ICOT Technical Report: TR-123

TR-123

Deductive Database System
based on Unit Resolution

by
H. Yokota, K. Sakai and H. Ito

June, 1985

1985, 1COT

Mita Kokusai Bldg. 2IF (03) 456-3191—~5
“ :D [4-28 Mita 1-Chome Telex ICOT 132064
Minato-ku Takyo 108 Japan

Institute for New Generation Computer Technology

Deductive Database System based on Unit Resolution

Haruo Yokota, Ko Salai, Hidenori Itch

ICOT Research Center
Institute for New Generation Computer Technology
Tokyo, Japan

June 1985

ABSTRACT

This paper presents a methodology for constructing a deductive database system consisting
of an intensional processor and a relational database mapagement system. A setting evalua-
tion approach is introduced. The intensional processor derives a setting from the intensional
database ard a given goal and sends the setting and the relationship between setting elements to
the management system. The management system performs a unit resolution with setting usiog
relational operations for the extensional databases. An extended least fixed point operation is

introduced to terminate all types of recursive queries.

1. Iotroduction

One of the current topics in both database research and artificial intelligence is how to
combine relational databases with frst-order logic, The use of logic programming languages
for relational database queries is regarded as an improvement over database query languages
for handling integrity constraints and transitive closures of relations [Gallaire et al. 84}, From
an artificial intelligence point of view, the logic programming language is an attractive choice
for manipulating koowledge. The combination with relational databases can be seem asz an
experiment in knowledge base system construction [Murakami et al. B3]. Development of a
knowledge information processing system is a goal of the Fifth Generation Computer Systems
(FGCE) project in Japan. A database in which queries have the form of first-order formulas is
called a deductive database [Galizire 83, Gallaire et al. 84].

Reiter proposed a methed fer decompesing a question-answering system into intensional
and extentional processors [Reiter 78|. The extensional processor iz a relational database
management system while the intensiopal processor compiles first-order queries using a theorem

prover. Besides compiling the queries, the intensional processor can also access the extensional

processor by interpreting the queries. The former method is referred to as the compiled approach
and the latter as the interpreter approach [Chakravarthy et al. 82]. Because of the separation
of processing mechanisms, interface everhead between the two processors is a very important
factor in the eficiency of the whole system. We expect that the interpreter approach will

generate more overhead than the compiled approach.

Kunifuji and Yokota implemented a deductive database system using a deferred evaluation
method, one type of the compiled approach [Kunifuji and Yokota 82]. However, it cannot
automatically handle transitive closures of relations. The deductive database system needs
to be able to handle recursive queries, since a recursive eall program can be written in the
logic programming language. A number of methods for handling recursive queries have been
proposed. Some approaches transform the recursive query into a non-recursive ilerative program
[Chang 81, Naqgvi 83]. Others use a connection graph to analyze the recursive call [Henschen 84,
Ullman 84]. Yokota et al. improved on the deferred evaluation approach to terminate recursive
query evaluation using a least fixed point operation [Yokota et al. 84]. Each of these methods,

however, can handle only certain types of recursive queries.

In this paper we first consider why deferred evaluation using the least fixed point operation
cannet terminate all types of recursive queries. The reason is briefly that deferred evaluation has
the intensional processor drive the databasze management system in top-down manner, based
on input resoluticn. We propese setting evaluation and an extended least fixed point operation.
Setiing evaluation is based on a kind of semaptic resolution, a unit resolution using setting. In
Section 2 we briefly prezent our previcus work investigating the reason why deferred evaluation
cannct handle all types of iterations. Section 3 describes various resolution procedures as a
basis for setting evaluation. Section 4 describes the strategy of the setiing evaluation approach
and the extended least fixed point operation and discusses the completeness and efficiency of

the approach. The results and observations are summarized in Section 5.

2. Background

We assume the reader is familiar with relational databases [Ullman 82] and the resolution

method for first-order logic [Chang and Lee 73, Loveland 78).

The logic programming language we use is a coltection of Horn clauses, each clause con-
taining at most one positive literal. If a clause is composed of a positive literal alone, it is
called a unit clause. Il there are o variables among its arguments, it is called a ground unit

clsuse. A finite set of ground unit clauses is called an extensional database {EDB). If a clause

iz composed of negative literals only, we call it a goal. Horn clauses other than goals are called
defipite clauses., A finite set of definite clauses that are not ground unit clauses is called an
intepsional database (IDB). Throughout this paper we express Horn clauses in Prolog style.
Strings beginning with lowercase letters denote constants, while those beginning with upper-
case letters denote variables. We use uppercase letters also to eXpress literals abstractly, 4 -

By, .., B, intuitively means that & and ... and B, implies A.

2.1 Plan Generation

Since the capacity of the extensional database is expected to be enormous, it is inappropriate
to manage the extensional database in main memery. It is not enocugh to derive one answer
at a time, as Prolog processor: do. Instead, the answers have to be returned as a set. The
extensional database can be regarded as 2 relationzl database by treating the ground unit
clauzes as tuples of relations. A large relational database is efficiently handled by a database
machine or database management system and the answers to queries are returned io table form.
The intenzional processor’s job is to direct the relational database management system to search
the (extensional) databases according to the intensional database and a given goal. We call the

directive a plan.

In deferred evaluation, a given goal is resolved with an intensicnal database clause in the
usnal way (left-to-right) until a literal resolved with an extensional database clause appears.
The literal is appended to the plan list which is initially empty, and the resoluticn process
using the intensional databaze iz continued. When the resolution process is finished, the plan
list obtained becomes a plan for the goal. The plan is transformed inte a sequence of relational
algebra operations for the extensional database. The resulting relation for the given goal is
derived in the extensional database using these relational slgebra operations [Kunifuji and

Yokota B2]. Any relation that can be derived from the intensional database in this way is called

a virtual relation.

Example 1.1: An intensional databasze (1) through (3) is given.
(1) unclelX,Y) — parent(X, Z) brother(Z, ¥)
(2) parent[X,Y) = father(X.,T).
(3) parent|X,¥) = mother[X, V).

The ground unit clauses stored in the extensional database are indicated as follows:
(4) fother{X,Y) = edb|father(X Y))
(5) mother(X,Y) = edb{motker{X, Y.
(8) brother(X.Y) = edb{brother{X, ¥

—3 =

I the given goal 13

(7}~ uncle(hart, X).

then one of the plans generated is
(8) |father(hart, Z), brother(Z,Y]

The resolution and plan generation processes for the poal are illustrated in Figure 2.1, There
is an alternative plan corresponding to the alternative parent definition. Plan (@) is generated
a: an alternative.

(9) [mother(hart, Z), brother(Z,Y)|

Each plan is also delivered to the relational database management system. ‘The relation for a
plan is generated by projection, selection, and equi-join operations delermined by the plan.

The refation for plan (2) iz derived as follows:

templ +— selection{ father, first-attribute=hart)
ternp2 +— equi-jein(templ, brother, second-attribute= first-atribute)
reaull +— pruj:cﬁun[itm}ﬂ,lecnnd-ﬂlrl:bu!ﬂ

The result relation for goal (7) is a set derived by union operations between the rclations

generated by (8) and (9).

-]
— resolvent — — plan list —
parent(hart, Z), brother (2, Y) 11
Sother(hart, Z), brother(2,Y) |
brother(Z,Y) |father(hart, Z))

|father(hart, Z), brother(Z, Y]

Figure 2.1 Resolution and plan generation proecess

2.2 Content Dependent Plan Generation

The intensional database may also contain recursively defined clauses. These clauses can be
evaluated iteratively in the logic programming language. As we iniroduce iterations, we must
consider their termination. In Prolog programs, a termination condition is implicitly indicated
by the absence of an instance. In deferred evaluation, it is et until ground unit clauses of
the extensional database are examined that the absence of an instance for termination is made

clear. Thus, the termination depends on the eontents of the extensional database.

Example 2.2: Instances of parent are stored in the extensional database. The recursively defined

intensional database (1) through {3) and a goal (4) are given.

(1) encester(X,Y) = parent[X V).

(2) ancestor{X Y)Y = parent(X, Z), ancestor{Z, ¥
(3) parent(X,Y) - edb{parent(X, Y]

(4) - mnceslor(X,¥).

The following plans are successively generated.

[parent(X, Y)|
[parmt[}f, Z],Purmt[21 }’]]
[porent[X, Z), parent{Z Z1), parent(Z1, V)

+
+

The plan generator has no idea how many plans it must generate to derive zll instances
for the wirtual relation called ancestor. Therefore, the relational databaze management system
has to inform the plan generator of the termination point by monitoring the contents of the
virtual relation. To do this the management system needs to detect a least fixed point (LFP)
[Aho and Uliman 79|, The least fixed point operation is performed by union and equality-check

operations between two relations.

Let F({) be = relation derived from the i-th plan. We can obtain a relation R'({) that is
a result of a union operation between R'(s-1) and R(r). Now, let R'(0) be an empty relation.
If the contents of R'(f) are equal to the contents of R'(:-1), { is the least fixed point. Even
though the extensional database contains eyclic instances, e.g. parent(a,b) and parent(d, a),

thiz methed ecan find the least fixed point.

However, the management system dees not know when it parforms the least fixed point
operation, because the pattern of plan generation iz not always so straightforward as the above
example. If there are alternatives in ope level of recursion, the pattern may become more
complex. For instance, one's parent is one's father or mother, like Example 2.1. The plans are
geoerated as lollows:

Father(X,)]

|mother (X, Y

[father(X, Z), father[2,7)]

|father| X, Z), mother|Z, V)]

[mother(X, E), father(Z,T)]

[mother[X, 2) mother(Z, 7))

|father(X Z), father{Z, 21), father(21,T)]

In this case, the least fixed point operation must be performed after the last plans of each
level are performed, ie after the plane [mother(X V)], [mother(X, Z), mother(Z,Y)], and so

—F —

on. We introduced a check predicate in the previous system [Yokota et al. B4] to indicate the
timing from the plan generater when the least fixed point operation is performed. It corresponds
to an explicit indication of a termination condition in the logic programming language. For

instance, the second clause in Example 2.2 is transformed into the following clause.
{2') ancestor(X,Y) — check, parent(X, Z) ancestor{Z,Y).

The plan generator delivers a least fixed point operation directive to the management system

when it evalualtes the check predicate.

We developed ap experimental system using the above method and called it IRIS
(Inference /Relational database Interface System). IRIS was demonstrated at the ICOT Open
Housze after the FGCE'84 Conference in November 1984, We used ihe relational database
machine Delta and a microcomputer as & host machine and connected these two machines

using the local area network, We used a Proleg processor on the microcomputer.

In fact, however, IRIS cannot handle all types of iterations. It can only terminate simple
recursively defined iteration, as in the above example. If more than one terminstion check point
exists in a deduction sequence, for example a conjunction of two recursively defined wvirtual
relations, the plan generater cannot judge which iteration should be terminated, because the
mansgement system only informs the plan generstor that no new instances can be found for
the plan. The Prolog processor checks the absence of instances one by one to decide which
iteration should be terminated. Since IRIS generates plans by coempilation, however, each plan
may contain a opumper of absence checks corresponding te eheck predicates. It is useless to
provide different kinds of cheek predicates. The reason why the termination peinls cannpot be

found iz that plans are generated top-down using input resolution.

3. Resolution Variation

There may be many irrelevant computations of resolvents in the basic resolution principle
proposed by Robinson [Robinson 65]. A number of refinements of resclution have been proposed
to prevent these useless rezolvents from being generaled [Chang and Lee 73, Loveland 78]. The
basic strategy of thesze refinements is to divide a zet of clauzes into two groups and prevent
clauses wilthin the same group from being resolved with each other. Il can significantly reduce

the number of resolvents computed. Resolution adopting these refinements are called semantic

resalutionsg.

Input resolution and unit resolution are well known a: complete resolution procedures for

Horn clanses. Both can he seen as kinds of semantic resolutions.

—hH —

Input resolution takes one of the parents of a resolvent as the given goal or the resolvent
computed in a former step. The other parent, called an input clavse, is a member of the definite

clause set. Most of the implemented Prolog processors use the input resolution procedure.

Unit resolution requires one of the parents of a resolvent to be a unit clause., Reszolution
using a zet of unit clanszes is another kind of semantic resolution. Since the extensional database
eonsists of ground unit elauses, unit resolution zeems best suited for the deductive database
system. However, there may still be many irrelevant computations even in unit resolution,

because the resolvents are computed independently of the given goal.

Loveland introduced a setting to prove the completeness of semantic resolution for Horn
clauses |[Loveland T&. Now we consider how to use a kind of setting to prevent irrelevant

resclvents in unit resolution from being computed.

4, Setiing Evaluation

4.1 Setting Assembly Algorithm

The setting is derived from the given goal and definite clause set H to provide an efficient
theorem preving procedure for a logic programming language. The following algorithm is used

to assemble the setting.
Stepl: Let both § and T be empty sets,
Step 2 : Enter all literals in the given goal inte both S and T.
Step3: II'T is empty, then S is the desired zetting. Otherwise, go to the next step.
Step4: Remove a (negative) literal, ~ L, frem T.
Silep5: Let A be an empty set.

Step®: Search all definite elanzes for a clause € which is not 2 member of A and whose
positive literal is unifiable with L. If there is no clause satis{ying these restrictions,

then go to step 3. Otherwise, go to the next step.

Step T : Search C for atoms whose complements are not members of § apd add their

complements to both 5 and 7.
Step 8 . Add C to A and go to step &,

This algorithm terminates since the number of literals in H is finite.

_

Just by looking at the above algorithm, it is clear that the obtained setting 5 contains the
complements of all atoms involved in clauses used to derive the resolution. In other words, if
we derive a setting § from H using the setting assembly algerithm, a unit parent clause of
a resolvent is the complement of some literal in 5. Okuno proposed s similar algorithm to
determine a setting [Okuno 53], However, his algorithm can only coilect ground unit clauses

uzed for resolution.

4.2 Unit Hesolution with Setting using Relational Operations

We now assume that the ground unit clauses are in the extensional database. We derive the
setting S from the given goal and only the intensional database by using the setting assembly
algorithm. Then some of the elements of the setting 5 contain pegative literals in the form
edb (L) where L is a literal unifiable with ground unit clauses in the extensicnel database. Thus,
we can set up the ground unit clauses from the extensional database to be used in the resolution

procedure.

Our objective is to derive all answers for the given goal. It is not effective to transpert
the applicable ground unit clauses from the extensional database to the intensional processor
to perform the unit resolution in the processor. lnstead, we consider a method for performing
unit resolution in the extensional processor (relational database management system} using the

eetting.

When we examine each step of the unit resolution procedure, a resolution beiween a parent
unit clause €, and another parent clause €y can be regarded as a search for a complementary
instance (C,;) of the negative literal in C5. The negative literals in any unit resolution step feor
the given goal are members of the setting. We let the relational database management system
enumerate all complementary instances for each element of the seiting. Then all answers for

the goal can be obtained, since the goal is involved in the setting as an element,

If an element of the setting is of the form edh (L), instances for L are tuples of the relation
corresponding to the ground unit clauses unifiable with L. Other formed elements appear in the
intensional database as positive literals. Instances of pesitive literals can be enumerated from
complementary instances of negative literals in the same clause by using relational algebra
operations (Figure 4.1). If a clause has cnly one negative literal, instances for the positive
literal can be derived using a projection operation for the wirtual relation corresponding to the
negative literal. If a clause has at least two negative literals, their common wariable indicates

an equi-join relationship between the virtual relations corresponding to them. If there is more

—F —

ground un:t clause

plX,Y) - edb(qu(Y, X, 0]}

union T projeciion 4_—" Jlr- selection

pIX.Y) = qulX,Z), qalZ, b, ¥).
Y Yoo

_ eq uj otn
prajection

Figure 4.1 Unit resclution using relational operations

than one clause with the same positive literal, complementary instances for the element are
derived by using union operations beiween virtual relations corresponding to these clauses. If
the literal has constants as its arguments, restricted tuples using a selection operation can be

selected.

Example 4.1: Consider an intensional database (1) through (3) and a goal (4).

(1) uncle(X,Y) = parent(X, Z), edb(brother{Z,Y)).

(2) porent{X.Y) =~ edb[mother(X Y]]

{3} perent{X,Y) - edb(father(X, Y]]

{4) = uncle(X Y.

We can obtain the following setting 5 by using the setting assembly algorithum,

5 = {:- edb[father (X, Y}, - edb(mother(X V)), =~ edb[lrother{Z, Y]],

— parent{X , Z), -~ uncle(X ¥)}

The elements, edb{father(X, YY), edb (mother(X,Y)) and edb {brather{Z,Y)), indicate that
instances for father, mother, and brother are tuples of the corresponding relations. Instances
for parent{X Y) in [2) can be obtained by using a projection operation for the relation father,
In this case, because the mapping is identical, tuples of the relation father become tuples of
the virtual relation parent. Similarly, tuples of the relation mother become: tuples of the
virtual relation parent. Thus, the virtual relation parent can be obtained by a union operation
‘between father and mother relations. Instances for uncle{X,Y) in (1) can be obtained by using
an egui-join operation between parent and brother relations, since the negative literals in (1)
have a common variable £. Now the virtual relation porent exists, so we can derive the virtual

relation uncle. The tuples of the uncle relation are the desired answers,

4.3 Iteration

In thiz section, we show how setting evaluation can handle iterations and propose an

extended least fixed point operatiop to terminate iterations.

begin
initialize F:(0), | = 1,..,n
g =1
repeat
begin
i~ frue
forj=1ton
begin
enumerate 8;(d) using By(i-1), I = 1,..n
R [4) — By(i) undion B';{#-1)
to (RY(E) = F(i-1)) and ¢
end
i—i+1
end
uptil{t = true)
end

Figure 4.2 The extended least Bxed point operation algorithm

The extended least fixed point operation iz based on the least fixed point operation used in
deferred evaluation. Setting evaluation reguires that the least fixed peoints of enumeration be
cheeked for all setting elements. It is not enough to individually check the least fixed points of
each element, because there may be elements related each other. All the checking operations
must be continued until o new instances are enumerated for any element. In other words,
all answers for the given goal are obtained when all complementary instances of every setting

element are enumerated.

Let § be a setting and § = {E,;, .., E;, .., E.}. Let R;{i) be an {-th transitive relation
corresponding to an element E;. If E;(j = 1,..,n) is of the form edb(L), R’;(0) can be derived
from relation L. Otherwise, let R’;{0) be empty. Figure 4.2 shows the extended least fixed

point operation algerithm.

Example 4.2: An intensional database (1) through (4) and a goal (5} are given.
(1) ancestor(X,Y) - parent(X ¥
(2) ancester(X,Y) - parent(X,Z) encestor(2,Y).
(3) parent(X ¥} - edb(father{X,Y)).
(4) perent(X,Y) = edb{mother{X Y]}
(5] :- onesster{X ¥}

Tke setting S is assembled as follows:

5§ = {:= edb{father(X,Y)), - edb{mother(X Y]}, - parentiX Y}, = ancestor(X,Y])}

The enumeration process is illustrated in Figure 4.3, As the ipitial state, the father and
mother relations have some tuples and the parent and aneestor relations are empty. First,

the parent relation is derived by a union operation between the father and mother relations.

—10 —

father mother parent ancestor i

' R0 ' R0} gmpty Tty(0) emply R.{0)
- 1l I . M Il false
. (1) D Ri(1) D Faf1} empty 1)
I _:_ I _ i . M Jalse
o mln OO Fh”t?] T mlm D R
| il - A false
S R OO Rrlm O Al D RB
_ i . i il frue
O om OO Ra4) C D mle) Ra(4)
e union -—-"I .'? 1‘-\ L. aqui-jcin—f
LY ! e emi !
@ - Lnior
L

Figure 4.3 Instance enumeration process

Now, the value of ¢ in the extended least fixed point operation alzorithm (Figure 4.2} iz false,
because instances of the parent relation inerease. Next, the ancestor relation is derived using
a union operation between the parent and a virtual relation derived by equi-join between the
parent and ancestor relations. These operations are continued until instances of the ancestor
relation do not increase. When instances of the ancestor relation do not change, the value of ¢

becomes true. Tuples of the ancestor relation are the desired apswers

Obviously, since instances of the ground urit clauses never increase, there is no need for
checking operations on elements corresponding to ground unit clauses, so this can be omitted,
Similarly, a checking operation for elements whose instances are enumerated merely by union
operations between instances of ground unit clauses can also be omitted after the union

operations are performed

To decrease interface overhead between the relational database management system and
the intensional processor, we propose to let the management system perform the extended least
fixed point operaticn. In deferred evalustion, since the intensional processer must generate
complex plans one by one, the management system cannol handle least fixed point operations
competely. In setting evaluation, since the intensional processor does not have to de apything
after sending the setting and relationship between these elements, the management system can

handle the exterded least fixed point operations.

4.4 Completeness and Termination

A deductive database system can be implemented using setting evaluation and extended

Jeast fixed point operation. We now show that this deductive database system is guaranteed to

1] -

enumerate all correct answers and to terminale.

The compicteness of unit resolution for Horn clauses is proved in Loveland T8, A set of
Horn clauses H is divided into the intensional database, extensional database, and a given goal.
The setting assembly alporithm terminates and returns a setting using only the intensional
databasze and the goal. All literals in the intensional databasze that may be used jo rezolutions
for the given goal are contained in the setting. All literals in the extensional database that may
be used in the resclution are complementary thstances of seme members of the setting. These
instance§ are tuples of the relation in the extensional databaze. We zre using the notation
edb (L} to indicate explicitly that L has instances in the extensional databaze. Complementary
instapces ef other setting members are represented as tuples of virtual relations, These instances
are enumerated using relational algebra operations. Since ground uwait clauses do not contain
variables, a unification is simply treated as an equality check or substitution. A set derived
from finite sets by a finite number of applications of equi- join and urdion operations is finite.
If H is funclion-free, the extended least fixed point operation can reach the fixed point in a

finite number of steps,

In Section 2.2, we considered the reason why deferred evaluztion cannot handle all types of
recursive queries, The problem is that the plans are generated using input resclution. With the
top-down apprezch it is dificult for the plan generator to get information about the contents and
sequence of plans to obtain sufficient results. The check predicate is not completely effective.
Since the setting evaluation uses a bottom-up approach, this kind of control is unnecessary.

The required resvlts are accumulated automatically without unnecessary computation.

Even if the zet of definite clavses contains any types of recursive call (e.g. left recursive call,
mutual recursive call, nested recursive call), the results can always be cbtained by the bottom-
up approach. If the clauses are function-free, the enumeration is salurated at some point io
time and the system detects the precise moment. All the results have now been obtained and

the system ocutputs them.

4.5 Efficiency

When the extensional database is very large, it is cleary appropriate for the database to be
manipulated by the database management system rather than the intensional processor. Thus,
there arc two processing scclors and interface overhead between these two areas is one of the
most important factors in the efficiency of the whole system. Interface overhead depends en

the number of items and the amount of transferred data.

In the interpreter approach, the extensional database is accested as soon as a literal cor-
responding to tuples of the extensional database is evaluated in the interpretation process, and
each time the tuples are transferred from the database management system to the intensional

processor. Then both the number of items and the amount of transferred data is enormous.

Deferred evaluation lets the intensiopal processer accumulate the extensional database
literals uptil a deduction using only the intensional database is completed. A set of hterals
for the deduction iz a plan. Several plans may be generated for a given first-order query, but
the result is only trapsferred to the intensional processor once for that query. lhe number of
items and the amount of transferred data is smaller than in the interpreter appreach. However,
if the query contains a recursive call, deferred evaluation lets the system generate a number of
plans corresponding to each recursive level. In the case of simple recursive queries, like Example
2.2, if one recursive level has M alternative plans and the least fixed point of the recursion is

the N-th level, M plans are generated.

In setting evaluation, the intensional processor sends the setting and relationship between
the elements to the management system once at the start. The result is trapsferred cnce, even

if the guery contains recursive calls.

Moreover, we can even expect parallel execution of complementary instance enumeration

processes for each setting element to be an effective option.

5. Conclusion

We presented a methodology for constructing a deductive database system consisting of an
intensional processor and a relational database management system. We expected that unit
rezolution would be effective for obtaining all answers, but the strategy for performing unit
resolution in the relational database system was not clear. We introduced the setting evaluation
approach to perform unit resolution using relational algebra operations. Another big problem
was the termination of recursively defined queries. We presented the extended least fixed point
operation corresponding to setting evaluation. We showed that the deductive database sysiem
using setting evaluation and the extended least fixed point is guaranteed to obtain all correct
answers and terminate for any recursively defined queries. Furthermore, it was shown that the
setting evaluation approach is more efficient than the deferred evaluation approach end allows
us to omit consideration of the termination condition of recursive calls and the sequence of

clauses or literals.

ACKNOWLEDGMENTS
The authors thank Dr. D 8§ Kerr of Ohio State Uni\rersit:.r for his helpful advice and Dr. H.

Gallaire of ECRC and Dr. K. Yazdanian cf ONERA-CERT for useful discuseions.

1I

2.

1.

11.

12.

13.

14.

15.

1E.

17.

REFEREMNCES
Ahe, A. V. and Ullman, J. D. Universality of Data Retrieval Languages. Proceedings of

ACM/SIGPLAN Conference on Principles of Programming Languages, San Antonie, Jan, 1875,
PRAI0-11T,

. Chang, €. L. and Lee, R. C. T, Symbelic Logic and Mecharical Theorem Proving, Academic Press,

1974

Chang, C. L. On Evaluation of Querie: Containing Derived Relations in a Relational Data Base.
Advances in Data Base Theory Vol 1, ed. Gallaire et al., PLENUM, 1981, pp.235-260.

. Chakravarthy, U. 5., Minker, I, and Tran, D. Interfacing Predicate Logic Languages and Relational

Databases. Froceedings of the First International Legic Programming Conference, Faculte des
Sciences de Luminy Marzeilles, France, Sept. 14-17th 1982, pp.91.98,

Gallaire, H. Logic Data Bases vi Deductive Data Bases. Proceedings of Logic Programming
Workshop, Algrave, June 1983, pp. 608622,

. Gallaire, H., Minker, I., and Nicolas J-M. Logic and Databases: A Deductive Approach, Computer

Surveys, Vol. 16, No, 2, June 1984,

. Henschen L. J., and Magvi 5. A. On Compiling Queries in Recursive First-Crder Databaszes. Jaurnal

of the ACM, Vol 31, No. 1, January 1984, pp.47-85

. Kunifufi, 8. and Yokota, H. PROLOG and Relational Data Base lor Fifth Generation Computer

Systems. Proceedings of ONERA-CERT Workshop on “Logical Bases for Data Bases”, ed.
Gallaire, et al,, ONERA-CERT, Toulouse, Dez. 1982,

Leveland, D. W. Avtomated Theorem Froving: A Logical Basis, Morth-Holland, 1978,

Murakami, K., Kakuta, T., Miyaszaki, N., Shibayama, 5., and Yoketa, H. A Relational Data Baze
Machine: First Step To a Knowledge Base Machine. Proceedings of 10th Annual International
Symposium on Camputer Architecture, Stockhelm, June 19583, pp.423-428,

Magvi, 5. A., and Henschen, L. J. Svathesizing Least Fized Foint Queries into Mon-recursive
Iterative Programs. Proceedings of 8th IJCAL Karlsruhe/West Germany, Aug. 1883, pp.25-28.
Okune, H. The Execution Mezhaniem for Logic Programming Language to Perform an Efficient
retrieval of All S8clutions. Froceedings of the Logic Programming Conference '83, March 1983,
Heiter, . Deductive Question-Answering on Relational Data Baees. Logic and Data Base, ed.
Gallaire and Minker, PLENUM, 1978, pp.145-177.

Hebinson, J. A. A machine-criented logic based on the resolution principle. Journal of the ACM,
Wol. 12, Mo, 1, January 1985, pp23-41.

Ullman, J. D, Principles of Database Systems, Ind ed. Computer Science Press, Fotomae, Md,,
1982,

Ullman, J. D Implementation of Logical Query Languages for Databases. Technical Report of
Stanford University, STAN-CS-84-1000, May 1954,

Yokota, H. et al.,, An Enhanced Inference Mechanism for Generating Felational Algebra Queries,

Froceedings of the 3rd ACM SIGACT-81GMOD Symposivm on Principles of Database Systems,
Waterlos, April, 1984, pp.220-228.

