ICOT Technical Report: TR-108

TR-108

Incorporating Generalization Heuristics
into Verification of Prolog Programs
by
H. Seki and T. Kanamori
(Mitsubishi Electric Corp.)

Augusl, 1985

D983, 1COT

Mita Kokusai Bldg 21F {03) 456-3191~5
“ :D | 4-28 Mita 1-Chome Telex 1COT] 32964

Minato-ku Tokye 108 lapan

Institute for New Generation Computer Technology

Incorporating Generalisation Heurdsties
into Verifleation of Prolog Programa

Hirchisa SEK] and Tadashi KANAMORI

Mitsubishi Electric Corporation
Central Research Laboratory
Teukaguchi-Honmachi 8-1-1
Amagasaki Hyopgo JAPAN 661

Abstract This paper is concerned with the problem of generalization
beuristics, which are incorporated into our verification system for Prolog
programs. Two kinds of generalization are discussed, that is, a mechani-
cal generalization and an iotelligenl generalization. We show that the
mechanical peneralization which is used in Boyer-Mocore's theocrem prover
(BMTPF) can be performed by the simplification rule of our verification
system, as well as in the case of cross-fertilization. To the intelligent
generalization heuristic, which is not employed in BMTP, we give a
generalization scheme which is naturally incorporated into our inference
system of the extended-execution style of the Prolog interpreter, and
which proves to be effective also for flawed induction schemes,

1. Introduction

This paper is concerned with a verification system for Prolog programs which is cur-
rently under development, as one of the subprojects of the FGCS “Intelligent Programming
System™[1].

Logic programming is often advocated as a desirable choice for the werification problem
because of its clear semantics [e.g., [2]). In the design of our werification system, we have
tried to take adwvantage of Prolog's characteristics and present first order inference in an
extended execution style of Prolog interpreter [3).

Mot only first order inference but induetion is indispensable as 3 means of proving
interesting properties of Prolog programs such as termination and correctness. In mechanical
verification using induction, one of the most difficult problems is to discover an appropriate
application of induction scheme. In the casze of functional language, Boyer-Moore's theorem
prover (4] is famous as one of the most powerful theorem provers, and for its automatic
application of induction. The excellent performance of their system is due to the many
sophisticated heuristics employed in constructing induction procfs, Into our verification
gyetem, various kinds of heuristics controlling the verification process have been integrated,
most of which are inspired by Boyer-Moore's system and developed to suit the verification
of Prolog programs (e.g.,[5]).

In this paper, special attention is paid to “Generalization Heuristics” which are applied
when a theorem to be proved is too weak and it is necessary and easier to prove a theorem
that is stronger than the original weak one. Two kinds of generalization heuristics are dis-
cussed. The first generalization heuristic (we call it mechanical generalization in this paper)
corresponds to the one used in Boyer-Moore’s system, and the second (called intelligent
generalization) is one that is not employed in their system but is left to the user. Some work
has been done with respect to functional language to mechanize the intelligent generalization
heuristic {e.g.,[6],[7]). Our main purpose lies in an attempt to clarify how these two kinds
of generalization heuristics can be incorporated into the verification of Prolog programas.

In the mext section, we present our fermulation of the verification of Prolog programs
and summarize some preliminary materials. In section 3, we present our verification methods
using induction, lu section 4, we explain two kinds of generalization heuristics ; first, we
illustrate that the mechanical generalization is naturally incorporated by the simplification
rule of our verification system ; secondly, we show some examples which cannot be proved by
simply applying first order inference and induction, and therefore motivate us to incorporate
the intelligent generalization heuristic. In section 5, we discuss in detail how the intelligent
generalization is performed in the framework of our verification system. Lastly in section 6,
we discuss some implementation issues and related work.

2 Formulation of Verification

In this section, we give our formulation of the verification of Prolog programs. In the
following, we follow the syntax of DEC-10 Prolog [8] and assume some familiarity to the
terminolegy of Prolog and first order logic(see e.g.,[9], [10]).

In our verification system, we treat only pure Prolog, i.e., we impose the following 3
conditions on Prolog programs @

(i) mo megative clauses and no “not” in programs,
(ii) no executable primitives,
(iii) mo “cut® symbel (!).

On the other hand, our specification language is a subclass of first order logic formulas.
That is, a specification is expressed by a closed formula which can be transformed into the
following prenex form (we call it an 5-formula} :

VX, - VX3t - -3YRF (m,nz0), where F contains no guantifiers.

Let § be a specification and P be a Prolog program and P* be the completion of P in
the sense of Clark [11]. Then we adopt a formulation that verification of § with respect to
P proves that

P*-5.

The above means that S is a logical consequence of P* using first order inference and
induction, which are discussed in the nexi section.

Before going into explanation about the details of our verification method, we need some
preliminaries and definitions. First, we use the notion of polarity ([9], [10]). The positive
and negative subformulas are defined as follows :

{f} 7 iz a positive subformula of 7.

(i) When ~G is a positive (negative) subformula of 7, then § is a negative (positive)
subformula of 7.

(iii) When GANX or GV X is a positive (negative) subformula of 7, then § and ¥ are positive
(negative) subformulas of 7.

(iv) When G4 is a positive (negative) subformula of 7, then § is a negative (pesitive)
subformula of 7 and ¥ is a positive (negative) subformula of 7.

Next, variables which appear in a specification are distinguished in the following way.
Let F be a closed first order formula. When YXG is a positive subformula or 3XG is
a negative subformula of F, then X is called a free variable of F. On the other hand,
when JY H iz a positive subformula or VY H is a negative subformula of F, then Y is called
an undecided variable of F. In other words, when F is transformed into prenex normal
form, free variables are variables quantified universally, and undecided variables are those
guantified existentially.

A geal formula is a formula which is obtained from an S-formula by replacing each
undecided variable ¥ with 'Y and deleting all quantifications. A substitution ¢ for a goal
formula G is called a deciding substitution when o instantiates no free variable in G.

Example : Ao §-formula ;
WX (liet(X) DVY 3 Zappend(X, Y, Z))
is represented by a goal formula ;
ligt(X) Dappend(X, ¥, 17),
where list[X) is a negative atom and append(X,Y,?Z) is a positive atom.

Lastly we introduce some notations, A replacement of an occurrence of a term ¢ in a
formula F* by s iz denoted by Fi[s], and a replacement of all occurrences of a term ¢ in a
formula ¥ by s is denoted by Fi(a). A formula F is said to be in a reduced form [10] with
respect to logical constants true and false, if F is either (i) true, or (i) false, or (iii) if
neither true nor false occur in F. The reduced form of a formula F is denoted by F |.

3. Inference Rules

In this section, we give a brief description of our verification procedure for a specification
{for a detailed explanation, see [3]).

3-1. Extended Execution

Since a specification is not restricted in a Horn clause but is expressed in an S-formula,
we need some extension of the usual Prolog interpreter. For this purpose, our verification
gystem emplays the following four inference rules.

(1) Case Splitting

Let G be a goal formula and H either (i) an outermost positive subformula of the form
Hyn - —-AHy or (ii) an outermost negative subformula of the form HiV - ~VHi(k >
1). Then, if each undecided variable appearing in f; appears only in Hi{l1<i<k), we
generate new k AND-goals Gy [Hy),,Gu [Hil.

The following two rules are an extension of a Prolog interpreter using polarity.

(2) Definite Clause Inference (DCI)

Let A be a positive atom in a goal formula G and let “B - By, «++, Ben" be any definite
clause in P. When A is unifiable with B by a deciding m.g.u(most general unifier) o, we
generate new OR-goals for all such definite clauses : 6(GalBy AABml) | (e(Galtrue]) |
when m=0) . All newly introduced variables are treated as fresh undecided variables.

{3) Negation as Fallure Inference(NFI)

Let A be a negative atom in a goal formula G and let "B - By, -, B.." be any definite
clause in P. When A is not unifiable with a head of any definite clause in P, we generate
a goal © Galfalse] |. When A is unifiable with B of a defivite clavse by an m.gu.
o, we generate new AND-goals for all such definite elauses : o(GA[BiA - ~ABR]) |
(g(G ltrue|) | when m=0). All newly intreduced variables are treated as fresh {ree
variables.

(1) Simplification

Let G be a goal formula. When Ay, -, A, are positive atoms and Apyq, -, An are
negative aloms unifiable to A by a deciding m.g.u. o, we generate new AND-goals :
a|G)altrue) | and o(G)a(false) L.

These four inference rules are repeatedly applied to a given goal formula until it is
reduced to true or false. If these rules cannot be applied any more, then we appeal to the

following induction.

3-2. Induction

Qur verification system utilizes inductive proofs which are based on structural induction
schemes. Those induction schemes are also used in [12],[13],{14] for the verification of Prolog
programs. For example, the following is an induction scheme for list X :

QN VA X (Q(X) > Q([AIXT])
WX : list QLX)

where Q(X') is a theorem to be proved, Q{] |) is a base case, and VA, X (Q(X) O Q([A|X])
is an induction step.

3-3. Examples

As an example of a verification which illustrates how the above-mentioned inference
rules are applied, let us consider the following theorem.

theorem(associativity-of-append).
YXYZLMN append(X,Y,L)Aappend(Y, Z, M)Aappend(X, M, N) D append(L, Z, N).

end.
where append is defined in a usual way :

gppend(]], X, X).
append([A|X], Y, [A|Z]) - append(X,Y, Z).

and let @{X) be .
WY ZLMN append(X Y, LYroppend(Y | Z, M)nappend(X, M N) Sappend(L, Z, N).

Base Case
The proof of baze case Q[]} is straightforward.

append(] |, Y, L)nappend(Y, Z, M)Aappend(] |, M, N)Dappend(L, Z, N)
| NFI for append([|, Y, L)

append(Y, Z, M)rappend(| |, M, N) Dappend(Y, Z, N)
| NF1 for append(] |, M, N)

append(Y , Z, M) Dappend(Y , Z, M)
Il simplification

true

Inducetion Step

Similarly in induction step, inference rules are applied to the induction step goal which
is obtained from vA, X Q(X) O Q(IA|X]) by deleting quantifiers carefully with difference
between [ree variables and undecided variables,

[append(X, 1Yy, 1Lo) Aappend(TYp, 1 2o, I Mo) Aappend(X, 1 Mg, 1Ng) Dappend(T Ly, 125, 1Ny
Dlappend([AIX], Y, L)Nappend(Y, Z, M)Aappend(|A|X], M, N)Dappend(L, Z, N))
I NFI for append(|A|X], Y, L)

l[append(X, 1Yy, 1Lo)Aappend(1Yo, 125, ' Mo) Aappend(X, T Mg, TNg) Dappend(? Lo, 1 Zo, ' Np)]
Dlappend(X .Y, Li)Aappend(Y, 2, M) append(|A|X], M, N) Dappend({A|L,], Z, N
L NFI for append(|A|X], M, N)

lappend(X, 'Yy, 'Lo)Aappend(?Yy, 1 2g, ' My) Aappend(X, 1 My, 1Np) Dappend(1Lg, 1 2o, 1NG))
Dlappend(X, Y, Ly)Acppend(Y, Z, M)Aappend(X, M, Ny) Dappend{|A|L,], Z, [A|Ny])]
I DCI for append(|A|L,], Z, [A|N,])

|append(X , 1Yy, TLo)Aappend(TYs, 1 Zo, 1 Mo)Aappend(X, 1My, TNp) Dappend|(? Lo, 125, TNo)|
Olappend(X,Y, Li)happend(Y, Z, M)Aappend(X, M, Ny) Dappend(Ly, Z, Ny))
|| simplification w.r.t append(X, 7Yy, TLy) and append(X Y, L)
I simplification w.r.t append(Y,?2g, T Mg) and append(Y, Z, M)
| simplification w.r.t append(X M, TNg) and append(X, M, Ny)
! simplification w.r.t append(Ly, Z, Ny} and append(L,, Z, N,)

true

In the above proof, we have omitted one of AND-goals which iz generated by the
simplification rule and is immediately reduced to be true,

4. Generalization Heuristics

In the preceding section, we illustrated how we perform the verification of Prolog programs
by using the extended execution and induction. In most cases, however, the verification
procedure will not perform satisfactorily, if it is not guided by some sophisticated heuristics,
just as in the case of functional language like Boyer-Moore's theorem prover (BMTPF for
short)[4].

In this section, special attention is paid to the use of "Generalization Heuristics.® We
discuss two kinds of such generalization heuristics which have been incorporated into our
=erification system.

4-1. Mechanical Generalization

The generalization employed in BMTP is a heuristic by which a term in 2 formula is
replaced by a variable under an appropriate condition. For example, when the generalization
6

heuristic is applied to a foermula in functional language ;
reverse(reverse(L)) = LDreverse(append(reverse(L), [X])) = [X|L],
then the following formula is ebtained :
reverse(N) = L Dreverse(append(N,[X])) = [X|L],

where term reverse(L) in the first formula is replaced by a new variable N, and thus a more
general formula is obtained. On the other hand, let G be a goal formula :
(reverse(L, M) Dreverse(M, L))
“(reverse(L, M)tappend(M, [X], N)Dreverse(N,[X|L]}).

When we apply the simplification rule to the above underlined positive and negative
reverce(L, M) in G, then we generate the following AND-goals :
[true]reueru{M.L]}]{!ru:hnppsnd[ﬂ,i]ﬂ,N}:}ruurran[ﬂ,[IlL]}] 1,

(false reverse(M, L) D (falseAappend(M, [X], N) Dreverse(N, [X|L])) |,

which are immediately reduced to :
reverse(M, L)D(append(M, [X], N) Dreverse(N, [X|L]))

and true, respectively. This inference exactly corresponds to the above-mentioned
generalization heuristic employed in BMTF.

Likewise, the inference of cross-fertilization in BMTP also corresponds to the one
performed by simplification [3]. Tn this way, generalization and cross-fertilization which are
treated as different heuristics in BMTP, are performed in a unified way by the simplification

rule in our verification system.

Furthermore, the heuristic of eliminating destructors in BMTP can be considered as
a kind of generalization beuristic. For example, selectors for data structure like car(L)
and cdr(L) appearing in the goals of BMTP are eliminated and replaced by variables. In
Frolog programs, we usually don't use such selectors explicitly ; we do without them by
using unification. Hence, Proleg programming style sometimes makes unnecessary such a
generalization heuristic as eliminating destructors.

4-2. Intelligent Generalization

The second generalization heuristic differs from the above one, and BMTF intentionally
does not employ it because it requires “creative” insight (chap.XIl in [4]). In the verification
of Prolog programs, however, there are also some cases where, in proving an induction step
goal, we cannot use its induction hypothesis because of mismatching with its conclusion. As
a result, we cannot prove the induction step goal simply by using first order inference and

T

induction, so we need some kind of heuristic to resolve the mismatching.
As an example of such a case, consider the prool of the following theorem.

theorem(reverse’-reverse®).
VXY reverse*(X,| |, Y)Dreverse’ (Y [], X) .- (Ga),
end.

where program reverse” is defined as follows :

reverse’(| |, X, X).
reverse*([A|X], Y, Z) - reverse* (X, [A|Y], Z).

First, we try to prove the above theorem by induction and the following induction

scheme is generated.

QD VA, X (Q(X) D Q([A|IX]))
VX - list QX))

where Q[X) is VY reverse™(X,[|, Y)Dreverse™(Y,[], X).

The proof of its base case, Q|]}, is trivial. The proof of the induction step goal,
however, is not easily performed because of those underlined mismatched literals shown
below.

finduction step] Q(X) D Q(AIX))

(reverse™{X,[|, 7Yo) Dreverse*(1Ys,] . X))
Dfreverse*([AIX],] ,Y) Dreverae*(Y,] |, [AIX]))
Il NFI for reverse*([A|X],| |.Y)
(reverse*(X,[],Yo) Dreverse® (Yo, | LX)
Di{reverse* (X, [A],Y) Dreverse*(Y,|], [A|X]))

Here, since we cannot apply simplification because of mismatching between * |° and
“[A]" in the above underlined parts, there is no way to use the induction hypothesia.

These “phenomena” are not restricted to those goals containing reverse®, but often hap-
pen to the verification of Prolog programs containing, for example, palin® [15], fringe®, etc.
(see Appendix). At is obviously known, each program with asterisk has an *accumulator”([6])
iike the second argument of reverse”, which, though it makes the computation linear order,
cause at the same time mismatching between ap induction hypothesis and its conclusion.

Hence, in order to solve these kinds of mismatching, it is necessary to incorporate some
heuristics and generate a generalized goal. Our verification system generates the following
&

goal mechanically :

theorem {generalized reverse-reverse’).
YXSMT reverse® (X, 5, M)Areverse™ (S, X, T) Dreverae* (M, |, T) (G gen),
end.

We call such kind of generalization an “intelligent generalization.” It is easily known
that the above theorcm is actually a generalized goal of Gy and ils preol can be rather
straightforwardly performed.

5. Intelligent Generalization Heuristic

In this section, we state how the intelligent generalization heuristic is applied to the proof
of an induction step goal and give the intelligent generalization scheme which mechanically
generates its generalized goal. We then go on to show how its scheme is also effective for
flawed induction schemes [4].

5-1. Intelligent Generalization Scheme

At first, for ease of understanding, we illustrate the intelligent generalization heuristic
by uzing the previous example.

reverse* (X[], 1Yo) Dreverse® (M, [], X)
Dfreverse’ (X, [ALY) Dreverae(Y,[|, [A|X]])

The first step of intelligent generalization is to find those mismatching arguments which
make it impossible to use the induction bypothesis. In the above example, those mismatching
arguments are { |" and “[A]" in reverse’(X,[], 1Y) and reverse’ (X, [A],Y), respectively.

Mext, we replace the mismatching arguments in the induction conclusion by new vari-
ables. In the above, “[A]" is replaced by a new variable, say, T. We call those variables
contained in the mismatching arguments *mismatching variables,” and those arguments in
the induction conclusion which contain mismatching variables are called “arguments relating
to mismatching.” In this case, “A" is a mismatching variable and *[{A[X]" is an argument
relating to mismatching. These arguments relating to mismatching are also replaced by
new distinet variables. In this case, we replace “[A|X|" by a new variable, say, U, and the
induction conclusion becomes the following formula :

reverse’ (X, T,Y) Dreverse® (Y, [], U}
which means that ¥ XY TU reverse’ (X, T, Y) Dreverse* (Y, [| U) - (Gy) .

Clearly, the above goal (;) is not a correct specification but an “over-generalized” goal
9

of the original theorem (reverse®-reverse®), and an appropriate constraint condition should
be imposed en (&) in order to obtain a correct generalized goal. Hence, we assume some
“constraiot relation” between freshly introduced variables and those variables which appear
in arguments relating to mismatching. In this case, a constraint relation, say, R(T, X, U), is
imposed, becanse T and U7 are newly introduced variables and X is a variable which appears
in the argument relating to mismatching, i.e., |[A]X]. We assume the following goal as a
generalized goal of the original one :

reverse* (X, T, YIAR(T, X, U) Dreverae*(Y,[| U) - - (Ga),

where B(T,X,U) is some relation whose precise form is not determined yet ; we call such a
goal that contains an unspecified relation a “temporary goal.”

The third step is to infer the constraint relation mentioned above. Our current system
infers such a relation from the following conditions ; the firet inferring condition iz called
generalization condition, which is a necessary conditien for a temporary goal to be actually
a generalized goal of the criginal one. In this case, by comparing Gp and Gy, it follows that
X equals U when 5 is| |, which imposes the following constraint on R(T,X,U) :

Rl ,X,X) -+ (CRy)

The second inferring condition is that derived from “pseudo verification,” which means
that we apply the inference rule mentioned in section 3 to the temporary goal. For example,
if we apply induction on G, we get the following verification process for the induction step :
VAX P{X) D P(lA|X]), where P(X) means that
VY TU reverse* (X, T,Y)AR(T, X, U)Dreverse*(Y [|, U).

(reverse* (X, 1T, 'Yo) A R{1To, X, MWo) Dreverse* (7Y, |, 1W0))
Ti{reverse*{[A|1X], T, Y)AR(T, [AIX], U) Dreverse*(Y,[|, U))
U NFI for reverse*(|A|X],T,Y)
(reverse” (X, 1Ty, 1Yo)AR(TTo, X, 1) Dreverse® (1Y, [1, 100))
Direverse* (X, [A|IT], YIAR(T, [A|X), U) Dreverse*(Y,[|, U))
|l simplification w.r.t reverse®(X, 175, 1Y) and reverse*(X, [A|T],Y)
(R(JA|IT), X, 1Up) Dreverse* (Y| |, 1Uy))
S(R(T, |AIX], U) Dreverse* (Y ,[1, U]
U simplification w.r.t reverse*(Y,| |,1Up) and reverse*(Y,[|, U}
R(T,[AIX], U)DR(|AIT}, X, U). - (CRg)

Similarly, as for the base caze of the induction scheme for P{X), we obtain the following
constraint relation :

R(Y,| L, U)Dreverse’(Y,[|, U). . (CRa)
10

Then, from these constraint relations, (C 1), {C Rz) and [CRj), we try to identify the
wnkpown relation, R(T, X, U). Our verification system searches for an already defined Prolog
program which satisfies those constraint relations. Actually, we rewrite those constraint

relations into formulas in Horn clauses ;

R(I X,X). - (CRY)
R([AIT], X, U) = R(T,{A|X], U). - (CR3)
reverse (Y,[|, U) = R(Y,[LU} - ({CR3),

and then find a definite clause which can be “unified” with those (CR})'s whose heads
are the unknown constraint relation. If there are mo such clauses defined in the system,
we consider all the permutations of the arguments of the constraint relation. That is, for
example in this case, we consider all the permutations of {T, X, U} and check each case for
R(T,U,X),R(U,T,X), R(U,X,T),ete. In the above example, from (CR}) and (CH3), we
can find that

R(T, X ,U) = reverse*(T, X, U), = {Gs)

and it is easily confirmed to satisfly (CRs). From G; and G3, we finally obtain the generalized
goal G,.n menticned in section 4-2.

To sum up, the intelligent generalization scheme consists of the following 4 steps
{1) Find out mismatching arguments in literals to which the induction has been applied.

(2) Replace those arguments relating to the mismatching by new variables in the
induction conclusion (and cbtain an “over-generalized goal”).

(3) On the over-generalized goal, impose an appropriate constraint relation by pseudo
verification and by the generalization condition.

(4) From the restrictions derived in (3), infer the constraint relation.

As another example of generalization which we think is not so easy for us to find an
appropriate generalized goal, consider the next one :

theorem{equivalence-of- fringe*-flatten).
YX :list, F fringe® (X[], F)2 flatten(X F)
end.

When we follow the above-mentioned intelligent generalization scheme, then the follow-
ing generalized goal is suggested :
11

fringe* (X, T, FIAS(X,T,U)D flatten(U, F) - (Fy)

where T and UV are newly introduced variables, and constraint relation §(X, T, U) is required
to satisfy the fellowing conditions :

S, X ()
S(X, YT, U) = S(XY],7,U0) - (Ca)

In this case, since our verification system cannot find already defined clauses which
match the above (C;) and (Cz), these two constraint relations are returned to us. In fact,
however, we know that apy predicate satisfying both (C) and (Cz) is sufficient to make F,
true.

As for the inference method in step (4) of the generalization scheme, our current
implementation deals only with those constraint relations which can be reduced into Horn
clauses as meniicned in the examples.

5-2. Application to Flawed Induction Schemes

The application of the intelligent generalization scheme is not restricted to the above-
mentioned proofs, but it is sometimes effective also for a “fawed™ induction scheme [5]. For
example, consider the following example which is a corollary of the associativity of append.

theorem(corollary-o f-append-associativity),
VX DR append(X, X, D)Aappend(X, D, R) Doppend(D, X, R)
end.

From the definition of append, we note that the predicate append(X,Y, Z) recursively
changes its first and third argument and Jeaves its second argument fixed. If we use the
terminclogy of BMTP, the first and third arguments are changing variables and the second
argument is an vochangiog verisble. The above example shows a case where an induction
scheme suggested by an atom and another induction scheme suggested by a different atom,
are mutually flawed. Thatis, the induction scheme suggested by append{X, D,) recursively
changes X which is an unchanging variable in sppend{D, X', R}, while the induction scheme
suggested by append(D, X, R} recursively changes D which is an wnchanging variable in
append(X, D R) (and note that the induction scheme suggested by append(X,X,D) is
flawed by itself).

In this case, our intelligent gemeralization scheme generates the following generalized
goal :

append(X, V', D)Aappend(X, U, R)Aappend(V,V,U) D append(D, V, R)
12

where append(V, V', U) is a constraint relation sbtained and we know that the above goal is
easily proved by an “unflawed” induction.

6. Concluding Remarks & Related Work

This paper has shown how generalization beuristics are incorporated into the verification
system of Prolog programs. Two kinds of generalization, mechanical generalization and
intelligent generalization, are discussed. We have shown that the mechanical generalization
uzed in BMTP, can be performed by simplification in our verification system, as well as
in the case of cross-fertilization. To the intelligent generalization heuristic, we have given
a generalization scheme which is naturally incorporated into our inference system of the
extended-execution style, and which has proved to be effective alzo for flawed induction
schemes.

We apparently owe our beuristics to BMTP and related works by Moore [8] and Aubin
[8], although there is a difference in target languages and deduction methods. As for inferring
constraint relation mentioned in section 5, we find some relevance to Shapiro’s i16] Model
Inference System which iz a general theory to infer a Prolog predicate satisfying given
facts. Our intelligent generalization scheme differs in that it gives a Prolog predicate some
constraint relations to be satisfied.

The generalization heuristics presented bere have been examined by numerous hand
proofs and their first versions have been implemented in DEC-10 FProlog on DEC-2060 as
ome of the heuristics of our verification system for Prolog programs. It is our intention
that our verification system will be implemented on PSI [17] as a basis of “Intelligent
Programming Environment” for Prolog programming on which we can perform various kinds
of experiments such as program transformation and synthesis.

Aekpowledgments

The authors appreciate K. Fuchi(Director of ICOT) and K. Furukawa (the Chief of
ICOT 2nd Laberatory) for the chance of doing this research. We would also like to thank
A. Fusaoka, H. Fujita and K. Suzuki for their useful discussions and help.

Appendix
The predicates defined below are referred in this paper and their "usually” defined ones.

reverse’(| |, X, X).
reverse (JAX], Y, Z) - reverse® (X, [A]Y], Z).
13

reversel| [,[]).
reverse([A|X],Y) - reverse(X, Z), append(X , [A],Y).

Fringe*(A,| |, [A]) - atermn{A).
fringe® (A, [X|S], [A|L]) - atom(A), fringe* (X, S, L).
fringe*{|X|Y], 5, L) = [ringe*(X,[V|5], L).

flatten(A, [A]) - atom[A).
flatten(|X|Y], L) - flatten(X, Lz), flatten(Y, Ly), append(Lz, Ly, L).

palin® (X, X).
palin® (X, [AX]).
palin*(Y,[A|X]) - palin(JA|Y], X).

palin([]).
palin([Al).
palin([A|X]) - append(Y, [A], X), palin(Y).

References

[1] Furukawa, K. and T. Yokoi, *Basic Software System® In Proc. FGCS-84. Tokyo, Japan,
November, 1984, pp. 37-57.

[2] Bowen, K. A. “Programming with Full First-Order Logic® In Machine Intelligence 19
(1982) 421-440.

|3} Kanamori, T. “Verification of Prolog programs Using an Extension of Execution,” 1COT
Technical Report, TR-006, 1984, '

14] Boyer, R. S. and 1. §. Moore. Computational Logic, New York: Academic Press, 1979,

5] Kanamori, T. et al. “Formulation of Induction Formulas in Verification of Prolog
Programs,” ICOT Technical Report, TR-094,1084.

6] Moore, 1. 5, “Introducing iteration into the pure LISP thecrem prover.”
IEEE Trans. Software Eng 1:3 (1975) 328.338 .

[7] Aubin, R. “Some Generalization Heuristics in Proofs by Induction” In
Proc. IRIA Collog. on Proving and Improving Programs Arc et Senans, France, July,
1975, pp. 197-208.

|8 Pereira, L. M., F. C. Pereira and D. H. Warren “User’s Guide to DECsystem-10
PROLOG,” Technical Report, Univ. of Edinburgh, September 1978,

[9) Prawitz, D. Natural Deduction, A Proof-Theoretical-Study, Stockholm: Almqgvist &
Wiksell, 1965,

[10] Murray, N. V., “Completely Non-Claueal Theorem Proving”, Artificial Intelligence, 18:]
(1982) 67-85.

[11] Clark, K. L. “Negation as Failure™ In Logic and Database Gallaire. H and J. Minker.
Eds., (1978) 293-322.

14

j12] Clark, K. L. and S-A. Tarnlund “A First Order Theory of Data and Programs” In
IFIE-711. Toronto, Canada, August, 1977, pp. 939-944.

[13] Clark, K. L. "Predicate Logic as a Computational Formalism,” Technical Report 59,
Imperial College, December 1979.

[14] Stering, L. and A. Bundy “Meta-Level Inference and Program Verification” In
6th Conf. on Automated Deduction. Lecture Notes in Computer Science 138, 1982, pp.
144-150.

[15) Hogger, C., “Derivation of Logic Programs.® JACM 28 : 12 (1881) 372-422

[16] Shapiro, E. Y. “An Algorithm that Infers Theories from Facts” In Proc. IJCAI-81.
Vanecouver, Canada, August, 1981, pp. 446-451.

[17] Yokoi, T., 5. Uchida, et al. “Sequential Inference Machine : SIM" In Prec, FGCS-84,
Tokye, Japan, November, 1984, pp. T0-81.

15

