item i1z never recognized as struciured data.

We propose to introduce terms as objects of relational operations toc treat knowledge.
A term iz a kind of structure capsble of containing a nember of variables. We introduce
a unification operation between terms as a basic operation to retrieve terms, instead of the
equality-check operations. Since a term represents a relation defined on ap infinite domain
contaiming structures, complex structures of knowledge can be handled. 'We zal! sets of relations

containing terms refaticnal knowledge bases,

Formally, ao object treated in relstionai databases is represented as follows:
dERC Dy = Dax ... x Dy (D is a set of constants).
B s calied a relation. An object treated in relational knowledge bases is
kT CHEy K x .. x K, (K 15 a set of terms)

We call T' a term relation. As a relation has its name, so a term relation has its pame. Terms

are defined recursively as follows:

i. Constants and variables are terms
. If f iz an p-place function symbol, and £, ..., ¢, are terms, then f{f;, .., {.) is 2 term

il Terms are generated merely by applving the above ruies.

Data manipulation languages for relational databaszes are basically grouped inte two types:
relational algebraie languages and relational caleulus languages. Helational algebra s a proce-

dural system, while relational calculus is non-procedural one. Therefore, it 1s easy for us to

image real operations for data using relational algebra. We enhance relational algebra as a
knowledge manipulation language Lo treat term relations. Note that the relational knowledge
model is a collection of extensions of terms, i.e, a set of ground instances of the terms, while
enhanced relational algebra for relational knowledge base is a language manipulating the term

relations which represent the model, i.e., the enhanced algebra treats even non-ground terms.

The basic operations of relational algebra are the projection, join, and restriction opera-
tions. We now consider an enhancement for these operations. Since the projection operation
does not treat each element of sets, the operation needs no rhange. For the join and restriction
operations, equality-check operations between the elements are enhanced to unification opera-
tions between them. Io the strict sense, a unification operation searches for & term unifiable
with the search condition and derives the most geperal unifier hetween the condition and term
and applies the unifier to both the condition and term. Thus, we introduce two new aperations.

unification-join and unification-restriction.

From the operational peint of view, these operation: retrieve terms from the knowledge
represented by term relation using unification, We call these operations retrieval-by-unification

operations,

2.9 Resolution using Retrieval by Unifleation

As an application of relational knowledge base operations, we show thatl resolutions are
performed by storing a set of definite clauses’ into a term relation which has two attributes
and iterating the unification-jein and unification-restriction operations. A tuple in the term
relation corresponds to a definite clause. The first attribute of the term relation corresponds to

the head partion of the clauses and the second one corresponds to the body portion'!.

Both head and body portions are represented by binary trees to proceed with resolutivn
only iterating retrieval-hy-unification operations. The leaves of the iree correspond to literals
contained in each portion. A common variable is put at the last leaf of both the head and body
trees. If the clause is a unit clause, the body tree is just the variable put at the last leaf of the
head tree.

A defimte clause

PV=@iV @V .. V7@

is represented using the two binary trees illustrated in Figure 1. In the Figure, § indicates the

t Horn clauses excluding negative clauses [queries) are called definite ¢lauees.

+1 We call a positive literal in a definite clause the head portion and a set of negative literals in the
clause the body portion,

Head Body

o\ [\
oA

]

I
@n 8

Figure I. Horn clause representation in term relation

common variable between two portions.

First of all we show the resolution process using an example. As an example of knowledge,
there are rules which indicate that ope's parent is one's ancestor and that the ancestors of the
parent are also one's ancestors. And there are facts which indicate each instance of the relation

between children and their parents. The following definite clauses represent the knowledge.

ancestor{X, Y}V = porent{X,Y)
ancestor(X, Y) v - parent(X, Z) v - ancestor(Z,Y')
parent(smith, clark)

porent{clark, turner)

These rules and facts are stored in the term relation iliustrated in Figure 2. We use LISTs of

kb

lancestor(X, ¥)|5] | [pq.:r.enz!{.}i:,_}’:liS}

———— g

iumcfmr!}.’, F]]%‘]ﬂ_m_r“”: [pﬂf?ﬂt_{x, 2),ancestor(Z,Y)] 8]

|parent{smith, clark)|5] | S

Iparent{clark, turner)| 5] s i

Figure 2. Amn example of a term relation

5

DEC-10 Prolog to denote the trees; [a|b] stands for .ig,b) and [a, b, ¢] stands for (a,.(b, {c,[])}),

here || means nil

When we search the relational knowledge base for ancestors of smith, we first invoke the

unification-restriction operation for kb, by the condition
the first attribute <> [ancestor(smith, A}l

and make a new term relation temp; (Figure 3) Throughout this paper we use A<> B for
denoting a unification between A and B. If there i3 a most general unifier between A and B,

the value of this expression is true and the unifier is applied to A and B.

Next, we invoke the upification-join operation between the second attribute of temp, and
the first attribute of kb,, and invoke the projection operation for the result relation of the
unification-join to derive the first attribute of temp, and the second attribute of kb and make

the new term relation temps (Figure 4.

The first attributes of temporary term relations generated during resolution processes are
used for leaving variable substitutions for a goal clause. The second attributes of tuples in these
term relations correspond to resolvents derived by input resolutions between a goal clause or
former resolvents and applicable input clauses. The top of the list stored in the second attribute
of a tuple corresponds to one of the literals resolved upen. If no tuples unifiable with the tuple
exist in the given term relation, it indicates a failure of resclution for the tuple. If the list is an
empty list, it indicates the empty clause is derived, ie, a refutation is derived by the variable

substitutions indicated by the first attribute.?

E temp; I

lancestor{smith, A)] |parent(smith, A)]

l[ancestor(smith, A) [parent(smitk, Z), ancestor(Z, A)]
Figure 3. The result of the unifleation-restriction

I
tempz |

|) b
| jancestor(smith, clark]] I |
|
[ancestor(smith, A)l lancestor{clark, A)] |

Figure 4. The result of the unification-join and projection

t The terminology for logic used here, e g, resolvent, input resolution, literals resolved upan, refutation,
iz in [Chang and Lee T3]

Re—g
To — Ohead < goailT)
i=10
while T; 7 @ do
hegin
R+ maay-[]':ﬂ'] UR
Tivy « 7, hcad,T.}adyiT'hr_.’b-{:jh;ndT)
f+—1+41

end

Figure 5. Resolution process using retrieval-by-unification

In the above example, the first tuple in fempz is an answer, since it has an empty clause
as a resolvent. This tuple indicates that clark is an ancestor of smith. The second attribute
of the second tuple in the temp; is a subgoal to search for ancestors of clark, and it indicates

that ancestors of clark are ancestors of smath.

Continuing the coupled operations, the unification-join and projection, we can derive all
answers for the query, since the input resoiution is complete for Horp clauses. I all items 1o
the second attribute of a temporary term relation are empty listz or lists which cannot unify
with any tuples in the given term relation, the next term relation generated by the coupled
operations has no tuples. We can gee the termination point of the resolution process by this
an absence of tuples. If the resolution process does not generate infinite terms, the process
must be lerminated. Needless to say, if the set of Horn clause is funetion-free, it is terminated.
Since resolvents are pecessary to derive answers, absence of resolvents indicates all answers are
derived already. We can collect the answers by searching tuples whose second attributes are

empty lists for all temporary relations generated during the resolution process.

We show the resolution process in Figure 5. ¥ 15 a term relation to eliminate the answers.
T iz a given term relation and T;s are temporary term relations. In the above example, temp;
corresponds to Ty and femps corresponds to Ty. Symbals, o, |, 7, and < respectively denote

restriction, union, projection, and join operation.

Since this method derives all resolvents in a level of search tree at once, it implements a
breadth-first search. Variables put in the last leaf of binary trees implement stuck operations
for each search tree node. Since this method replaces the literals of subgoals, it also scems

to implement & string reduction. When we [ocus on functiowns, the retrieval-by-unification

—7 —

operations provide a set-orieoted Prolog meta-predicate, such that clouse or call predicates.

2.3 For Other Knowledge Representations

First-order logic is one choice for representing knowledge, but there are several other
knowledge representations, e.g., production sysiems, semantic network systems, frame systems.
We think the relational knowledge base model is applicabie not only to first-order logic but alse

to other knowledge representations.

A production system consists of a short term memory representing a state and a long term
memory collecting a set of production rules. A production rule is composed of an if-condition
portion and a then-action portion and is used for rewriting short term memory. The production
rules are regarded ac a collection of terms. The contents of short term memory can be written

with terms. Thus, the production system can be implemented with term relations.

A semantic network system comsists of node: and arcs. Operations on the network are
basically to search for desired nodes. These nodes and arcs are represented using terms [Kowalsk

79, Koyama B5]. Retrieval by unification is an operation to search for terms.

A frame system consiste of a set of tables. Each row of the tables are either structures or
pointers. The relational knowledge base system is regarded as a collection of tables, and the

pointer operation can be performed with inter-relation operation hetween the term relaions.

3. Architecture Overview

We now consider an architecture which mwanipulates the above relational knowledge base
mode!. It is important for the system to retrieve a large amount of terms Tast. Disk systems have
to be used for storing such huge set of terms. We propose dedicated hardware for the retrieval-
by-unification operation to derive a desired set of terms as ast as possible. We call the hardware
a unification engine. Since we assume disk systems, the unification engine manipulates a data
stream from and to the disk systems. We propose to use a multiport page-memory [Tanaka
84] for supplying buffer and working area between a number of unification engines and disk

systems Lo transfer the data without access conflict or suspension.

We use a kind of clustering method for storing sets of terms into the disk systems to reduce
the amount of data stream processed by the urification engines. We introduce an ordering of
terms to adopt the clustering method The ordering is also used for the eflicicnt operation in

Lthe unification engines.

— —

atoms:

ate -

integer:
28 NERES
variable:
b'e ~ | v 11
structure:
sti(2,28,2) — S |13 ¢ |.1__"[-"' {28 v |1]
[abe, X L 2-“-.]“]nbc—l_s I ' [2 I'” ll e 111}
IX[Y] NEEENERERINERED

Figure 6. Argument Forms

It is important for the knowledge base architecture to support a variety of knowledge rep-
resentations. We choose term relations as a base of these knowledge representations. The
knowledge base system has a knowledge compiler to translate this variety of knowledge repre-

sentations to the term relations.

3.1 Data Structure

We first briefly describe data structure manipulated in the experimental knowledge base

system.

3.1.1 Argument Forms

The knowledge base system must handle four data types depending on the term’s definition.
atoms, integers, variables and structures. There are other data types, eg., real numbers,
boolean. We use only the previous four data types in the system because it iz an experimental
system. Both atoms and integers are constants in the terms definition and can be treated
the same way, but we distinguish between them for introducing arithmetic operations into the

system.

The system uses tags for distinguishing each data type. An atom is merely a character
string with a tag. An integer consists of a tag and a fixed-length binary string. A variable
can be represented using a sequential number with a tag, since there are no global variables in
term relations and a variable is used to relate the argument to other arguments in one tuple.

A structure consists of a tag, a function symbol, an arity { number of arguments), and a list of

—_g —

arguments. Structures are recursively represented in this way. Besides using this representation,
we can use poiniers for the structures. However, since pointers are not appropriate te data

streams processing, we bring the arguments into line. We illustrate the data structure in Figure

6.

3.1.2 Ordering of Terma

‘We introduce an ordering of terms to manipulate terms efficiently. Since the system retreives
terms with unification operations, it is better for the system to let the term be ordered based
on generality. Let both Ty and T: be terms. If Ty is an instance of T3, Ty is greater than T;.
That is,

T, < T iff 38 Tx:6=T
Since this ordering does mot generate a tota! order, we introduce the following rules to line
terms. Here, $™ stands for n-tuple terms #1,.. ., 5n.

(s} f(8) < giT} af<y

(b) (S < f(T™) #n<m

() F(S™) < fIT™) (s, s m (b, tiog) s <t (1<i<n)

d}y fIS)< X + X ig variable

X has already appeared but ¥ has not,
&) X <Y & or) .
X and Y have appeared bul X has appeared befere Y.
X and Y have not appeared yet.
) X=Y & or . .
X and Y have appeared in corresponding positions
(g) fl8™ = (T (e, Lsa)m2ity, o ta)

Since we number variables left-to-right in one term, we can obtain this ordering by scanning
characters in terms left-to-right. There are other rules for ordering terms, e.g., those based on

the nested levels,

3.1.3 Clustering

When the system scarches objects with a wide search space, some search methods are neces-
sary to abtain these objects rapidiy. Conventional database management systems are adopt-
ing indexing and hashing technigues. Most of these database mapapement systems are imple-
mented on general-purpose computers and indexing and bashing techniques are appropriate to
their architectures which retrieve tuples one by one. The knowledge base system 1s not imple-
mented on general purpose computers and it uses unification engines handling data streams.
The unification engine can he seen as a filter for data streams from secondary storage. However,

it is not efficient to let all data streams flow. We propose Lo use a elustering method, a kind of

Control Bus

| Multiport Page-Memory

CP: Control Processor

MM: Main Memory of CP

IOF: 1/0 Frocessor for CF

UE;: Unification Engine

DS, Dick System {Consists of a Disk Controller and Disk Units]

Figure 7. Hardware Cenfiguration

page indexing method, to narrow the search space.

The clustering method chooses physical pages which contain terms unifiable with a search
condition. Then the data streams for unification engines can exclude irrelevant pages. The
system serts all terms depending on the above ordering method and stores them into pages

while making page indices to select relevant pages.

3.2 Hardware Conflguration

The main component: of the experimental relational knowledge base system are a set of
unification engines, a set of disk systems, a control processor and a multiport page-memory.
These unification engines and disk systems are connected with the multiport page-memeory
(Figure 7.) The main focuses of this architecture are the wide bandwidth between the unification
engines and disk systems and the parallel execution control among these components. The disk
svitems generate data streams and send them to the multiport page-wemory. The unification
engines get the data streams from the multiport page-memory, process them using a kind of
pipeline metheod, and send the result data streams to the multiport page-memory, again. The

results are stored in the disk systems, or used by the unification engines again, or cutput Lo the

uzer.

The control processor controls these data flows and the parallel execution envirenment

among these components. It is possible to send control commands to the unification engines
and disk systems and receive responses from them with multiport page-memory. However, since
multiport page-memory is designed to transfer data several pages at a time, it 15 not suitable
for transferring short information quickly. We use a contrel bus to send the commands or to
receive the responses. The main memory and 1/0 processors of the control processor and the
like are connected to the control bus. One of the I/O processors is directly connected with
the multiport page-memory. When the control processor needs to access the data which is in
the multiport page-memory, the control processor handles it via the /O processor. Another
I/O processor is used for interface host machines, We omit such unimportant components from

Figure T.

3.2.1 Unifleation Engine

The unification engine is dedicated hardware for retrieving terms from term relations. It
processes data strezms in the pipeline way, while it gets the data stream from the disk systems
and puts it into the disk systems. A unification englne uses three channels to connect the
multiport page-memory. Two of them are used for reading data from the multiport page-

memory. The remaining one is used for writing results into the multiport page-memory.

To sort the data stream before unification-join or unification-restriction operation renders
the operation efficient. We introduced the ordering of terms depending on generality. If the
engine sorts the data stream on the above ordering, the engine omits the irrelevant combination

of terms.

3.2.2 Multiport Page-Memory

The multipert page-memory has a set of [/O ports, a set of memory banks and a switching
network for connecting these ports and memory banks (Figure £) A logical page must be
herizontally allocated to all memory banks to make the page simultaneously acceszible from a
number af ports. The connection between 2 port and a memory bank is fixed in cne-lo-one for
& time period and changed by the system clock to inhibit access conflicts between the memory
banks. If we assume that the access umit is a page and the page can be started accessing from

its middle position, no ports have to wait to access the same page [Tanaka 84)

When we implement the multiport page-memory, it becomes a problem of implementation
that the bus width between the ports and memory banks will be wide. We propese to use the
data bus for transporting the address to make it as narrow as possible. Sizce it is ineffective

to transport the address for each data, however, we set the access unit a page or a sel of page

PORT FORT: FPORTa FORT,

I ! [

CNT ’> Switching Network

MBs e MB.

CNT: Controlter
MBE;: Memory Bank

Figure 8. Multiport Page-Memory Configuration

and the address calculation is performed in the memory banks.

Since the logical page is divided into all memory banks, rearrangement of the switching
network conpection should be synchronized with the address transportation. Each memory
bank has a shift register for transporting the page addresses. The shift registers in the neighbor
memory banks are connected. The rearrangement of the switching neiwerk connecticn is to

shift the eonnection for the neighbor memory bank in the stame direction as the shift register.

Each memory bank has a latch to hald the page address while the memory bank transports
the page address. Then the memory banks transport the page address independent of memeory
accesses from the port. We must fix an accesss unit for the memory banks to access without

the rearrangement while at least the addresses are transported.

3.2.3 Control Processor

The main role of the contral processor is general control of the whole knowledge base
system, especially parallel execution control amoug the unification engines and dizsk systems.
The important feature of the control portion of a functionally distributed system, like this
system, is rapid responses. The control processor must have a wide control bus and real-time
aperating system. A general purpose processor may be used for the control processer, while a
kind of inference machine can be used. Since the control processor has to have a knowledge

compiler, it seems to be better for it to use the inference machine.

—13—

Many knowledge representations

Knowledge Compiler
Instruction for term relations

Retrieval-by-Unification

Instruction for logical devices

Resource Manager

Instruction for phyzical devices

Figure 9. Software Layers

3.3 Software Layers

A software system on the contrel processor can be constructed hierarchically. Basieally,
the software system has three layers: a knowledge compiler upit, a retrieval-by-unification unit

and & resource manager unit (Figure 9.)

Knowledge base systems must handle a variety of knowledge representations. However, it is
expensive to provide different systems for all knowledge representations and it is difficult to use
different knowledge representations from different applications. To provide a kernel knowledge
representation to which all knowledge representations can be translated is appropriate to
knowledge base systems. We chocse the relational knowledge model as a kernei representation.
Then, we must develop a system which translates each knewledge representation to the rela-
tional knowledge model. The knowledge compiler unit is the system for the operations. The
kuowledge compiler translates operations for one of the knowledge representations into opera-

ticns for the term relations. We expect the unification engines can be used for these translations.

The retrieval-by-unification unit accepts the instructions for term relations, such az
unification-join, unification-restriction, or iteration control for these operations. The unit trans-
lates these instructions into the imstructions for logical devices. The retrieval-by-unification
unit can also be seen as a kind of compiler. It does not directly check the branch or iteration

conditions, but only generates instructions for the resource manager.

The resource manager unit allocates the real devices. Parallel executions of the unification
engines and disk systems are controlled by this unit. Thke unit also handles Lhe clustering

method described above.

There are other functions used for databate management systems. Concurrency control for
supplying multiple users, database recovery, security control are examples. Since the knowledge

base system is an experimental system, we omit the recovery and gecurity control {functions.

—14 —

We only plan to implement concurrency control for the system.

4. Conclusion

We introduced a new concept the ‘reiational knowledge base” Its object is a collection of
terms. Basic operations on it are unifications. It enables arithmetic treatment for knowledge
bases to formalize the collection as a relation. It enables flexible retrieval for knowledge bases to
introduce unifications as operation searching for terms. Since the relational knowledge bases are
enhanced relational databases, relational databases are contained in the relational knowledge

bases as subsets.

We proposed an architecture for implementing a system which mamipulates the relational
knowledge hases. We proposed to develop unification engines for applying ueific ation cperations
to terms in data streams and use a multiport page-memory for previding a wide data path
between the unification engines snd secondary storage systems. Though several unification
engines have been presented already [Yasuura et al. 85, Woo 85], we plac to develop a more
efficient unification engine for streamed kuowledge using the presented ordering. The multiport
page-memory consists of a set of memory banks and a switching petwork. There have been
same architectures for database machines [Boral et al. 82], Prolog machines [Sabbatel et al. 84],

ete, We think this kind of constructicn is a commeon method for highly parallel architecture.

This paper only describe a basic idea for constructing a knowledge base system. There stil]
remain many problems we must solve The function of the knowledge base management system
is the most important problem. We must consider the update of the knowledge base under the
multi-user environment. It is related 1o the knowledge assimilation system [Miyachi et al. 84]

and the knowledge acquisition system [Kitakami et al. £4],

ACKNOWLEDGMENTS

The authors thapk Dr. M Yoshida of Kyoto University and Dr. Y. Tanaka of Hokkaido

University for their useful diseussions.

REFERENCES
[Borai et al. 82] Boral, H, DeWitt, D. I, Friedland, D., Jarreli, N F., Wilkinson, W.
K., Implementation of the Database Machine DIRECT, IEEE Transactions on Software
Enginesring, Wol, SE-£, No. 6, November 18982,

[Chang and Lee 73] Chang, C. L., Lee, R. C. T., Symbolic Logic and Mechanical Theorem
Froving, Academic Press, 1973,

15 -

[Gallaire et al. 84] Gallaire, H., Mioker, J., and Nicolas J.-M. Logic and Databases: A Deductive
Approach. Computer Surveys, Vol. 16, No. 2, June 1984,

|[Kakuta, et al. 85] Kakuta, T., Miyazaki, N., Shibayama, 5., Yokola, H., and Murakami, K.
The Design and Implementation of Relational Database Machine Delta, Proceedings of the

International Workshop on Database Mackines '85, March 1985,

{Kitakami et al. 84| Kitakami, H., Kunifuji, 5., Miyachi, T., Furukawa, K., A Methodology for
Implementation of A Knowledge Acquisition system, Proceedings of the 1984 International
Symposium on Logic Programming, February 1984,

[(Kowalski 79) Kowalski R. A, Logic and Semantic Networks, Communication of the ACM, Vol.
22, No. 3, pp.185-182, March 1979.

[(Koyama et al. 835] Koyama, H., Tanaka, H., Definite Clause Knowledge Representation,

Froceedings of the Logic Programming Conference '85, pp.95-106, July 1985, in Japanese.

[Miyachi et al. 24] Miyachi, T., Kunifuji, 5., Kitakami, H., Furukawa, K., Takeuchi, A
Yokota, H., A Knowledge Assimilation Method for Logic Database, Proceedings of the 1984
International Sympesium on Logic Programming, February 1984.

[Sabbatel et al. B4] Sabbatel, G. B, Dang, W, Taneselli, J. C. Nguyen, G. T., Unification for
a Frolog Data Base Machine, Proceedings of the Second Interpational Logic Programming

Conference, pp207-217 July 1954,

[Tanaka 84] Tanaka, Y., A Multiport Page-Memory Architecture and A Multiport Disk-Cache
System, New Generation Computing 2, pp241-260, 1984.

[Yasuura et al. 85] Yasuura, H., Obkubo, M., Yajima, 5., A Hardware Algorithm for Unification
in Logic Programming Language, Technical Report of IECE, EC84-67, pp9-20, March 1985,

in Japanese

[Yokota et al. R4| Yokota, H., Sakai, K., Itoh, H. Deductive Database System based on

Unit Hesolution, te appear Proceedings of the Second International Conference on Data

Engineering, February 1986,

—15 -

