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ABSTRACT

Thiz paper describes an algebraic manipulation system, AMIE*, in which meta-level
inference is used to implement human heuristics. Algebraic manipulation systems are expert
systems to solve algebraic problems. Not only AMIE solves equations of elementary functions
in one variable, it alse differentiates and integrates one-variable elementary functions. The
characteristic of AMIE is solving algebreic problems in the same way as human do. Human
problem-solving techniques are represented in meta-level knowledge and meta-level inference
that simulates human problem solving.

In gemeral, user interface iz very important in an expert system. AMIE has two facilities
for user interface: the first, it explains the process of problem solving on dizplays, the second,
it can evaluate the relative degree of problem-solving-difficulty for educational use. AMIE
is written in Prolog, therefore, meta-level inference and knowledge can be implemented
straightforwardly. We have also noticed that the meta-level inference enables the system Lo
be modified with easze. '

1. lotroduciion

Algebraic manipulation systems are problem-solving system which uses algebraic knowledge.

In general, several stages should be explored for solving algebraic problems: recognition of
problems, analysis for problem solving, selection of strategies, hreak-dewn inte applicable
methods, and an applization of methods. Each stage needs human heuristics accumulated
for long years. Iu algebraic manipulation systems, the heuristics are described in rewriting
rules or control-knowledge for applying the rules. Therefore, the system should prepare
system-Tunctions for simple expression and modification of knowledge for controls as well as
rewriting rules.

The following research has been done: SAINT [Slagle 61] is the first algebraic manipula-
tion system that selects the rule based on many heuristics as A1 approach. SCRATCHPAD
[Jenks B4] has been built using simple rewriting rules. However, it lacks concepts of a sub-
stitution and a procedure. As practical more systems, REDUCE [Hearn 84], and MACSYMA
[Mathlab 77} are well known. PRESS [Bundy 81, Sterling £2] introduces object inference and
meta inference, but, distinctions between object level knowledge and meta level knowledge
could net be expressed clearly in programming methods.

L
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AMIE incorporates several functions useful for each problem solving process. One is
a substitution function to simplify a formula substituting a variable for sub-expression in-
cludizg variables. This function can be easily implemented using the unification function in
Prolog. If system designers only must give proper siructures into object data of unification
corresponding to given application, the reasoning functions of Prolog with unification func-
tion supports a substitution function. AMIE makes it easy for users to express distinction
between the object-level worlds and the meta-level worlds, due to essiness in programming
of in prolog |Bowen 81, Furukawa 84, Miyachi 84]. This representation enables users easily
understand and express of object-knowledge and mele knowledge, the inside of system
etructure. Adding and changing of the system funclions are very easy using & meta pro-
gramming method. Controle of strategies for problem solving are alzo easily described using
the meta programming metbod.

Control functions for meta inference in AMIE is based on human way in problem solving.
That it, the system can take the same approach as human does in solving algebraic expression
and new heuristics can be easily added into the system. The system has two functions for
users: one function is to help human understanding of the process in problem solving and
the other is to define and express the relative degrees of difficulty involved in the problem
solving. Users can know rough degrees of eifectiveness for piven problems, locking at the
degrees given by the latter function.

AMIE was developed to soive elementary functional equation, such as that in differential
and integral calculus with a single occurrence of a variable of the kind introduced in high
school and university text books. Some typical problems are shown in Figure 1-1.

In this paper, Chapter 2 describes the main objective of AMIE and chapter 3 a canonical
form of an algebraic expression and a simplification function. Chapter 415 a control metheds
of algebraic manipulation such as a solving equation and integral, and Chapter 5 an inference
method based on human heuristics. Chapter & gives dedmition and expression of relative
degrees of difficulty in problem sclving with an example of equation solving in chapter 7.

4X*—1TX*+4=0 {Expression 1)
Zlogg X —2logy 2 +5=0 {Expression 2)

2 o oy
3eor* X 4+ 5:in X 1=10 {Et:prcssiun 3)

I
(msl-‘f + VX !.) (Expression 4)

— : -
f:':"‘: *rdx (Expression 5)

Al ]
sz_ﬂ”“-n XdxX [Expression 6}

Figure i-1 Some typical problems handled by the program
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2. System Chararteristics

The main objective of AMIE is to solve algebraic in the same way as a human solves them
and to construct a system that helps humans understand the process of problem solving.
The system is intended, to clarify the inference process rather than to provide a capability
for high-speed processing. The method used in building up the stages of inference is exactly
the same az the reasoning processes and methods human beings nermally uses in solving
algebraic expressions.

The characteristics of AMIE are:
(1) Introduction of meta-level inference
{2) Iotroduction of degrees of difficulty

(2]} Introduction of explanation function
(4} Use of Prolog.

Fach of these characteristics are described below in detail.

2.1 Meta-level loference

The unlimited use of various rules for mathematical problem solving will result in
an explosion of computation volume because of the over extended use of search space.
Consequentiy it becomes extremely difficult to solve the problem in reai time. Furthermore,
it cannot be geperally said that the search is oriented always in the optimum direction.
There is, therefore, a need o minimize wasteful gearch by a selective use of search space
and directing search in what is believed to be the best direction. Hence the deme predicate,
which ig in fact a meta-predicate, and the introduction of meta-level inference for search
control. These two features made possible theze describable characteristics.

(1) Eazy determination of complex processing control.

{2) Modular approach to each process rule making additions and changes easy.
(3) Reduction of wastelul search space by cffcctive selection of search space.
(4) Clear separation of meta- and object-level inference.

(5} Clear distinction of Lhe categories of coutrol and structure for each problem type.

2.2 Inference Process and Degrees of Diffleulty

An attempt was made to express degrees of difficulty to the inference process. This
wat achieved by adding degrees of difficulty bazed on human empirical knowledge, Among
those for which this program was developed, in some cases different kinds of mathematical
problems can be solved by eases by more than one method. Different methods can be applied
depeoding on the degree of difficulty of the problem. Helative degrees of dilliculty were
defined by giving a weighted cost to each rewriting rule. T'hizs enables the selection and usze
of the least costly rewriting rule and thereby contributes to the efficiency of the process.
Furthermore, relative degrees of dificulty are defined for different, types of equations,

2.3 Explanation Funetion



When a person is involved in solving algebraic equations, he normally jots down the
process of computation for the more complex problems. By doing this he shows how the
problem was solved. The same process is expressed in our program by the use of the
explanation function. The program shows the user what solution method was applied and
explains that method,

The program also traces: the "notes” for each computation process just as a person can
refer Lo his notes atterwards. This extra function helps the user to comprehend the reasons
for the rules selected and applied and he will learn to manipulate expression transformation
. Multiple windows are used for this function to help the user understand the process more
readily.

2.4 Use of Frolog

Prolog was chosen because it is & logic language. The choice was made becaute we
believed the basic function of Prolog iz suited to algebraic manipulation. The following
characteristics were obtained.

{1) Easier meta-level control.

(2) When multiple solution methods are available, the Frolog backtrack function provided
automatic use of other solution methods,

(3) Prolog syntax made the description of rewriting rules for algebraic manipulation
eany.

(4) Easy pattern matching for application of rewriting rules.
3. Algebraic Expression and Simplification Method

3.1 Canonical Form and Powerful Matehing Funciion

An algebraic expression is composed of function(s), variable(s), constant(s) and aperator(s).

An attempt to solve the expression in its original form as input into the system will make the
process complex and cumbersome due to the large number of rewriting rules. The number
of rewriting rules, storage capacily, and processing speed are all affected by the way the
expression is written for the system znd by the way the patterns are matched. The system
addresses this problem by employing two standardized types for aigebraic expression and
a powerful matching function which considers commutation This process greatly reduces
the number of rewriting rules needed and substantially simplifies the algebraic expression
resulting in efficient processing.

(1) Canonical Form to Reduce Number of Rewriting Rules

Generally speaking, the more operators, the more rewriting rules are needed. To reduce
the number of rewrites required the following transformations were applied to deduction
{Rule 1) and division {Rule 2) respectively. 3o the four computation rules are then expressed
by two rules for addition and multiplication.

X -7 =3 X 4 (=1pY {Rule 1)

Xy = Xyt (Rule 2)
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Without changing the form of the expressions, expressions 6 and 7 can be rewritten by
the use of rules 3 and 4 respectively. When the expression is transformed using Hule 1 and
7. then expressions 8 and 7 can be processed using the same rewriting rule 3.

X 4 4+ X {Expression T)
3:X — 4 X (Expression &)
AvX 4+ B+ X = (A + B)+X {Rule 3)
Av X — B+ X = (A-— B)X {Rule 4)

Expression 8 is rewritten using Rule 1 to 3+ X + (—4)+X. Now applying Rule 3, we
get {3 =4 (—4))*X. The process effectively eliminates using Rule 4. What we have done is
greatly reduce the number of rewriting rules by the use of Rule 1 and 2.

(2} Caponical Form of Polynomials

Algebraic expressions solved by AMIE are mainly those composed of the four arithmetic
operations (exponentiation is expressed by multiplication). These can be expressed as
polynomial or rational expressions. In turn the polynomials and rational expressions may
be considered as follows:

{a) A rational exprestion may be expressed as a ratio of polyonomial.

(b) A polynomial may be expressed as the sum of terms.

e} A term may be expressed as coefficient and degree of the main variable.
From the canonical form of the polynomial:

Peolynomial
gpX" + o X" 4ty (so# 0)

we can write

[{aﬂrﬂ]; [nh - I-.:I.l rey {ﬂn_. D”'
Similarly for rational expressions:

2o X"+ a; X"V . 4 a,

BaX™ -4 by = 0,b 0
bpX™ -4 blxm“i + N o {uﬂ_f— b= ]

can be written as

(g0, m), (81, % — 1), ..., (8a, O], [(ba, ), (b1, m = 1), oo, (Bm, O])].

The use of such internal expression enables the system to understand that (X4 1)X +
1} and X2 - X? 4+ X +1 are identical expressions. The process eliminates complex pattern
matching required for applying rules and contributes to efficient proceszsing,

(3) Mowerful Matching Function

The expressions sin Xs cos X and cos X+ 2in X cannot be matched using the matching
function inherent in Prolog. We developed & powerful matehing funetion has been introduced
by considering neutral elements and rules of exchange for multiplication and addition. This
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Rules Prolog syntax

X! = X simplify(X*, X).
1*°X — X simpli fy(1" X, X).
X +0 = X stmpli fy(X + 0, X).

Figure 3-1 Rules for Simplification

simplify(X+Y+Z,5+Z)-rational{X),
rational(Y),
5= X+Y.

Nete: rational is a predicate that judges rational numbers and "=’ performs
the four arithmetic operations for rational numbers.

Figure 3-2 Examples of Simplification

matching function uses Rule 5 through 8 and eliminates application of similar rewriting
rules reducing them to the most general and the fewest,

A+ B=EB1+A (Rule 5)
A+B = B+A (Rule 8)
IsA=A (Rule 7)
A4+0=4 (Rule 8)

3.2 Simplification of Algebraie Expressions

In the process of solving algebraic expressions, the repeated use of rules without a
reduction process will result in a long expression because of the explosive number of inter-
mediate solutions. Such an overloaded expression will invite confusion and consume large
amounts of memory and CPU capacity. AMIE reduces the expression every time a rule is
applied to check the expression from becoming too long. Broadly speaking there are two
types of reduction processes used: (1) exclusion of unnecessary coefficients and degrees, and
(2} compound.

(1) Figure 3-1 shows two rules for eliminating unnecessary coeflicients and degrees.

(2} The other rule is for compounding constants using the four arithmetic operations
for rational numbers. For example, 4 -+ & + X may be written as § + X by compounding
3 and }. This can be written using Proleg as Figure 3-2 shows.

4. Methods of Control

In attempting to solve algebraic expressions humans find certain characteristics of the
expression. AMIE follows the same pattern by abstracting various characteristics found in
the given expression. Using the abstracted characteristics the program uses inference to find
applicable rules. This inference process s conducted by meta-level inference which can be
broadly divided into form control and rule control. The form control function classifies the
expression according to its form. The rule control function selects applicable rules based on
characteristics ather than the form. The control program is showsn in Figure 4-1.

The predicate 'manipulation’ solves expression 'Exp’ for variable "Var' and returns the
B



answer 'Ans’. When control information is deseribed in 'Cirl’, it uses the information as
& priority to solve the expression. The program also records in History’ all the rewriting
rules applied before the selution is found and returns to 'Cost’ the actual degree of difficulty
experienced.

The predicates ‘expression _ type’ and ‘exp _type _manipulation’ conduct form con-
trols. Whereas the predicate 'expression _ type’ judges the form of the expression, the
predicate ‘exp _ type _ manipulation’ conducts integral and transform processing according
to the given form.

The predicate 'method demo’ directs rule control to solve the expression ‘NewExp'
with wariable "Var’ The details of this process are described later.

The predicate ‘dificulty’ computes the degree of difficulty of the process invelved from
the history of rewriting rules.

Meta-level inference using a dictionary of methods iz in a effect control method making
additions and changes easy.

4.1 Form Control of Equations

Form control classifies the equation by the location of the variables it contains into
six form: polynomial, irrational, fractional, exponential, logarithmic, and trigonometric.
A piven equation may have several forms with various solution metheds available. The
gtructure of the method dictionary possibilities for application to learning systems,

{1} Polynomial Equation
A polynomial equation is expressed wilth polynomisls on both sides of the egual sign:
QX"+ X" - e, b XX T

The following is an example of a polynomial equation:

34X+ ;--x“—s-x+s=n

(2) Irrational Equation

Irrational equatione are thaze containing variabler within roots.

Vi—2—+z24+1=0

manipulation(Exp,Var,Ctrl, Ans,Cost, History) :-
expression_type (Exp, Var Explype),
exp_type_manipulation(ExpType,Exp,Ctrl NewExp, NewCtrl), !
method_demo (NewExp, [Var, [] ,NewCtrl] ,Ans, [] . History),
difficulty(History, Cost) .

Figure 4-1 Predieate 'manipulation’
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(3) Fracticnal Equation

In fractional equations both sides are rational expressions and by rewriting the terms in
standard rational expressions, the equation can be expressed as a polynomial equation with
certain conditions attached. The following in an example of this type.

X+4 1 +:_-c_'_ﬂ
X2+ X —2 X-—=1 X2i—4

{4) Exponential Equation

This type of equation contains variables within the exponents. By substituting Y'* for
a"*% it can be transformed into a polynomial equation. The following is an example.

39" L4 —T7=0

{5) Logarithmic Equation

Logarithmic equation contain variables within logarithms. By using basic transforma-
tions all bases are made equal before log X is substituted for ¥ to write a polynomial
equation. The following in an example of this type of equation.

Dslogy X — 3+ logx 2+ 5=10

{6) Trigonometric Equation

Variables in this type of equation are subject to trigonometric functions. By using the
various trigonometric theorems, the equation may be transformed into one trigonometric
function and rewritten as a polynomial equation. The following iz an example.

:cos® X +sinX —1=0

4.2 Form Control of Integration

Form control of integration classifies the input expression by the type of the factors
contains into ope of a few types. The classification tree is shown in Figure 4.1, For example,in
J 2% sin X# X dX Jlist least Tactors are [2,5in X, X ). The input expression has three factors; 2
is constant type,sin X is sine type, and X is monomial type. The polynomial type contains
the monomial type. The monomial type contains the constant type. The transcendental
fupction type consiste of exponential function type, logarithm function type , trigonometric
function type, and so on.

4.3 Rules Control

This function iz used to gelect applicable rules from the non-form characteristics of the
given algebraic expression. There are various types of rules and when several rules are ap-
plicable the sequence described below iz used. Figure 4-2 shows the predicate 'method  demo’

8



used in this control. ‘method demo’ indicates the expression input and various other con-
trol data (variable, information on applicable rule(s) given by user or available from past
history { called next processing infoermation) and other data). It also gives solutions to the
expression, the history of rules used in the past, and updated history of rule usage after the
current processing is completed.

MD1) checks for loop in the rewriting of the expressien by checking and finding from
history for identical problems. If the analysis is positive, a loop message is returned and
operation is suspended.

MD2) breaks down the problem inte its component expressions.

MD3) judges whether the expression was solved. The judgment is made by checking
the restraints contained in the control. For example, give the request to solve equation
X2 —4 =0, the answers are X — 2 and X = —2. But il a condition X > 0 is stipulated,
then X = —2 will not be a solution.

MD4) determines the applicable rule by the use of predicate 'strategy’ and applies the

Function

=== Polynomial

I
| |
= | === Hnﬁomial

| ==- Caﬁstant
i*-- Atom

|--- HNumber

l——- Traﬂscendental function

| | === Exponential function

|
|--- Logarithmic function

|--=- Trigonometric functicn
I

| --~- Sine

l*v- Cosine
|--- Tangent

-—= Inverse trigonometric fumction

|-== Arc sine

|

|--- Arc cosine
|

|=-=- Arec tangent
|

B Bk ekl S N EEE BT W T P e e e s e

Figure 4-2 Classification Tree of Function Types
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rule by the use predicate 'apply’. Predicate ‘explanation’ will have the system explain the
reason for rewrite and predicate 'method _ demo’ processes the expression in regression.

4.4 Rewriting Rules for Equations
(1) Fermula Hule

This rule is used when the eguation can be solved with this rule without using other
rules. This rule provides efficient processing by using basic formulas. An example is the
formula for solving quadratic equations:

—bg /b2 — duane

as X 4 bX +C=0 = X = e

(2} Isolation Rule

This rule is applied when there is only one variable in an equation. By applying inverse
functions to both sides of the equation, functions surrounding a variable may be eliminated
and isolated to one side of the equation. Some examples of this rule are given below:

logy V=W =4 V=u¥
Vi=w = [V = VW,V = —VW]

(3) Collection Rule

MD1) method_demo(Exp,[_,_,_.], loop.History,leop) -
loop_check (History) .

WD2) method_demo (E1 £& E2, [Var, Next Ctrl] Ansl 2% Ans2 History, Trace) -
methed_demo (E1, [Var ,Next,Ctrl] ,Ansl History, Tracel),
method_demo (E2, [Var ,Next,Ctrl]l,Ans2, History,Trace2),
append(Tracel, Trace2, Trace) .

MD3) method_demo (Exp, [_,end,Ctrl] Ans,_,[]) -
end_check (Ctrl, Exp, Ans), !.

WD4) method_demo (Exp, [Var Next,Ctrl] ,Ans,OldHis, Trace) :-
strategy(Exp, World, [Next Var,Ctrl], [I_Next, I Var, I_Ctril),
apply (World,solve (Exp, [I_Next,I_Var I_Ctrl] I _Exp,

[N_Var Explanation,Hi N_Next N_Ctrl], ),
explanation(H1,N_His, [N_Var Explanation] ,Exp,I1_Exp).

method_demo (I_Exp, [N_Var ,N_Next N_Ctrl], Ans,
[N_His|OldHis],Tracel).

append (Tracel,N_His, Trace) .

Figure 4-3 Predicate 'method . demo’
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The purpose of collection is to reduce the number of variables to one in an equation or
formula with two variables (not two types of variables). The expression to which this rule
is applied does not have to be a complete equation. The collection rules are used to rewrite
expressions in such a way that iselation can be applied, Some typical collection rules are

bogy V o+ log, W = log, VoW
sin [+ cos IJ = 1+ 8in(240)
UsV 4+ UeW = UV + W)

all of which collect relative to U

(4) Attraction Hule

The attraction rule will not reduce the number of variables as the collection rules do,
but they can be applied to reduce the distance between two variables (not two types of
variables). The reduction of distance between two wariables here means that the unknowns
come closer together so that they can be collected. The right hand side of the atiraction
rule has less distance between the variables compared to that on the left hand side. Some
typical attraction rules are:

logy Ulogy V = logw U +V
Wil + WsV = Ws(lU + V)
{WU‘}IV = WU#'I-"
UVI'H-" = {UV}W

which attract U and V.

(5) Substitution Rule

This rule is applied to equations of the form A{f(X)) = g(f{X)) or K(f{X)]) = 0. Most
of the trigonometric and exponential functions may be solved as general polynomial equation
by substitution of unknowns. For instance, sub-expreszion f{X} containing unknown X may
be replaced by a new unknown variable. After solving the new equation the unknown will
be substituted back in its original form and the original eguation can then be solved. For
example, in the cquation X* | 2:X? —8 =0, f(X) = X? gives (X*)®? + 2:{X?}—8 =0.
Now substituting a new unknown ¥ for X2 the equation can be rewritten as ¥2 4 2:.Y —
8 = 0. Similarly sin® X + 2+sin X — 8 — 0 may be rewritten as ¥2 + 2.Y — 8 = 0 with
FIX) = sin X and substituting ¥ for sin X . Now the equation can be solved.

{6) Transformation Rule

This rule is applied in the following cases using the forms of the equations according

to form control. After applying a transformation rule, bowever, the eguation becomes
canditional.

{a) Processing Logarithmic Equation

Trapsformation rules are applied when the equation contains logarithinic functions
and when such functions do pot have the same Lase. Ounly by the application of basic
transformation rule can they share the same base.

For example, in logy X -+ 8+logy 2 ~ 6 = 0, the logarithmic functions are log, X and
logx 2. They do not have the same base, the latter base is an unknown. In order to eliminate

11



the unknown contained in the base, rewriting rule log, Y = lﬁx is used for the
transformation. The new equation may be written as log; X + 8/log; X — 6 = 0,which is
soluble by the rule of substitution.

{b) Processing Fractional Equations

In this case the rule is applied by transforming the equation into a ratio of expressions.
Then with the condition that the denominator is pot zero, we solve for the neminator. Using
standard form of the fractional equation ;n—“_;’;_f,.,—:""_—*_r—?ﬁ =0, solve ap X " -+ ...+ a, = 0 with
the condition that b X™ < ... <+ b, is not zero .

(¢) Processing Correlated Equations

In this case, the rule is applied when the highest depree in the equation is even. It iz
then divided by a term whose degree is 4 of the highest degree in the equation and whose
cocflicient is 1. For example a bi-quadratic equation aX' X 4 e X* 4+ bX +a=0Is
divided by X? to give the correlated equation a{X? + <Ig) + dX + ) +c=0.

(7) Factorization Rule

This is applied in the following two situations. It is applied to @apX™ + ... +an = 0
when the left hand side of the equation iz a pelynomial and the right hand side is zero.
Factorization is done using the factorization axiom or the characteristic of an odd degree
correlated equation that X1 is always a facter. It is also applied to equations of the form
(A*B = 0) when multiplication iz the primary operator of the left hand side and when the
right band side is zero. The equation iz factored intc iwo o solve A =0 and B =0. A
factored equation that doecs not contain an unknown variable ie excluded.

{8) Expansion Rule

Thit rule iz applied when it is possible to expand the equation. Polynomials, however,
are excluded because they are expanded in the process of arriving at a canomnical form.
There is a danger of falling into an infinite loop when using this rule because it may destroy
equations which have already been tidied up by other rules. In order to avoid this situation,
the demo predicate checks the number of applications of the expansion rule.

4.5 Rewriting Rules for Integration

(1) lntegration rule for polynomials

This rule is applied when the input expression is a polynemial. The polynomial nor-
mal form consists of a list of elements of the form [[Cy, Ni), ..., {Cq,0)] to represent the
polynomial Cx*X ™ - . + Cp. When the expression (polynemial) is transflormed into its
palynomial normal form, the expression can be solved by using the following rule:

ﬂxu-f-l
n—+1

f.:x"dx — +C

(2) Iontegration rule for addition

12



This rule 15 applied when the main operator of the input expression is addition. The
expression is factored in to two expressions. A typical application of this rule iz

[ (00 + o0 Jax B [ roxrax + [ ooxrax

{3) Integration rule for expressions containing a constant

This rule iz applied when the input expression contains constant factors net unify.

f.i:sj{}r}dx - kfjf.k’]dx
k iz a constant factar.
(4) Integration rule for basic functions
This rule is applied when the input expression is a basic function. Basic {unctions are

distinguished by the predicate ’is basic funciion’. Some typical application of this rules
are

[sinf{.ﬂf}d'x — —ﬂ—;:ﬁ* cos fiX)+C
ffﬂxux - ﬁie”m 1

f(X) is monomial and f(X)’is a constant. 30 — f(X)
(5) Rule of integration by parts

This rule is applied when the input expression has two factors. The standard formula
for integration by parts is

ff[l']*ﬁ[le’fﬂ' - HX)g(X]) + fj"[x}l'*:r{l’}dl’

This rule is applied for the following human heuristic.

[ monomialstrigonometric function dX —

apply : Integration by parts
with fX] = monemial,
g(X)} = trigonometric _function.

In English, this heuristic means that 'If the current integration is the product of a
menomial and a trigonometrie funection, then try using integration by parts, and bind the
operator arguments ffX) and g/X ) to the indicated factors.’

13



5. Inference Method

The form and rule contircls deseribed so far used meta-level inference. Meta-level
inference in AMIE controls object-level inference. Object-level inference expresses rewriting
rules such as A*X + B+X = (A} B)sX. That is to say meta-ievel inference is
controlled by human heuristic knowledge which can guide the system towards the best way
of solving an expression. Figure 5-1 shows a part of the predicate 'strategy’ for selecting
rules on the basis of such heuristic knowledge.

Arguments for 'strategy’ represent control information such as input expression, scope
of applied rule, control information (informaticn for the next processing, unknowns, and
other contro! data) and various kinds of new control information. ‘strategy’ decides Lhe rule
to be applied using meta-level knowledge. For example, ST1) to 5T5) contain meta-level
knowledge: S§T2) the isolation rule for equations, ST3,4)factorization rules of equation and
ST5) the rule of integration by parts wriiten in them.

ST1) applies rules in accordance with the information for the next processing when such
information is input by the user or is stored from past processing.

ST2) decides the application of the isolation rule when the right hand side is free of
unknowns (predicate ‘free _ of ), when there is a single occurrence of an unknown in the left
hand side {predicate 'singleoce?), and when its position is known (predicate 'position’).

$T3) decides the application of a factorization rule when the main operator is mul-
tiplication (predicate 'main _op _ mult’) and when the right hand side is zero (predicate
zera’).

ST4) decides the application of a facterization rule when the left hand side is a poly-
nowial (predicate is _ polynomial’) and the right hand side is zero (predicate ‘sero’).

ST5) decides the application of a rule for integration by parts when the expression
consists of two factors (predicate ‘mumber factor) and when, for instance, one function is
a monomial and the other is a trigonometric function (predicate ‘select f _dg’).

6.Determining Degree of Difflculty

By looking at on expression, a human being can tell mere or less how difficult the
problem is. Such judgment is often made from the complexity and special forms of the
equation. A given problem may be solved in a number of ways and the technique applied
ean make the task easzier or more difficult. By adopting three types of rewriting technigues,
the degree of difficulty is computed empirically as a cost.

(1) Weighting by ease or difficulty of finding a solution technigue.
{2} Weightipg by the number of steps involved in solution.
(3) Dynamic weighting by the pumber of rules in continuous use.

Each weighting process is assumed to be independent and ihe sum of the three is used
as the final degree of difficulty.

(1) Weighting by method of problem solving:
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Generally speaking each rewriting rules has different degrees of difficulty. Rewriting
X+B=A = X=A—PBandX?=A = X =+AX= VA, the latteris
considered more difficult. The weighting in the latter case will be greater.

{2) Weighting by number of steps:

Again the more steps involved in solution, the grealer the volume of computation and
hence, the more difficult the problem. In finding factors, the higher the degree the greater
the number of substitutions and so the more difficult is the solution. That is so say it is far
more difficult to extract factor X + 1 from X* — X* — 7=X? + X + 6 than from X? — 1.

{3} Weighting by number of rewriting rules:

Generally speaking, the more rules that have to be applied the greater the difficulty. An
equation requiring application of a rule is easier to solve than one reguiring ten. Therefore
a greater cost was attached Lo equations requiring several rewriting rules

The weighting process used for calculating the degree of difficulty may be applied to
the ordering of CAI teaching material. Efficient selection and application of rules can be
achieved by use of this concept in the sequential control of the rules.

7. Examples

An example of system implementation is shown for Expression 1 from the introdustion.
Figure 7-1 shows the display panel.

(1) When the equation is input to the system its type is determined by the type control
function. The example shown is a polynomial equation and the panel display it az such.

ST1) strategy(Egn, [X],[[Nextl|Rest], Var Ctrl] N_Ctrl) :-
(strategy(Eqn, [Nexti], [ [],Var,Ctrl] N_Ctrl),!, X=Nextl ;
strategy(Eqn, [World], [Rest, Var Ctrl] N_Ctrl),!, X=World ).

8T2) strategy(L=R, [isolate], [[],Var, Ctrl], [[].Var, [position(P)|Ctrl]])
free_of (Var ,R),
singleoce(Var, L),
position(Var,L,P).

5T3) strategy(1=R, [fact], [[].Var,Ctrl1], [[],var,Ctrll) :-
main_op_mult(L),
zero(R) .

ST4) strategy(L=R, [fact]l,[[].var,Ctrl], [[].Var.Ctrl]) :-
is_pelynomial (Var L),
zero(R) .

ST5) strategy (Exp, [int_part], [[J,var,Ctrl], [[],Var, [f_dg(F,DG) |Ctrl]])
nueber _factor (Exp,Var,2 Fanclist),
select_f_dg(FancList, Ver,F,G) .

Figurf 5.1 Part of the preditate Gtrategrl
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! Expression being worked on

2 Type of expression | 3 Present variable

4 Total cost using three methods

5 Number of rules used
£ Cost for the use of rules
7 Expression before the use of rewriting rule

& Expression after the use of rewriting rule

9 Explanation of rewriting rule applied M{E

Input area

Figure 7-1 Implementation Display

(Figure 7-2)

(2) Contrel moves to rule application which decides the rules to be used for successful
solution. Equation f{X) = X2 can be rewritten 4(f(X)P2 —1T=f(X)+4 = 0. A
substitution rule is used to substituie a new unknown @1 for the unknown X2, so the
equation is now rewritten as 4:@1% — 174@1 -+ 4 = 0. (Figure 7-3}

(3) As the equation is quadratic, formula rules are applied so that @1 = 4 and @1 = .
(Figure 7-4)

{4) Now that the equation iz separated ioto two, the system solves for @1 = 4. That
is, it return @1 to the original form X? — 4 and solves. (Figure 7-5)

{3) This equation has a single occurrence of an unknown in the left hand side and none
in the right hand side. The isclation rule is applied, so that X = 2, X = — 2. (Figure 7-8)

(6) The system now takes the other part of the equation separated in (4} and solves for
@1 = 1/4 by returning €1 to the original form X? = }. (Figure 7-7)

(7) The isclation rule is applied as the equation has single occurrence of an unknown in
the left hand side and none in the right hand side, so that z = } X = —1. (Figure 7-8)

(B) With the successful solution of the problem, the system displays the degree of
difficulty using method 1 and al! solutions. (Figure 7-9)

Results using other solution methods are shown in Figures 7-10 to 7-11. Symbols wsed
in the history of rule applications appear in the order of use. For** represents formula rules,
iso**: isolation, col**: collection, att®*: attraction, subst**: substitution, replace: returning
substitution to original, con**: esnversion, fact**: factorization, and expd**: expansion.
‘I'he history shows that the following solution methods were vsed in the order of use.
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Method 1 zolved the equation as a complex guadratic equation,
Method 2 as bi-quadratic correlated equation,
Method 3 by using factorization.

The inference processes for the three methods are more or less the same as that humans
use in solving mathematical problems. The degrees of difficulty for each of the methods are
given as 16, 36, and 29 respectively, again corresponding roughly to the relative difficulty in
solving them based on human empirical knowledge.

The problems which can be solved by AMIE are, as indicated in Figure 1-1, those that
appear in high school text books and fundamental university entrance examinations. Some
exponential and logarithmic equations for which there are at present no general methods
but which depend on numerical and graphic methods must be addressed in the future.
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8, Conclusion

AMIE executes both selection and application of various kinds of rewriting rules and
substitution functions using meta-inference according to human heuristics. This method of
AMIE builds efective problem solving functions for algebraic problems because of the good
heuristic strategies used in meta-inference. Clear expression which discriminates meta-level
koowledge and object level knowledge for meta inference makes it casy to add and update
both level knowledge. Therefore, users can easily cxpand an object problem area.

Rewriting rules are categorized according to some characteristic in AMIE. The cost
of problem solving is defined by not cnly an applied method but also the category of the
method. Therefore, definition of kinds of categories to which new rules belong, should be
evaluated precisely when new problem areais added into the system. Explanation functions
of AMIE show the degree of necessity of applied rules and transformation methods. Multiple
windows is used to the process of problem solving clearly. Hough degree of difficulty for each
solving method in humans experiment is shown by the relative degree of difficulty displayed
corresponding to an applied method.
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