ICOT Technical_ Report: TR-126

TR-126

Partial Evaluation of Prolog Programs

and its Application to Meta Programming

by
A. Takeuchi and K. Furukawa

July. 19835

1983, 1COT

WMita Kakesal Dlde, 2ITF 03) 456-3141~5
|[:Cji 4=28 Mita 1-Chome Telex 1COT §32964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

Partial Evaluation of Prolog programs
and its Application to Meta Programming:

Alkikaru Takeuchi and Kouichi Furukawa

ICOT Rescarch Center
Institute for New Generation Computer Technology
Tekyo, Japan

ABSTRACT

Partial evaluation is an important technique in computer science. In this paper, we prescat 1)
the method of partial evaluation of Prolog programs, 2) its implementation in FProlog and 3) its
application to meta progrgamming. Meta programming becomes to play very important role in
Prolog application, because of its expressive power. However the efficiency was always problem
of meta programming. We will show that the efficiency problem can be solved by specializing
meta programs by partial evaluation with respect to object programs without loss of cXpressive
power of meta programming. Furthermore we will prepose a new method for building inference
systems. The pew method is based on meta programming and utilizes partial evaluation as a
basic tool. In a practical inference system, it is important that system has the ability to acquire
inference rules incrementally. We will show that our new method is also applicable to these
evolving systems by specifying the way to specialize meta interpreter incrementally with respect
to ak incrementally generated object program.

*The erigirnal vereion of this paper was presented in Japanese st the Logic Programming Conference'fS
(Tokyo) on July 2nd, 1985,

1 INTRODUCTION

l.ogic programming has provided p.werful concepts for building expert system, programming
eovironment and database management sysiem. The features comman In these systems are that
meta programs, cspecially meta izterpreters, pley important role. Ia fact, it is quite patural wo
realize shells of expers sysieme and managers of database systeme as meta interpreters specialized
to these systems. The approack by meta lnterproters iz the following advanteges. 1) One can
clearly separate object-level contrel and meta-level control. 2) Because of clear scparation of
ohject and meta programg, one cap easily understand the system and can easily modily the
5YELEI.

Hewever, in the approach by meta interpreters, the performance of the sysiem iz quite low
becauze of the interpretive execution of an object program by the meta interpreter. We have
devzloped the partial evaluation program, FEVAL, and bave shown that the performance of
the system can be improved by partial-evaluating the meta interpreter with respect the specific
object program fTakeucLif5).

PEVAL was extended te partial-evaluate Prelog programs me. fiexibly. In thiz paper, we will
describe the method of partial evaluation of Frolog programs which is realized in the PEVAL
and will explain the application of partial evaluation to the specizlization of meta programs with
respect to object programs. Based on the experimerts of specialization of meta programs, We will
propose & new metho for building inference systeme which utilizes partial evaluation as a kernel
teol. Furthermore, it wiil be shown that mela programs call be specialized incremeatally with
respect to an object program constructed incrementally. This incremental specialization matches
incremental Tule acquisition in inference systems and open world assumption in programming
envircuwent,

5 PARTIAL EVALUATION OF PROLOG PROGRAMS

Generally partial evaluation of @ program is te specialize an original general program to a special
effcient program using information about run-Lime environment. The input data for a program
is important one awong such information. In the case of Froleg programs, the following two
can be regarded as input data:

(1) Goal statement, especially values of arguments of goals
(2) A set of clanses which is used as input data

In partial evaluation of Prolog programs, 1t is cesirable to be able to partial-evaluate a program
based on both kinds of input data. In this chapter, we describe the method of partial evaluation
of Prolog programs and explain the basie behavior of PEVAL which realizes the method. The
range of Prolog programs which can be treated by PEVAL and the ways to control PEVAL are
also shown.

The computation of a Frolog program cal be regarded as traversal of the AND-OR tree
corresponding to the program by depth-first and left-to-right strategy. Our partial evaluctor,
called PEVAL, examines this tree based on the given partial data, expands a goal by the body
of a clause, the head of which can be unified with the geal and ents off vranches which can
be known to fail, For the traversal by partial evaluater, several stralegies are known, such as
top-down, bottem-up and middle-cut. FEVAL uzes top-down and left-to-right strategy as well
as Prolog. Numely, PEVAL starts the partial evaluation from the definition of the top-level goal

o

and goe: through these of its descendent goals. We call Lhis kinds of control of partial evaluation
goal directed partini evalusiion,

The basir principie ef partial evaluation it to evaluate parts of a program which have enough
input data and to keep as it is if the parts don’y have enough data. Gexnerally, in the value
oriented langueages like functional programinipng languages, eoncrete walues of variables in an
expression are peces:ary for evaluation. In order to evaluate an expression without enough
values, some special evalualion scheme such 25 lazy evaluation iz required. However, in the case
of Proleg, the basic computation is based on the unification, thus no special evaluation scheme
15 required for the partial evaluation. This is a very important feature of Prolog.

Keeping above obzervation in mind, let us partial-evaluate the following simple Prolog program.

ancestor (X, Y) - parent(X,Y).
ancestor (X,¥Y) .- parant{X,Z), apcestor(Z,Y).

whera the following two clauses are given az an inpat clause set.

parent(taro,jire).
parent{jiro,saburo).

Let us start partial evaluation of the above program from the goal ancestar(X,¥). As a result
of the partial evaluation, it is expected that the following specialized progran. witl be obtained.

ancestor(taro, jirol.
ancestor {(taro, sabure) .
ancestor{jiro,saburo) .

Mote that the expected result of the partial evaluation coincides with the zolution set of the
goal ancesteor (X,Y). It means that the goal directed pariial evaluation and searching for all
selutions have the similar basic algerithm. In fact, if an original program has a finit AND-OR
tree, extreme case of partial evaluation is nothing but searching for all instances of the goal
literal.

For partial evaluation of a program with an infinit AND-OR tree, howeaver, there must be some
mechanism which detects a loop of partial evaluation and takes care of it. PEVAL detects a
loop when the foilowing condition is satisfied:

Duripg the partial evaluation of the clauses defining a goal G, a goz! 6*, which is same
as the goal G except the names of variables or is an instance of the goal G, appears as
a new goal to be partigl-evelusted.

When a loop is detected, PEVAL stops further partial evaluation and returns a goal itself as &
result of partial evaluaticn

The basic algorithm of partial evalunation realized in PEVAL is shown in Figure 1. In Figure
1, peval_geal(Goal,NewDef Stack} is the relation which take: a goal Geal, a stack Stack
as input and returns a specialized definition of Ithe geal MewDef, where Btack is a stack which
keeps goals being partial-evaluated. The first clause specifies the case in which the condition
of ioop detection above is satisfied. In this case, an atom, 1nf_leep, is returned in the second
argument. In the second clause, clauses, which define the goal and can be unified with the geal,
are partial-evaluated by peval_clauses. peval_clauses(Clauses, NewClasues,Stack) is the
relation which takes Clauses and Stack as input and returns NewClauses, where NowClauses
is the result of partial evaluation of Clauses. The first clause of paval _clauses specifies the
caze in which no clause can be unified with the gosal. In this case, an atom, fail, is returned.
The second clause specifies the remaining case, in which each body of each candidate clanse is
partial-evaluated by peval_clausesl and fail is returned if the result of peval_clausesi is

peval_geal{Goal,inf lecop,5tack) :- second_cccurence(Goal, Btack),!.
peval_goal{Goal, NewDlel, Stack):-
clanges{Goal ,Cls), !,head unif{Cls, Gozl, Selected),
peval_clauses(Selected, NewDel, [Geal|Stack]).

peval_clauses({], fail, > :- !,
peval clzuses(Clauses, Ans, Stack) :-
peval_clausesi(Clauses, Temp- [],Stack), close(Temp, Ans).

peval_clausesi([cl(Head, Done, [oal |[Rast]) |Cls], Ans, Stack) :- !,
peval_goal(Geal,Bubs,Stack),
unfeld{Subs,cl{Kead, Done, [Goal|Hest]),CC1s~Cls),
peval_clausaesi(CCls,Ans, Stack) .

poval_clausesi([cl(Head, Done, [1)|Cle], [c1(Kead,Dene, []) INTa11]-NT Stack) :- !,
peval_clausesl(Cls,KTail-KT,Stack) .

peval_clausesi([},TI-T,).

unfoid{inf_loop,cl(Head,DH-[GIDT], [GIR]), [el(lead,DH-DT.R) ITail]-Tail) = !.
unfold{fail,_,Tall-Tail) :- t.
uwnfold{[],_,Tail-Tall) :- !.
unfola([cl(Head, Bedy, [1)188],Clause, [Nclause|T]1-Tall) :-
expand (Clause, cl(Head Body, [1),Nclause), !,
unfold{Ss,Clause, T-Tal1l).

expand(Clause,cl(G,B-[], [1),c1(Head,DE-NDT,Gs)) :-
copy(Clause,cl(Head ,DE-DT, [GIGs])),append(B,NDT,DT).

head_unif ([(H:-Body)Cls]l Goal, [c1(4,D-D,Blst) [Ta11]):-

copy(Geal H),!',and_to_list(Bedy,3lst) . head unif{Cls,Goal, Tall).
head_unif([_ICls],Goal,Tail) :-head_unif(Cls,Goal,Tail).
head unaif([1,_.[1).

close{[],fa1l) :- !.
close (¥, X).

Figure 1. Dasie algorithm of PEVAL

emply, ctherwise the resuit of paval clausesi is returned as the result of paval_clauses. For
cach clause in the frst argement, peval elansesi partial-evaiuates goals in the body {rom Jeft
to right by peval_goal sad expands the goals with the new definition by unfeld arnd further
partial-evaluates the rest of geals in the expapded clanses by peval _clausesi.

Real PEVAL is angumented in many poiots in order to cozbie user control so that PEVAL
can process as many kinds of programs as possible. PEVAL can bandle the following kinds of
Programms.

e A program which iucludes arbitrary system predicates except cut (however, 1f statement is
avaitable).

» A program which is open, that is, which has undefined predicates.

Currently PEVAL does not treat cut operator since cut operator is too low primitive to handle.
Relatively high coptrol primitives such s 1f and case arc easy to handle in PEVAL. Therefore,
instead of handling directly cut in PEVAL, we adcpt the approach in which a program using
cut is first transiated to & program using 1f and then it iz partial-evaluated.

An user can control PEVAL by the following Horn clause lorms:
(o} typel(Goal,Type) :- <Comditiom>.

{b} inhibili_unfolding(Goal) :- <Comdition?.

[e) - pmode <Moda declaratien>,

[d) expand_leocplGeal) :- <Conditicn®.

The form (a) says: “When a Goal Goal satisfies the condition Conditien, then the {ype of
evaluation of the goal iz Type." There are three types.

e ... evaluable
L2 terminate
- g partial evaluale

Iype “¢” means that the goal can be totally evaluable and type “i" indicates termination of
partial evaluaticn of the goal. Type *g” is & default type which indicates the partial evaluation
of the geal. Type “t7 is useful when a program is cpen, that is, the program has undefined
predicates. In such cases, an user can set the types of undefined predicates *U” in order to avoid
the partial evaluation of undefined predicates. The form {c) specifies the mode of the predicate
in the same way as DEC-10 Prolog. When PEVAL partial-evaluates a predicate, it first checks
the mode declaration. If the mode is declared and at least one of the arguments specified as
input mode is nrilefined, then PEVAL stops partial evaluation because there is mot encugh
information. The form (b) controls the unfolding part of partial evaluation. When PEVAL gels
the new definition of a predicate by partial evaluation, PEVAL usually unfelds the poal by the
new definition. However, if the predicate satisfies the inhibit_unfolding relation then the
unfolding of the goal by the pew definition is inbibited and the new definition is stored in the
internz! database. This form is useful for reducing the amount of codes generated by partial
evaluation. For example, suppose that, by the partial evaluation of pAg, n and m clauses have
been obtained as the new definitions of p and g respectively. I both p and g are unfolded by
the mew definitions, then m » m goal statements are generated. However, if neither geal are
unfolded, then the amount of codes is n -+ m clauses. The form (d) overrides the loop detection

coudition described befere. In PEVAL, when a new goal to be paruial-evaluated is equal to the
goal in the sieck except the nsme o variables or the new goa! is an instance ot the goai in the
stzck, then the loop 15 delected. bhowever of . mew goal statisfies this form, then the second
condition of the loop detection is iguored

The pew definitions generated by the pertial evaluation are stored in the internal database. It
may happen that the resulting program will bave redundant clauses. Therefore, when a new
clause is obtained, PEVAL checks whether the new cluuse is glready in the database or mot.
An uzer must eare aboui the definitions of the predizate, the partiel evaluation of whick is
termipated by some reascn. since Lhe resulting program may become incomplete with respect
to the definitions of such predicates. In the [oilowicg cases, the resuiting program may become
incomplete.

(1) Wken unfelding: of some predicates are inhibited by the inhibit_unfclding predicate.
(2) When the types of some predicates are specified as “4” by the type predicate.

{3) When the partial evaiuations of some predicates are terminated by the loop detection.

lo the case (1), PEVAL automaticelly steres the definitions of such predicates in the internal

database. In the case (2), PEVAL stores warning saying that ne definition is stored for such
predicates in the interual datzbase Currently there is no mechanism which covers the case (3).

3 AFFLICATION TOC META PROGEAMMING
3.1 Meta programming

Meta programming s widely used programming technigue in logic programming. Meta progam-
ming can be feztured informally in the following way.

(1) To handie 2 program as data
(2} To bandle data as = program and to evaluate it

(3) To handle a result (success or [ail) ef & program as dals

The most well known example of meta programming is the demo predicate of Bowen and
Koweleki (Bowenf3). demo predicate takes two arguments, a program and a goal. demo
predicate becomes true if the goa! can be derived from the program, etherwise demo fails.

demo{Program, Geoal)
= true if Program —Goz!
—+ fail otherwise

The logical meaning of the demo predi-ate is the derivability of the goal from the given program.
Using this demo predicate, Bowen and ilovalski have shown the powerful progamming examples
which amalgate object and meta languages. Meta programming is also powerful in the problem
solving. Bundy have shown the meta-level control of provlem soiving (Bundy81). Furthermore,
meta programming is alse important in building pregramming environment. The algorithmie
program debugging syster: developed by Shapiro (Shapiref3a) uses meta programming very
much.

2.2 Partial evaluntion of a meta program

—ty —

Most of meta programs written se far are variations of meta interpreter. For example, the
debugger above is ooe of the variation of meta interpreter. APES (Hammeond23) is a tool
for buildiag logic-based expert system, which wtilizes mela programming. In APES, Horo
elauzes are regarded as infereace rules and infercnce engine is realized 23 meta interpreter, in
which explanation facilities are impiemested. I 13 possivle to handle certainty facters in this
meta interpreter. Shapire has propozed such mets interpreter that handles certainty factor
(Shapiro83b).

It have been szid thal mels programming appreach 15 goed becauss of its expressive power,
howewer it is inefficient. We claim that partial evaluation can solve the inefficiency problem of
meta programs. [t is possible to translate a mets program to an efficient program by partial
evaluation. In fact, since an object program can be regarded as input data from a meta program,
the meta program can be specialized by the partial evaluation if the ohject program is given,
so that the specialized program have no interpretive code. Consequently the efficiency of the
program will be impreved. In this way, partial evaluation solves the inefficiency problem of meta
programming and encourages users to fully utilize the expressive power of meta programming.

We explain it by example. In Figure 2 (a), Horn clause meta interpreter which handles certainty

golvaltrus, [1001).

soclve((A B}, 2} - selve(A,X), solve(B2,Y), ap(X.Y.Z).
solvefnot(a), [CF1) :- s=lvelA,[C1), € < 20, CF is i00-C.
solvelA, {CF]) :- rule(A,.B,F) , solve(B,5), c1(F,5,CF).

et (¥, ¥,2) :- product{Y,100,YY), 2 1s (X+7Y)/100.
product{[],A,A).
product(IX|Y] A XX} - B is X=4/100, product(Y,B,¥XX).

rule(A,B,F) = ({A:-E)<OF).
rulelA, true,F) = (A<:F).

(a) Meta Program
should take(Perseon, Drugl) :-
complains_of (Person, Sympiom),

suppresses (Drug, Symptom),
not(unseitablo(Drug,Person)) <> TO.

suppresses(asplirin, pain) <» &0,
suppresses(lom2til, diarrheoea) <> 65.

unsuitable(Drug,Perscn) =
aggravates (Drug,Conditien}),
sufferse_from(Poregon,Conditinn) <> BO.

eggravates{aspirin, peptic_ulcer) <> TO,
aggravates(lomotlil, impaired_liver_fuaction) <> TO.

{t) Dbject Program

Figure 2. Meta Interpreter and Object Progam

—T —

factor i shown. In thw fzure, solve predicaie is @ binary relation, the first argument of which is
& goz! to be solved and Lhe second @ ~gument iz the certainty fuctor of the gozi when it is solved.
In the figure 2 (b}, an object program is shown, which is a set of rules used to recommend a drug
1o @ patiest. “<> N° attaches Tor eack clause indicates certainty foctor of that ciause (inference
rule],

In Fizure 3, instructions to PEVAL specified by an user aud the resulting program are chown.
It proves that the resulting program is the meta program which is specialized to the object

typelsolve{complains o2 (_,), 2.t} - L.
type(solve(suffers _from{_,_J, IR B
typelsolve(_,_J},E) - !

typel{rule{_,_,_7,0) = !,

typelct(X,Y,2),e) :- integer(X), groumd(Y¥), I.
typelet (X,¥,2),8) :- var(X) ; \+{ground(¥}).
typef{ap(X,Y,2),e} - fized length(X),!.
typelap(X,Y.23.1) \+(fized_length (X)), !.

type(X<Y¥,e) :- integer(X),integer(Y),!.
type(X<Y,t) - var(¥X) ; var(Y}.
type(X>Y,e) := int=¢er(X),integer(¥).!.

type(X>Y,) = var(X) . var(Y).
type(X iz Y,e) :=- ground(Y), !.
type(X is Y, t) :- Y+{ground(Y)).!.
iphibit _unfolding(solve(Goal,_}) :-
\+{Goal=true),\+(Goal={F.Q)),
Y+{Goal=nat(F}].

{a) Izstruction to FEVAL

gelve(should_take(A D), [C1) :-

solve{complains_of (A,D),E},

solve (suppresses(B,D},F),

golvalunsuitabla(B, A), [G]D,

GC2C K 18 IGO-G.EPEF.[H],IJ.ap{E,I,J]_:I{TG,J,C}.
solve(suppresses(asplirip,pain), [60]).
snlvn(suppressas(lnmctil.diarrhuua)i[ES]}_
solve(unsuitable (A B}, [C]) :-

solve(aggravates(A,D) ,E), solve(suffers_from(E,D).F}.

ap(E,F,G),c2(B0.G.C).
solve(aggravates(aspirin, peptic ulcer), [TC1).
solve{aggravates{lomotil, impaired_liver_ function), {701).

suive/2 unprocessed.
ap/3 unprocesgsed.
€2/3 unprocessed.

(b} Nesult of Partial Evaluaticn

Figure 3. HResult of Partial Evaluation

—R—

Table 1. Comparisen of executicn time {CPU Time)

3

R | P | L3 LY
Interpretive Execution i 14674 | 1157 a0l

Compiled Exccution | 110 | 46 39

-

-

p1: Meta 4 Object pregram {Fig 2)
po: The specialized program (Fig 3 (b))
pa: The specialized pregram (Fig.4)

program and can not be used for otker programs, while the original mels progrem can interpret
any object pregram. By comparing ibe resulting program with the original object program
(Fig.2 (b)), it proves that the specialized program can be seen as the variation of the object
program which is augumented to handle certainty factors.

Note that the resulting program has the same structure as the object program. It is possible
to partial-evaluate the resulting program more. I iobibit_unfcldirpg is removed from the
instructions to PEVAL [Fig.3 (a)), more partial-evaluated program will be aobtained, In Figure
4, the new specialized program is shown. In the resulting program, all the object goal iovoca-
tion except should take, compleins_of and suffers_Irom are expanded. Conseguently this
prograrm will be a little more efficient than the program in Fig.3 (b).

In Table 1, the comparison of execution time of various programs is shown,

4 PARTIAL EVALUATION AS A BASIC TOOL FOR BUILDING INFERENCE SYSTEM

In this chapter, we investigate the implication of partial evaluation of meta programs from the
point of view of building inference system.

It has been said that Prolog is a good base language for building inference system in the following
reasons,

{1) Unifleation: Computation based cn unification is more powerful than patiern matching and

golve(should_take(A, zspirin), [B]) :-

solve(complains_of (A, pain),c),

solve(sutfers_from(A,.peptic_ulcer),DJ,

cf (60, [TOID].E) ,E<20,F is 100-E,ap(C, [60,F].G),cI1(79.G.B).
colve{should take{a,6 lomotil), [BI) :-

solve{corplains_of (A, diarrhosa),C),

solve(suffers_from{A, impaired liver_function) , D),

cr(ao, (To|D1.E) ,E<20,F 1s 1C0-E,ap(C, [65.F],C),ci(70,G.8).

solve/2 unprocessed.
€13 unprocessed.
ap/3 unprocessed.

Figure 4. Another Hesult of Partial Evaluation

—g —

patiere drivon computation of conventicnal Al larguages.

{2} Seocreh by haektracking: Proiog ruvides automatic breinraciing for search problem which
iz eszential in inferenee system .

flowever, the fact that Prolog is & good buse language does nol mesl 2Oy special method for
building isferesce system. Many methods have been proposed for building inference system so
far. In the following we summarize the methods proposad fo far, clarifly the problem and will
propose a new method which uses partial evaluation as a basic tool.

Generally inference system consist: of the following things.
{a) Inference Rules

it} Inference Engine

Inference rules are domain specillc koowledge. On the contrary, inference engine is demaic
independent and infers hased on some strategy using the inference rules when 2 goal is given,
Usuzlly meta-leve! control is realized in inference engine.

Let us see examples, Production system is well known as rule-based inference system, in which
production rules correspond te inference rules and engine of prodduction system corresponds to
inference engine. Forward and backward production systems correspond to the inference systems
which adept forward (tup-down) and backward (bottom-up) strategy respectively. Parsing
s¥stem can be also regarded as inference system. In this case, grammatical rules and dictionary
correspond to infersnce rules and parser corresponds to inference engine. Ir: the case of parsing
there are several algorithme such as top-down and bottom-up, which refiect the strategies
adopted in the inference engine. Furthermere, Prolog interpreter can be also regarded as
inference s¥stem, in which a Prolog program corresponds to inference rules and the interpreter
eorrespond: to inference engine.

There are two typical methods for building inference system in Prolog.

(1} To realize inference engine as an interpreter of inference rules
(2) To translate infersnce rules to an executable program

As examples of systems taking the first method, there are APES and meta interpreter handling
certainty factor of Shapiro. In APES inference rules are represented by Horn clauses and
inference engine is implemented as the meta interpreter in which the facility to coliect the histary
of inference is implemented. Examples of systems taking the second method are the expert
system by Clark et al (Clark82) and the production system by Tanaka [Tanaka84). DCG and
BUP {Matsumoto&3) are another examples of this kind of systems, In these system, inference
rules are translated to Prolog prograin and it is executed directly by the underlying Prolog
'P]'EIEESE-DT.

Advantages of the firet method are that it is quite easy to understand behavior of inference and
iz eazy to modify inference strategy. Disadvantage of the first method is low efficiency. On the
other hand, advantage of the second method is the high efficiency of inference since inference
is performed by the direct ~uscution of the translated Prolog program. Disadvantages are that
it is difficult to understand both the transiation program and the trasslated program, since the
translation program includes many parts which is irrelevant to inference guch as syntax analysis,
1/0, and translated pregram is too specific to understand the basic inference strategy.

10—

In this way, advantages and disadvacotages of both methods are complementary. This com-
plemental relation refleets the trade-off between efficiency of specialized pregram and generality
of interpretive approach. We propeose a pew method which amezlgemates both methods. The
new method overcomes the trade-of by partial evaluation, so that our method have advantages
of both method and have no disadvantzges of either methods, In our method, the system
is first bullt as & pair of inference engine and inference rules, second the inference engine is
partizl-evaluated with respect to the inference rules and then the resulting specialized program
iz exeeuted. In the first stage, inference enpine is described as general meta interpreter, so that
it is casy to understand and modify the engine and is also easy to implement mets-level contral
in the engize. On the other hand, since inference is performed by direct execution of the spe-
cialized program, high efficiency will be achicved. In this new method, partial evaluation plays
a central role which combines the generality, understandability and maintenability of inference
engine and efficient inferenze,

Several experiments were performed in order to verily the validity of the new method. Meta
interpreter handling certainty factors presented in the chapter 3 s one of the experiments. In
that example, we found that generality, understandability and maintenability are achieved by
the clear separation of the meta interpreter (inference engine) and the object program {inference
rules), and the efficiency is improved by the partial evaluation. As an another example verifying
the validity of the new method, we show the experiment concerning BUP (Bottom-up Parsing)
(Matsumotof3). BUP is a bottom-up parser of context free grammar (CFG) and can be regarded
as inference system. Usually BUP is built by the method (2}, that is, CFG rules are translated to
Prolog program by the BUP trausluter and the parsing is performed by direet execution of the
translated program. As mentioned above, however, understapdability and maintenability of this
method are the problem. We demonstrate that the new method can be also applicable to the
botlom-up parsing and it will achieve the high efficiency, vnderstandability and maintenahility

simultaneausly. In Figure 5, the bottow-up interpreter of CFG rules (Fig.5 (a)), CFG rules
(Fig.5 (b)) and the corresponding mrogram geperated by the E''P translater (Fig5 (c}) are
shown. Comparing with the BUP translater, the bottom-up interperier is quite compact and

goal{(P.Q),50,8) :- goal(F,50,81), ge2l{Q.51,5).

Eoal(C,5,51) :- dict{F.%,82),11nx(F, C) derive(F,.52,C,51).

darive(F,5,F,5).

derive(F,52,C,51) ;- rulel((Lexzma <= (F,Rest))},link(Lem=za,C),
cal{Rost,52,53) . deriva({lemna,8523,C, E1).

derive(F,82,C,51) - tulez((Lemma <= F))},link{Lemza,C},derive{lenmza, 52,C,51).

1ink (C,C).

1ink(F,CY) :- ruleil((Lemma <= (F,_))},link{lLemma,C).

link(F.C) = rule?({lLemma <= F}),link(Lemsa,C).

gict(F, [XI5].8) - rule((F <= [X1)).

rulel((h <= (B,C))) - rule(f{a <= (B,C0)).

Tule2{(h <= B)) :- rulef(h <= B, \+(B=(_._), \+(8=0[_1}.

{a) BUF interpreter

rele((s <= {(mp,vp)l). rTule{{np <= (det,n))). rule((vp <= vi}).
role((vp €= (wo,mpi2). rule((n <= [boyll)). rulel{{n <= [girll)).
ralef{{vi <= [wvalks]}). rule({vt <= [likes]})). rule{(det <= [alll}.
rulaf{aet <= [thell).

(o) CFG rules

diet{n, [].{boylAl,A). dict(o,[].[girilAl.A). dict(vi,[].[ralks|A] A).
dict(vt, [, [likes|A] A}, dicz{det,[],[alAal,A}. <ictldet, [],[thelA] A},
1ink(X,%X). link{det,np). link(vt,vp). liok(vi,vp).
link{np,s). link(det,s).
vhivt, 421, 422, 422, £21) . wi(wi, _443, 444, 444, 443).
detf{det, 465, 466, 465, 465). n{n,_4BT,_4BR, 4HR, 4B87).
rp(np, 506, _510,_510,_508). ~wp(vp,_531, 532, 532, 531).
E(g, 553, G54, 554, B53),
np(8, [],C,0,E) :- link{s,B), geal(vp,[}.C.F), call(s(B,[1,F,D.E)}.
det(B, [},C,0,E) :- lick{np, B}, goallm,{).c,F), eallizpi(®, [],F,D,E}]}.
vi(B,[],C,D,E) :- link{vp.B), eall(wvp(B,[],C.D,E}}.
vt(B,[1,C,D,E} :- limk(vp,B), geallep,(].C.F}, call{wvp(B,[].F, D,E)J.
goal{CurGoal Arg, 50,8} -

dict (Nt Argi, 50,810, link(Nt, CurGeoall,

functer (Pred,Nt,5), arg(i,Prad,CurGoall,

arg(2,Pred,Argl), arg(3, Pred, 51},

arg(4,Pred,8), erg(5,.Pred Arg),

call(Pred).

(e} Col- generated by BUP translater

Figure 5. Bottom-up Parser

casy to understand its bottem-up strategy. IL s also easy to medily the strategy. I Figure
6, the instruction used in the partial evaiuation of the interpreter with respect to the given
CFG rules and the result of the partial evaluation zre shown. The specialized program has
the suioe siracture as the trapsiated progrem. As compared with the traoslated progrom, the
efficierey of the result of the partial evaluation is in no way inferior to thatl of the translated
pregram. Censeguently it proves that our new method provides a new approach for building
inference system, in which understapdability, maintenability and high efficiency are all achieved
sipultaneously.

£ INCREMENTAL SPECIALIZATION OF META INTERPRETER

In thiz chapter, following the theory of partial evaluation (FutamuraB3), the properties satisfied
by the PEVAL i: examined. Then we will derive the method whick specializes a meta interpreter
incrementally with rezpect to an ebject pregram which is constructed incrementally.

As PEVAL is written in Prelog, it is natural to represent it 25 a relation, pevel.

peval(Program, Deta, SpecializedPPregram)

type(dict(_, ,_),el. type{rulei().e).
type(rule2{_),e). type(link{_,_).e).
wypofgoall_, , }.gY. typelderive(_, . ., }.g).

iohivit_usfoldipg(dict(_,_._)).
inhibit_unteldingf(liok(_,_J}).
inhipit_untelding(goal(C,_,)Y :- \+(C=(P.Q)).
inhibit unfolding{derive(_,_._._JJ.

{a) Instructions to PEVAL

dict{det, [alA] . A). Yink{a A&).
dict(det, [the|Al.A). link(det,zp).
dict{n, [boyiAl A). I1ink{det sl}.
dict(n, [girllAl A}, 1link(np.s).
dict{vi, [7alks|A]l ,A}. link{vi,vp).
dict{vt, [1ikes|A] A}, linkivt,vp).

dariva(h B, A, B},

derive(det,A B, C) :- link(np B), goal(n,A,D), derivelnp,D B,C).
derive(anp,A,B,C) :- lick(s, B), goallvp,A, D), derive(s, D, B C).
derive(vt,A,B,C) :- link{vp,B), goal{mp.A,D), derive{vp.D B.C).
derive(vi,A,B,C) :- link(vp, B}, derive(wvp,A.B,C).
goal({A,B),C,D} :- goal(A,C,E}, geal(B,E,D}.

goal(A,B,C) :- dict(D,B,E), 1ick(D,A), derive(D,E,A,C).

tb) Code gonerated by PEVAL

Figure 6. Partial Evaluation of BUP interpreter

peval represents a relation whick says that SpecializedProgram i a resull of partial avaluztion
of Program with respect to Dete. Given a terpary reletion 7 o, w), the resul of pariial
evaluztion of /2 with respect 1o the S:st argum. ut u is deneted by Ru{v, w}. From the definition
of partial evaluation, the folicwing formuls boids.

Rlu, v, w) =R v, w) (1)

And zlsc from the definition ef peval, the followiag relatics helds.

pevall R u, By). (2}

By representing the relation, which is obtained by the partial evaluation of peval ie the formula
(2) with respect to some B, by pevalp(u, Ay, the following formula is ebtained ae a special case
of the formula (1).

P"VGE{Rs u, Hu}EPEHEIRI.HJ FEH)

Therefore the foilowing formula holds.

L)
]

pevalglu, B.). (2]

pevaln is the specialized relation which iz obtained by partial-eveluating pevel with the first
argument Program fixed to a specific R. pevalp represents the partial evaluator specialized to
. Let us consider the relation [.

I{Program, Goal, Result)

I represents a meta interpreter, which takes two inputs, an object program Program and a goal
Goal, and returns true to Result if Goal can be derived from Frogram, otberwise returns false.
By replacing B aud u in the formula {3) by I and a specific program P respectively,

pevaly(P, Ip). (4]

is obtained. Ia the theory of partial evaluation, pevaly is known as the compiler corresponding to
the interpreter [and Jp as an object code of P. Thus peval; represents the relation expressing
that e is an object code of /. From the formula (1},

I[F,G,Ry=Ip(G,IT)

is obtained. This cxpresses that the exseution of P in I iz equivalent to direct execution of I,

By setting B and u to peval and I in the formula (3),

—14 —

pevaloeqall, pevaly). (%)

is oblained. peval,,..; is known as a compiler-compiier whick sssociates the interpreter | and
its compiler peval;. These are the overview of the theory of partial evaluation. In the follawing,
we consider the method to incrementally epecialize a meta interpreter with respeet to an object
program which is constructed incremantally.

A pure Proleg program consists of a set of Horn clauses. The structure of a program is guite
flaxible since there is no mesning in the order of clauses and a scope of a variable is closed in
a clayse. Therefore, like rule-bazed programining languages, it i= easy to construct a program
incremantally. Incremental progamming is important when one will construct an expert system.
Generally it is difficult to cxtract all the expert krowledge at once. Therelore usually the
system is developed incrementally as expert knowledge are extracted incrementally . In this
sense, Prolog and other rule-based languages are suitable for building expert system. In the
previcus chapter we have proposzed a new method for building inference system. In this chapter
we show that the kev idea of the new method, that is, specialization of the meta interpreter, is
also applicable to the case in which an object program will be constructed incrementally.

Suppose that an object program P consists of n elauses, Py, .., P

M and I*® are defined as follows.
M = the program of the meta interpreter 1

I* = the relation, the program of which is M = [7;

=1

P

where M -+ lﬁl:';=.1 F; denotes the program which amalgamates M and ﬂ?=1 P, and [° is defined
az I. 1* represents a partial system which can prove theories which are derivable only frem

k
Mim: Fi.

By setting [in the formula (3) to I*,

ptuulpemr[fk,pe'v'&ifﬂ. U<Zk<n (5)

is obtained. In ile case of k = 0, the formula is equivalent to (5). The formula represents
the trivial solution to the incremental specialization, that is, the compiler peval ¢ of the partial
syetem I* is generated from I* by pevoly.,o. However, it may be difficult to make pevely ...
More feasible solution can be obtained frem the following coasideration.

By setting I and P Lo I* aud @ respectively,

peval (@, I5). (7)

iz cbtained. Suppose that @ is equal to P:‘_H_] F. JE‘E iz the relation I* specialized with respect

to €. In other words, "@ is obtal..ed by the partial evaluation of the program A -+ "']

iee1 £
with rl.=..»-—. Fy added, Therelore the follow.ng formula holds.

Therefore the following formuls is cbtained from (7).

pevalyl [Pule). (8)

fe=k-t-1

peval) is the pariially specialized compiler based on the interpreter which, when the remaining

program [)% s=#k41 4y i5 given, generates the object code Ip of P. Let us consider the following
formula;

peval{peval y, Pry,, 5).

From the formula (8), given ﬂi_t_,_j F;, the relation S generates Ip. Therefore the relation 8
is nothing but pevalpp, ..

peval{peval i, Piyq, peval x,). 0<k<n —1 (9)

From this formula, it proves that, by the partial evaluation of peval p with Py given, peval g,

will be ohtained. The formula indicates the systematic way to generate partial compiler (Figure

l |
F'.I | ceval & |
|
| |
i
P? peval !

: |
P peval l

i

"
F s peval qee I

FH peval Lt

peval v

Figure 7. Inecremental Speeialization of Meta Interpreter

—_1T7 —

In this scheme, we can evolve partial compiler as a new piece of 3o object pregram is
tained, The new scheme is more "2asible than the previous onc which uses compiier-compiler.
It is possitic Lo utilize the partizt compiler of the arbitrary stage is order to generate the object
code of inference system, although it can enly infer in the partial program. In thiz way, the new
methed for building inference syziam can be also applicabie 1o the situation where the svstem
acquires inference rules incrementally.

7.
ob

6 CONCLUSION

In this paper, Prolog implementation of the partial evaluation of Prolog program was described
and its application to meta programining was investigated. The other partial evaluator of Proiog
pregrams was implemented by Kemorowski (Komorowskifl) in QLOG. The sdvantage of Prolog
implementation iz the ability to partizl-evaluate the partial evaluator by itselfl.

Meta programmicg becomes to play an important rele in Proleg programming because of
its expressive power. Partizl evaluation will make the meta programming more practical by
improving efiicicncy of meta programs, The importence of moi: programming becomes 1o be
recoguized also in the paraliel logic pregramming languages such oz GHC (Uedz85}, PARLOG
(Clarki4) and Concurrent Prolog (Shapire83c). Our approach to meta programming using
partial evalaution is also promising approach in these languages for achieving both expressive
power and efficiency.

Furthermore we have shown the new metheodology for buiiding inference systems and demonstrated
it by several examples. It wasz alse shown that the new method will enable the incremental
specialization of a meta interpreter with respect to an object program which was constructed
incrementally, This feature matches the incremental acquisition of rules in the inference system.

ACENOWLEDGMENTS

We wish to express our thanks to Kazubiro Fuchi, Director of ICOT Research Center, who
provided u: wilh the opportunily to pursue this research in the Fifth Generation Computer
Systems Froject at ICOT. We would also like to thank Hiroyasu Kondou, Masaru Ohki, Hajime
Kitakami and ether ICOT reszearch staffs who participated in discussions.

REFERENCES

[Boweng3| K.Bowen, R.Kowalski: Amalagamating Language and Metalanguage in Logic
Programming, In K.Clark and 5. Tarnlund (eds.) Legic Programming, Academic Press (1983)

{Bundy81] A Bundy, B.Welham: Using Meta-level Inference for Selective Application of Multiple
Ttewrite Rules in Algebraic Manipulation, Artificial Intelligence 16 {1951)

[Clark82] K.Clark, F.MecCabe: Froleg: A Lapguage for Implementing Expert Systems, In
[t Michie and Y.H.Fao {eds.) Machine [ntelligence 10 [1982).

|ClarkB4] K.Ciark, 5.Gregory: PARLOG: Parallel Programming in Logie, Research Report DOC
B4/4, Imperial Callege, Aprii {1984)

{Futamura83] Y Futamura; Partial Computation of Fregrams, Journal of IECE of Japan, Vol.66,
No.2 (1983)

—18 —

HammondS3] P Hammond ¢t wl: A Prolog Shell for Logic Based Expert Systems, lmperial
College {1983)

[Wemorowsidll] J.Komarowski: A Specification of Abstract Prolog Machine and jis application
to Partial Evaluation, Linkoping studies it Science zod teshnolopy dissertations Ne.62 (1981)

[Matsumota83] Y.Matsumeto et al: BUP: A Hottom-Up Farser Embedded in Frolog, New
Generation Computing, Vel.1, No.Z (1953

|Shapire32a| E Shapire: Algorithmic Program Debugzing, The MIT press, 1983

|Shapiro83b] E.Shapiro: Logic Programs with Uncertainties: A Tools for Iimplementing Rule-
hased Systems, Proc. of IJCAI'23, 1983

[Shapiref3ec] E.Shapiro: A Subsct of Concurrent Prolog and Its Interpreter, 1COT Technical
Report TR-003 (1683)

[TakeuchiB5| A Takeuchi: An Application of Partial Computation to Meta Programminog, Japan
Infermation Precesting Sociely WG memo 85-5F-13, June 1885

[Tanaka84] H.Tapzka: Rule based Knowiedge Represestation in Prolog and its Application,
IECE of Japan WG memo ALE4-48 1984

{Ueda85] K Ueda: Guarded Horn Clauses, ICOT Techrical Report TR-102 (1985)

—19 —

