(COT Technical Report: TR-105

TR-105

Architecture of a Reduction-Based
Parallel Inference Machire: PIM-R
by
R. Onai, M. Aso, H. Simizu,
K. Masuda and A. Marsumoto

May, 1983

1985, 1COT

Mita Kokusal Bldy 21F (03) 436-3191—5

](:C] I 4-28 Mita 1-Chome Telex 1CUT J32964
Minato=ku Tokye 108 Japan

Institute for New Generation Computer fechnology

Architecture of

a Reduption-EBased Farallel Inference Machine : FIM=R

Rilleo ONAI, Moritoshi A20, Hzjime SRIMIZU,

KEanze MASUDA and Aldra MATSUMOTO

ICOT Research Center
Institute for Hew Generztion Computer Technology

Mita Kokusai Bldg. 21F,4-28 Mita 1-cheme,Minate-ku,Tokyo 108

ABSTRACT

Thiz paper prezents a highly parallel mackine architecture
for loglc programs. A Reductiop-Zased Parallel Inference Machine
: PIH—IR i= propo=ed, and the pargllel executica mechanisms for
FIM-R to .-un Prolog ané Concurrent Prolog programs and sofiwere

simulation results are described,

PIH-R. uze=z the :;ructurc-cop’g method. It zl=c uses the only
recupible goal eopy kethod, a unigue process-structuring methed,
and the reversze compaction method to decresse the amount of
¢opying and verious copying-relzted operation= and the mamber of
packets pa=sing through the network. PIM-1 architecture fealures
inelude the distributed shared memery for Concurrent Prolog,
netweork oodes for efficient packet distributien, and the
structure memory te store a part of structured data for reducing

the capying overhead.

¥
e

1. Intredueticon

ICOT is evrrently econducting re=zearch &nd development of
knewledge proesssing softwere and hardware based on predicaze
logie lznguages. Because the basic operztion of predicate logie
is inference, the hardware i3 referred to as an inference machize
and becausze 1t is inference-based, parallel processing is itz
fundamental meode of cperatiaon, In cther words, an inference
machine, er a parzllel infarence pachine 2z we e2ll 1%, i3 an

" nnovative® von=-Yeumann type macaine prather than another

von=tewmwann mechine bazed on seguential operation.

Currently there are zeveral proposals for parallel inference
machine architesture [Moto—oka BY], [Its EY4] and predicats legic
lenguages [Shapiro B3],[Clark 84], [Pareipra 84], We have chozen
Frolog and Concurrent Prolog [Shapire 3] as the target langusges
of the machine, These have besn selected by ICOT as the baze
langueges for liz Fernel Language version 1. We have selectad &
redfussiag-bazad appreach whish executes Prelog progesms in

OR-parsilel and Concurrent Prolog proersms in AND-parzilel.

Let us briefly deseribe what ecaused us to develop the
redugtion-based =machine, Azsime that the expression "7+3" iz to
be reducsd. The expression modifiesz it=zelf using a rule abocut
adéition, to produce the result 10. The expression 10 iz the
ansWwer, because it cznnot further wmodify 4itsell, i.e., It 1=
irredupible, Thus reduction can be regarded as self-modification

[Turrer 78],

Fega 3

By econtrast, the execution of Proleg or Concurrent Proleg
pragrams generates reszolvents from parent clauces (a goal znd &
clause); & resolvent obtained a=z an empbty clausze is the answer,
Thi=z e¢z2n be considered 4 process in which a gozl modifies itzelfl
vzing a =et of clauses, which are zimilar to rules. Thiz close
sipmilarity between thne execution of Prolog or Concurrent Frolog
programs and the reductlon process mobivated us te ressarch and

develcp a reduction-based parallel inference machine @ HglM-H.

In FPIM=R, if a process has pultiple goals (the opultiple
goals, a5 a whole, are czlled the parent process), only the
reducible goals, specified by varicus operators, are copjed and
reducsad. Fach resolvent generated contains 2 pointer to its
parest process? the sciusiecn obtained ia returned Lo the parent
process using the pointer. That is, FIM-R exscutes Proleg and
Concurrent FProleg programs by expanding and reducing &4 process

tree, Wnen the processing ends, the tree is logically deleted.

2. Parzllel Execution of Proleg and Concurrent

Proleog Progrems
2.1 Parellel executicon of Prolog programs

The parallel execution of Proleg programs 1s based on

parallelism among arpuments, AND-parallelisa, and QR-parallelism,

An analysis of Prolog Programs showed that an average goal
hzs twe or tairee arpuments [Onai B4). FParallel executlon based
on the parallelism among arguments does not seem efficient,

because arguments require consistency checking.

Pzze &

Proleog program= can generzte pultiple solutions. In that
case, AiD-parallel execution reguires cogpliceted consistency
checking of erguments shared ameng goals in AND-relatiens, which
reduces the merit of AND=parallel executien. For this reascn,

PIM<® does not use the AYD-parallel execution either.

In contrzst, parallel execution based on CR-parglleli=m is
expacted to perfors highly efficient parallel processzing cn scoe
rrobless (e, g., Bottex Up Parser, ete.), apd hence has been
chosen as the parallel execution mechani=m of Prolog prograoms

("cut,® "zssert,™ and "retrzct" are excluded) on PIM-R. Thusa, we

refer to Prolog 25 OR-parzllel Proleg in this pmper.

Thiz aubzeecticn discuszes OR=parallel and AND-seguential
execution of Prolog programs on PIM-R. Asscre the follewing goal

deguence znd clzuse g:oﬁp:

Geal sequenes pi, p2, p3
Clause group
Pl :=qgl, r1, =21,
Bl i- g2, r2, s,

lat,r1,s1| {g2,r2,52| = = =

Pl i~ g&, rm, =. Fig. 2.1

This goal sequencs is exsouted segquentizlly frem left to
right. Since only pl is reducibie, pl alens rether than the
entire gozl sequence is copied and ment to the Uniffcation Unit
{dizcuzsed later) feor unificaticon f{only reducible goal copy
method). This oniy reducible goal espy decresses the agount of
cepying anéd =nortens the packet length on netyorks. Tne
unifieation generates © resolvents (i.e., child processes) with
the goal seguence "pl, P2, P3" as their parent process (Fig.

2.1). The internpal atructure of a procesa is deseribsd in

Subzection 3.1.2.

Each child processz has 2 peinter indicating itz parent
process to retuwrn 2 soluticn iU obtains to that perent procsss.
However, there iz no pointer frem a parent to a ¢hild, The
Farent process has a2 counter to store the OF-fork count, or the
number of its child process. (hild processes are ealled sibling
Processes bLecause of their relationship. They are distributed
among different processing units, (ezlled Inference Modulesz), far

CR-parellel execution.

Within & child proeess, "g1, rl, =1, for exanple, the
leftaost goal q1 is reducible so q1 aione is copied (only
reducible goal copy method) and transferred to the Unificatiecn

Urit for unification.

2.2 Parzgllel exeecution of Coneurrent Proleg prograns

4 Concurrent Proleg clzuse has the following forzmat: hi=-glb,
naere, "gh i1z 2z goal seguence called & guard part, "b"™ is also
& pozl sequence e2lled a2 bady part, snd the symbel "7 ia ealled

guard bar, eor commit cperator.

Opee & goal ins specified, the corresponding clagapa
(CR-relzted tao eaer other) are =earched 4in parallel, When
unificztion succeeds on the guard part of & clause, the clause is
selected, the binding enviromment obtsined 4in the progcesaing of
the guard goal=z i= opened up {(commit cperaticn), and the bady

part of that olaus=e becocmes a resolvent.

"
[#)
]
1]
(94]

4 gozl in Comcurrent Prolog czn generabe a single =zoclutienm.
If the pguard part of any other clause succeeds in unificatico
later, that eclause will be deleted. In this sense, the gpuard bar

funstions az & cut syombol.

Two operaters are used to specify the execution of gozl
sequences: parzllei AND ",", and seguential AND "L", Coals
copnected with parallel AD-cperatora are executed in parallel.
When goala connected with parsllel-aANDs share a logical variable,
they are in =2 "producer-consumer” relation and that warizble is
used for inter-goal ccemunications. Thus it can be ==id that
parsllel ANDs wuse logieal wvariablez te implement inter-gocal
ecomuni catdons. PIM-R has a distributed shared memory eczlled
Message Board to store shared variables used in inter-gesl

cezmuniestions,

In a geoal sequenes, "p1, p27 (7,7 is the parallel
MiD-cperator), for example, Pl and p2 fork az different procssses
(this i3 ealled AD-Fork), and unificzticns on the processes ars
perforoed in parallel, Consumers pust wait for their varizile to

be zasigned = value,

A shared variable can have & reasd-only annctaticm PIF
attached (e.g., X?). A process which has a shared variable with
a rezd-cnly annoctation added (consimer process) sznnot
instantiate that variable. It mu=t suspend until another process

(producer process) inatantiates the variable, or zends a meszsage.

Paze T

Assume the follcowing goal and clause group:

Gcal p1 |
Clause group pli=g1ibi. !
pii=g2 b2, |
: I {gtiv1) (galval - -~ (gmiom
| il
E

pl:-gm iba.

Unification on Pl produces 0o CR=relation resaglyents
(children)] (Fig. 2.2}, Unlike the parazilel procsssing methed
for Prolog progrenas which distributes @ independent resclvents
among different processing units, the parzllel procezsing method
for Concurrent Prolog pa=s=e= them to the processing unit atoring

the parent pl to first perform unificaticn on their guard parts.

Toe parent pl and childrez gliBbl, g2ib2, -— , gmibn fora a
process (descriled in 3.1.2). Whem unificetion suceeeds on the
guard part of = child, that cnild asks the parent (p1 in the
ex=nple above) whether it 1s the first ecaild having succeeded in
unificztion on its geard. The pareat process has 2 comnit tag
palled C-tag ({descrited in 3.1.2 [1]) whick is turned on by tae
child which first succeeds in uwnificstien. If the C-tag i=
alrezdy on when 2 child asks the parent, that child turns out not
to be the firs: sucesssful process and then enters the d=ad

atate.

Tn PIM-R, when a child successfully turns on the C-tag and
performs the commit operatien, the parent does not KH1ll the
ghild's =iblings; rather any other sitling will commit suicide
when it later succeeds in unification. We have chosen this

approach becauze

Page &

{1} The guard part iz rarely =20 desply nested 2z to cause a
child which suceeeds in unification after the C-tag is turned an

to consume a huge amount of CPY time, and

{2) (1) mezns that it is not reascnable te perferz the kill
cperaticn, which reguires Iiptricate control to prevent klling
meszages sent by the parent to its child from crossing any regort

on successful vnification from children.

Az described above, a sibling always checks the C-tag of its
parent btefcre it performs the ecommit operation. IT the parent
and children are azzigned to different procesaing units, netweork
traffic among the proecessing units cecurs every time a child
checks the C-taz., Sinee each Copswrent Prolog clauze haz &
commit operatar, the network traffic would heﬂﬁﬁe encrmaua,
Therefore executing child processes on different processing units
in an OR=parzllel @Eanper will not reducs the tize for proolex
solving; in =ome czses it couwld incres=e the problem solving

tins,

Toe prevent this situatien, parzllel execution of Conourrent
Prolog on PIM-R does not distribute =iblings smong differcnt
processing unita, but passes thex to the unit storing the parent
fer guard processing. Cn the other hand, gozls connected with
parsllel AND-cperzsitors are distributed to different unitz 2z new

progesses and executed in parallel.

To sum up, the PIM-N executes Prclog programs in CR-parallel
and Concurrent Prolog programs {goals are conmected with parallel

AND-operatora) in AND-parellel.

Page

3. PIM-R Architecture

b= shown in Fig.3.1=-1, PIM-R basically consisis of two types
af moduoles, an Inference Module and a Structure Memory Module,
besides netwarks connecting these modules.

(Fig., 3.1-1 iz inserted.)
3.1 Inferenes Module

The Inference Module (IM)] consists of twe units: the
Unifieation Unit (UU) and the Process Pool Unit (PFU) (Fig.3.1-2).

(Fig. 3.1-2 is inserted,)
3.1.1 Unification Unit (UU)
{1) Clausze PFool (CF)

The Clau=e Pocl (CP) in esck IM steores the same c¢lauses,
Eamh word in CP is 32 bits, the zost significsnt § bits indicate

the data type.

FIM-H u=es the strugcture-copy method to inoreaze the
independence of individusl proce=zses &and decrease the petwark
traffic dus to structure =haring. On the cther hand, copy
overhead due to the use of the structure-copy method lpcreases,
Thizs section describes the internal format of 2 clause which 1=
used to prevent copy overnead as muech as possible. Appendix. 1

contains explanations of the data types in the internal feraat.

The Qause Pool consistz of a Clavse Cefinition Group

Management Block and a Clause Definition Bleck.

Baz= 10

The Clzusze Definitien Group Mapnapoment Bloeck stores the
number o clauses in QR=relation, a fpeointer to the Clawse
Definiticon Bloeck where each clause i3 stored, 2nd the dztz Lype
af the first argument of the head literzl of 2 clause. This last
infarzation is required to allow the Matgher fo select unilizble

clauses.,

The Clause Definition Elaoek =tcores the defipition of &
clause and comsists of & header, a variable arssz, & literzl

header, a literal area, and = structure area (Fig.3.1=3).

Tne header contzios the clause length, the head address of
the structure ares, and the head address of the literzl ksader.
The ztruciure arees hesd address is assumed to be stored at
address 0 and other addresses are relative to address 0. When
the result of reducticn is paszsed ;a & packet, packet length and
pointer to a parent are inserted befcre the word of the structure

zrez hezd address. Since addresses iz 2 Clzuse Defipition Eloex

are relative, address changes are Rot necssEIry.

The variable area econtzins the number of verizgbles and

binding inforzation on incividusl varlahl es.

Tee literal! header heolds the literzl esunt (2t [irst, the
number of body literals in sequential AND-relation « 1), and the
head Lliteral; 4+ a2lso stores bedy litersis in seguentizl
pND-relations (a commit operator iz regarded as a literzl) in
descending erder, Literals with no arguments are stored in the
litersl hezder, while literalz with one or more arguments or
those connected by parallel AND-operators are held in the literal

arez in descending order.

Fzze 11

4 literal stered in the literal area contains the argument
number + 1, 2 pointer to the Cause Definition Group Managemend
Bleel, and argusents, Storing literals in descending order in
the 1literal header znd the libterel area eazily supperts revers
cmpaction. This is explained in Subsection 3.1.2 [1] (2) wusing

an exsople,

Any struetured data (informatien en "List"™, ™ector™, and
fCwarnel Inforzation®™) iz stored in the structure area. IF there
is po structured deta, the structure arez does neot exist,

(Fig.3.1-=3 iz in=zerted.)

Let us explain parallel and sequential Basically the guard
part, ccmmit operator "IM, and body part of & Concurrent Proleg
clavse are considered to be in sequenti AD-pelation.

Therefore parallel and sequentizl AND-deseriptcors are used only

L

when the parall fHND-gperateor ", " appears in the guard andlor

T

body partsz, or

f

ne sequestisl AND-cperater "L" appesrs in any

oal coppected by perallel AND-cperators.
g

{ex.3.1.1=1] An ex=mple clause iz a :=- b | ¢, d, e.

Header As shown in left figure of Clzusze

-

variabie area Pefinition Block of the above clause,
of{int | 4 !
11 poi " the parallel M D-deseripter "Para”
9t Para! § ——— incicates a zet of body goala in parellel
31 Syn2 | | | MD=relation, i.e.. connected by ", ".
4] Poi b
31 Int 3 The area pointed to by Para contains
& | Poi &

o the number of literals 4in parallel
T]Poi | d
girai | ¢ WiD-relation and the individuzl literals,

Pape 12

whiech are arrangsd 1in desgcending order for rever:a goxzpaction.
Le shown by this erample, the commit operatcr "|" and the
literals b, ¢, d, and e are considered to = Iin seguesntizl

ED-rel ation.
(2) Matcher and Unifier

The Matcher chooses unifiable clauses accordizy to the data
type of the first arsument of the goal passed 7r=m the Parent
Process Unit. When the goal i3 pot & re-try gosl o« 2 built-in
prediczte, the Mztcher sets an OR-candidate eoci=: field in the
OF-feork counter to the ccunt of the choszen clzusesz, d.e.,
candidate clavp=es, There are teo flelds in the CE-Iork counter
an OR-candidete count field and 2 return count fies. The return
ccunt iz initialized to C. It then sends tZ: gozl and the

location of the candidzte clzuses to the Unifier,

The Unifier s=tcores the gozl sent frem the MeEtzner In the
gcal memery a2nd 2 clause copied from the CP in the —ause memcry,
unifies the gozl with the clausme, generates the fiz=l resclt in
the gozl mezory, =&ad passes it to the cubtput bufler. Also the

Unifier exseutes built-in predicates.

When unifiecations of 2 goal and candidatz clanses are
finished, the return ecunt (egual to the unifi=tion suocess
paunt) 1s returned ta the parent process es an 0F-7Tk count.

When unification with & unit clause succeeds Iz (B-parallel
Prolog processing, the unificaticn result is rsturned to the
parent process i the Progsss Pool (PP). When wmiflzation with a

elzuse other than & wunit clause succeeds, Lfowsver, the new

Paze 13
rssclvents are retwned to the PP in the zame I or distributed
via & netwerk among the otaer IMs according to & speecified
distribution strategy.

By cantrast, in Conewrrenk Prolcg procsssing the unificztion
result iz always returned ta the PP in the =aze IM. When
upificztien suapends, information for future re=try processing
(ex. the glven gozl, the location storing the clause on which
the unification was attempted, ete.) iz returnsd to the PP in the
sace IM znd 2 Suspend Process Control Bleoek {(discussed latar) i=
produced,

During unificaticon veariable area or alructure area #ay
increzze. Zinecs each address is represented as the diaplacenment
from the head address of the literzl area or head address of the
st-uctura area, the Unifiar ghanges literzl zres and scructure
2rea head zddresses cnly 1f pecsssary. This redueces unificaticn

proceszing.
2.1.2 Process Pool Unit (FERU)

The Process Pool Unit (PPU) consaists of e types of
mescries {Proceszs Pool and Message Board) and twe types ef
centrellers (Procesa Foel Controller and Meszsage Beard

Cantroller).

[1] Process PFoaol and Frocess PFool Controller

{1} Brocesa Pool (PP}

The Procsss Poocl (PP} i3 a memcry for staring processes (32
bits/word, =same a=z the Clause Pocl), PIM=R employs a proceas

configuration method capable of minimizing communications between

iM=,

& process consiztz of PFroesss Contrel Blocks (PCE) fer
sterin cantrel ifmforzation of a geal sequenes, a Process Life
Block (PL2) to marage the number of Procezzs Control Blecks, and
Procezs Texzplate Elecks (PT2; a FIB and a PCE makes 2 pair) to

hold the template of a goal seguence. These blocks are assigned

to an ITM 22 2 set.

Simply put, a reducible goal in a FIB is =ent to the UU, and
when its solutien i= returned te a2 PCE, the gosl seguenes in the
gcorresponding PTE is copied, the kinding envircrment is asosigned,
and a new gozl sequence (a PCE-PFTH pair) is generated under thne

szme TLBE., Tae following iz 2 descsipiicn of these hleocks.
{z) Process Life Elock (FLE)

The FL3 is the top level bloeck in a process and contains the
cemmit tag, the npimber of FCEz under the B, and other
infarzaticn. AL Coneorrent Frolog execution, the cszmit tag is
turned on by the P in the proesss thai first succesds in

executing 1ts guard pert,
{t) Proesss Control Block (FCE)

The PCEZ econtains the state of 2 geal =seguence (reducibie
{ready), run ({unification is wunder way), wailt (walting for =
sclution to be zenh frem a2 child precess), dead, or suzpend

{conawmer process is waiting fer & shared variadle to be

LS8
u

e |

connected with 2 value)), reducticn level, number eof OR-Torks
(when an OR-parallel Proleg program iz executed) or AND-forks
{when 2 Coneurrent Proleg program is erecuted!, nuzber of returns
(i.e., return frca forked processes), a polnter u=zed to connect
toc the Ready Process Queue, and other inforzation. The recucticn
lavel pesns the relative depth of esch process, aszsuming that the
depth of the process which corresponds to the roct of the process

tres ia 1.

When the gozl sequence state is suspend, the PO is referred
to by the speaial ters Suspend Processz Control EBloek (SPCE). The
difference is that the FTE address of the chanrel causing the
suzpend state is stored in the PCE, and that the suspended goal

iz stored in the FTZ under this SPCE.
{¢) Procsss Tezplate bleek (PTE)

When under & P2, a FTE has the ssme internzl ferzat as
clagses img the {lause Pool (CP) exncept for the clause lengin.
When under a2 222, by contrast, it stores the suzgendsd goal and

the (F addressz of the clause with which unification of the

susgended goal was azttenmpied.
{2) Process Fool Controller (PPCI
{a) Process creaticn, renewzl, and deletion

(a=1) Procsss creztion

Wnen & new reszolvent is retwned frec the UU, a new process

which conszists of o FLB and a PCE-PTE pair iz ereated.

Fzze 18

1]

{a-2) Procss=s renewal

Process penewal is the updating of the forl ccunt a2né reburn

count end thoe creztion of & new PLE=-FI2 pair.

When the UU returns the OR-Tork count (indicating successiuol
unifieation), the fork count is incremented by that OB-ferk count
in Prolog program execution, In Concurrent Prolog, go2ls in
AiD-relation are generated az differant processes. Therefore,
when geals connected with parzllel AND-gperatora are enccuntered
in a colzuse, the MND-fork eount is =set to the fork count in the
rCZ2, and these AND-relzsted gozl3 are distributed to the IM

ccneerred or te another IM scecording to @ distribution strategy.

Ween = new T2 iz created from an old 12, reverse
compaction is executed, The following exacple illustrates

Proeess renewal processzing and reverse ccopaction precisely.

(Ex.3.1-1) Process renewz! and reverse gozpection in

The (Lause Defirition EBEloeck of the clauwsa "p{1,[Xi¥]):-
gl1,Xkelx, ¥y, m is shown in Figure 3.1=4; "iM i3 2 seguential
AND-cperater.

If unification succeads, a Clause Defipition Bloek like this
is pazzed to the Processz Pool to form the FTE of the procsss. The

FI5 i= shnown on the left in Figure 2.1-=5.

Fzze 17

Ia the FTS, one word of strusture arez head address the

seeond ward) is the addreszz (.

The steorage allocaticn of & literal iz detersizned by GRhe
displacement relative to the hezd address of the literal header.
Alss the pozition of a structured deta walue is indiczted by the
displacement from the hkead address of the structure area. The
head address of the varizble arez is always storeé in the fourth

word.

The literal count iz stored in the first weord of the literzl
arez. Tae literal cocunt address pius bthe literzl count indicztes
the word containing the pointer to =& posl literal in the
reducible or run stats. At first, the literel count iz the body
literz! pumbher plus 1, that is, 3. Eince_;he:e is Lit 12 at the
poziticn of displacsment 3 to the litersl count address, a goal

gf{1,%) is recducitle, Therefore cnly q(1,X) i3 copied 2nd sent to

um.

We z==zime that g(1,Y) suceesds in unificaztion with & unit
clzusze and the rescls g{1,2) is returned to the parent progess in
the FP. (A5 descrited atove, & pew process 1s nob generated,
since a pgoal is unified with 2 wut clause.) In Prolog progrzos
when wnifjieation suceeeds and a binding envirorment iz returned,
pultiple s=olutiorns gay be reterned., Therefare, the entirs PTE
Rust be copied before the binding egvirconment is written inte the
block, ffter copying, the new binding environment X=2 is stored

in the rew FIZ.

To improve the efficiency of wuse of the Proces Pacl,
reverse compaction iz performed on the PTE by removing the g
particn, moving the stpucture arsa upward end decreasing the
literzl count by one. AL compaction sinee literzls are stored in
reverze order, it is suffisient that the last literal area, the g

portion, be renoved.

This may changes the locations at which each varizble or
structured data 1is stored. But only the structured data area
head address in the szecond word reeds to be changed. Since tke
storzsge locsticns of structured data aré indiczted by displacement
from the structure ares head addressz, pointers to the structured
data need not be changed., If the varizble area length changes,
the literzl header hezd addrecss and structure arez header address
‘must “&lso be changed. Taoe new literzl pount indicates WLig GO
which points to the next reducible goal r(2,Y¥). The rignt side
ef Fig.3.1-5 =hows the PIE &after the above operztions and
cecmpacticon, When the structure arez g=ts loogsr, that 1=
structured data is added, this pmew structured dztz iz stered in

the bottcm of the siructure area,

By econirast, in the execution of Cancurrent Proleog and of
built-in gpredicates, the PTE npeed pot be copled when & sclution
is returned, because a goal produces only one soclution (i.e.,
erly one ehild ezan survivel. If elzusze lengih does not get
onger at reverse occmpaction, direct overwriting to he process
templazte is possible. This method reduces the amount of copying
and the occupied space in the Proceas Pool.

(Fig.3.1-% 1is in=erted.)

(Figz.3.1=5 iz inzerted.)

"l
it
iz
1]
—
ull

{2-3) Procss=sz deletion

When a P2 enters the desd stete (i.e., fork ecount = return

count), the FFD =etz the PCS =zizte desd and incresents the PCE

l:".l.

return eount in the porresgending PLE By 1.

To sum up, the introduction ef the FLZ into a process gan
make it unnecsazary to report each generation or deleticn ef a
goal sequence to its parent proesss, irrespective of how pany
gcal zequences ars generated or deleted in that proesss.
Thersfore the uze of such process=siructuring metiods perzits a
decrease in the mumber of packets pazsing througn the dnter-IM
netwerk. If the mezory hes sufficient space, the scluticns ean
be obtzined iz le=zs %time by halting the dezd process handlin
routine in the PEC gnd steppin the generztion of Tfork down

packats (i.e., decreasing network traffiel.

In Appeadix 2, we explein the inter-relaticnzhip azaong the

anc FLEs=.

(b} Leoezl progam-executing strategies using the reducticon level

FI-F iz eugected to kave 100 or meore interconnected IMs,
If such 2 =ystez h=s a general scheduler, dt is difficult fer the
garerzl =cheduler to egntrol the entire execullcn strategy.
Therefore, the proram executicon eopizmel in PIMN-N iz only

perforped leocally within a s=rngle IM.

As snown in the figurs belew, FCEs which haold the control
inferzation of a gosl sequence including any reducible goals,
called Ready PCZs, are linked to the Resdy Process Queue (RPQ) in

the IM.

1l
[
i
ra
o

R |
= PCED = PL3T & = P2
0 1 e e

T - 1 |

When & progrem executieon stratezy 13 oot particwlarly

= | e

specifiied, the PPFC attaches new Ready P(Es to the tail of the
RPF], arnd sends the head Ready PCE to the U0, Scme rprogrsoe,
hewever, require only one of mueliiple scluticns to be cbtained.
Tne reductien level 1s used in a strategy to executs such
Drograms. & pseudo-depth-first reduction atratezyr can be
implemented in the IM, by placing 2 PC2 with higher reducticn
level (i.e., & P2 which iz farther zway frozm the process trse
root, or positianed a2t & deeder level) 2% &2 position clozer Lo
the head of the RFD). OF coursze & pzeudo-breadih-Tirst reduciico
strategy can alsc be implemented in the IM By plzeing a PCE with
a lewer reduction level (i.e., a PCE nearer to the procsss tres
root; or positiored zt 2 shellower level) at a position clozer to

oe head of the REQ. Thus, the reduction level allows the

control of loeal reduction stretegies in the JY,
{e) Garbage Collesticn

Except for instasciated Iong structured data, data i3 copied
eagerly. Therefore, such data iz not shared among PCE2-PIE pairs
{gcal in a proce=zz). When a PCE-PTB pair dies, data relevant to
the PCE-PIE pair bteccomes garbage. It 1= easzy far the PPC Lo

decide whether a PCE=PTH pair ia garbapge or not by checkding

Figze 21

counters reisevant to the enild process number., If there is no

child proeess, that process is dead. Tais check iz enly liznt

[2] Meszage Beard (MB) and Message Bcard Contreoller (MBC)

Each IM has a distributed shared memeory czlled Hezesage EBoard
{+2} ta stere chamnel variables in Cenecurrent Prolog programs,
The Message Beard Controller is designed to reduce the lecad eof

FPC processing.
{1} Mes=zage Ecard (ME)

A= stated zhove, PIM-K separztes varizbles used as channels
these varizbles are c=lled simply chanrels) frez the other

varizhles, and stcres channels oo the ME,

Tt im assimed that goal segquenee pl1(X), p2(X7) becomes
reducitle, pi{%} ard p2{X?) beccoe different procsesses a3 the
reswit of 4D-fork processing, and these processes are
distributed into different IMs, Binee there i3 an ME Iin each IM,
the e¢=1l for channel X iz steored in the M8 of either IM and
preeess pilX) and p2(x?) share the e¢ell, II the cell ef channel
¥ is stered in the M3 of the IM whiech steres process pl{X),

process p2{i?) reads a value frox It througn the ne bt orl,

The phapacteristios of & channel are dynamieally inherited
by ancther variable at execution. For example. when mified with
a channel in a goal, an argument variable in a clause beccmes a

channel,

il
Pud
I3

The M3 consists of chanmel e=lls, velue eeils, and 2 suspend

process list,

Channel gells eon=ist of four words and conbtain a write tag,

a2 suspend tag, & pointer to 2 value gell, the suspend preocess

count, and the head zddress of the su=spend process li=t.

Avalue cell =stores 2 value sent frez a producer prooess.
The internal Torxza of & value e=ll is the zame zs5 that ef the

Clause Fool,

Suzpend Proesss List stores & pointer to & suspend process.

Syspend processes themselves are held in the Process Paol,

(2} Message Beard Cantrollers

In Conecurrent Prolog, when 2 conswmer process suspends the
PPC pequires the MEC ta chesk whether a producer process has
alrezdy sent a omesszage to thaet M@ containing the ¢=il ef the
channel ezusing the suspensicn. If 2 meszage hes arrived, the
I2C zends the message $o the PFC to zetivste the consumer

procass; ctharyize, the MEC writez the PP eddreszs of the

consucer process in the Suspend Process List.

If the M5 containing the channel csil is in another IM when
a conszumer process suspends, 2 channel value read paciket iz sent
via a metwerk teo thet MEC. If 2 message has alresady arrived at
“at MB, an aetivation packet contalrming the message is returnec
to the consumer procez= as a packet. When a producser process
sendz a mDessage, d.e., connect:z a ctannel with a value, that
meszage (value) iz writien in a value eell en the ME. If at this

tize the Suspend PFrocess List contsins any suspend consumer

Fzgs 22
process, tae messags is senl to that procesa. If any susgezd

process guists in the PT ip another FAJ, an activation packel 13

bpapmefarped vid & neTeori 25 a Lackel.

% emznpel can be deserited wita two Pchannel informatizz®
werds stcred in the strusture arez in a Process Template Bl:zzi
(PT2). Given a goal zeguence ™ plX), elx?y ", plX), which =iz

plaped in the PP in an IM &z a reselt of an AND-Tork, hasz & P23

as follos=:

PTE lenath
[Head address of structure area
Head address of literal area
Int | 1 !
22 | ChiR | :
Int | 1
Lt | 2 T
Int | 2
Poi | p
UchR | #4 L
Poiter o ME — 1
vari 1-{lnca| data area) ‘ —‘ Chanrel Information

(CmTR is a cats type which steres & polnter to chanzes
inforzation.)

The first word of Chapnel Informatien is 2 pointer Lo =

sppropriate chanrnel on the B or the caannel iaferzation in e

pareat [rocsss. The s=econd ward stares local data. Wosz
urification cn & guard succeeds and the commit operation -3
perforsed, this loczl data 1s writtesn inte the approprizze
channel eell op the !B or the local data area in the chanze

informatien of the parent proeess. This is explained by examz_:z

in Aprcendix 3.

1
(1]
*r
i

)
i

3.2 Strueture Mezeory Module

Efficient proceszing of structured data is very icportant in
the de=ign of a parallel inference machire, In gezerzl, many
data items manipulated in Proleg applications include cocmplex and
largze structured dzta, For manipulating this large structursed
data, however , there iz a problem of large overtead czused by
data copying in & structure-gopy systez, A function for sharing

structured data iz reguired.

e bave introduced the strusture memary eonz22pt te reduce
the copying overhead. Our Structure Memory Module stores only a
large structured data, such as large combined lists and vectors,
althougs the =tructure memery in a dataflow-based parsllel

inference machine stores 2ll ef the structured data [Ito BYT,

45 shown in Fig.3.1=1, esch Structure Memory Mocule{SiR) is
connected to several Inferezce Modules (IM) via the IM-Sit
Hetwerk and 2 part of the structuwed dats i3 acosssed by the
Unification Unlt (UU) in the IM on 2 unificaclop-demand beszis,
Sharing structured data ameong =severzl IMs invelves frejuent
acoess copesntretions and conflictions on & particular SMM, In
crder to avold this problem, we distribute seversl ESMMz holding
the same mpemory image over the system and enable eoncurrent

mul tiple reading,
(1) Sharing methad

The structure area in each PIB includes all of the
structured data with the undefined wvariakbles and pground

instances. Different kinds of sharing levels are availsble. such

az shering liserzls, sharing the entire structured data, ancd
shering ground instances. If we choose a2 sharing method whien
shares the structured datz with uwndefiped varizbles, it will te
recuired to copy the struetwure erez when an undefined variable of
the structure arse is bound to seme walue. In order to avold
this corying overhead, we have chosen the most basic pmethed @
that of snarirr only ground instances which do not include zny
undefinsd yvariables. A= the first step, in ecompiling & Prolog
program, we divide structured data 1n a clause into ope part
including the undefiped variables and one part for the remainder.
Az the remainder does not irclude any undefined variables, it
will not uwndergo any mere change. Such large structured data is
& capdidate toe be stored in the SMM as 2 ground instanes.

Fig.3.2-1 shows 2n exaczple of sharing gound instaness.

{ex] (1, [a.p], 21 =X]

HF"“‘*m-._,_.urrdef‘lneﬂ variahle

in a PTB or in & clause

T T r—
1] 0 | = 2|

reference — | =

from others ground instances

Fig. 3.2-1 Example of sharino oround instances

P

fir

o= 25

This shering Rmethod ezn maintaip highly parzllel
envircrments among processes, because only reading cperations are
executed and the snared dzta cop=zists of ground instaznees enly
requiring no rewriting [Motc-clm BU]. At present =3 the first
step, progragoers speeify the many ground instances rom
structured data in a clause and these are stored in the SO
This sharing method places a pointer in the clzuss which might be
alzo referenceq by 2 new process, because that pointer i=
tranaferred to the new resolvent at unifieztion, causing sharing
of the ground instances in the SMM. As a rasult, olauzes and

goals have the pointers instead of large =Sructured data, thereby

reducing the size of elauses, goals, and network packets,

(2) Coobined represantation of structured data

« ks

4 1ist bas 2 eonstruet operator as its functer and two
arguments (car and edr), and nniy these two arguments are storad
in the SMM. A vecter iz composed of its size =znd one or morse
elezents, and these are 2'1 stored £n the SMM. In gznecrzl, these
atructured data re stored by either the list-tased
representation with painter arezs or the record-bz=ed

rezresentition storing data in successive memcry cells,

The list-baszed scheme npeeds more pmezery =pace but allcus
list data to be fetched by tracing one poinzer =t a time, thus
featuring the ability to ez=ily retrieve data uzing peinters. On
the other hand, the record-bazsed scheme has problems of overhead
due to data reading viz an address table and d&ifficulties in
irplementing fast, succesaive read operztiens. Bewaver, it ecan

increase utilization efficiency feor the storage of large

Prpa 27

structured dats like vectors.

The present plan uses both schexes and separates the mexory
for 1listz freom that for vectors. 4z shown in Fig.3.2-2, lists
are ztored in the List ta Memory 1in a 1list format, while
vectors are stored in the Vector Data Memery in a record forzat
2nd zccessed via 2 Vector Address Table(VAT). The aco2ss to the
SuM ocours on & =mall zmount besisy we call thiz a block access.
A list bleck eonsisting of czr and odr parts is fetched to the UU
by = list read request and 2 vector block iz fetched by 2 vector

read reguest respegtively,

-

[H-SHH Network
A

|

!
Structurs Hemory Hodule

l

b

structure o nnuny LIST Dala
Hemory Hemory
Cantrolier ——
VAT | |...., Vector [ata
Hemory

Fig. 3.2-2 Structure Memory Hodule configuration

1
ik
ik
P
]

(3} Lazy unification betwesn arpuments

R

When unification requiring the structured dazta stsred in the
EMM is execubed, the SMM is aceezsed. In this csze, PIMN-H uzes =
lazy unification between arzuments to aveid unnecsssary
unifications. If there is an arguﬁent whiech refers to the SMM in
either the rediucible goel or the wifieble clause and if the
gther argzument for wifiecatieon iz neither an wndefined varizible
nor an atem, then this unifjeation will ke delayed and the cother
unificztionz between arguments not refering to the SMM will be

executed with higher pricrities, Vhen 2ll these wunificaticns

succesd, the delayed unifiesticon refering to the 5MM will ke

executed.

Our method steresz &t compilatien only ground instances of a
progran in the SMM and does mst exscgute, &t present, dynsmic
mezory write operaticns for the SMM, The structured daﬁa in the
SMM are referenced by at leazt one clause and will beccoe garbage
when 311 the zeluticns z2szscodated with 2 guery ares obtzined. We
gre now develepping a detziled softyere siquiaticon to evaluate the
ef fectiveness of owr structure zescory zethod, We planm to oessure
the effective ="ze of pground instances stcred in the ZiHM, the

nunber of memcory access operztionsz, and =o on.

i
[
W
[\]
s

3.3 Hetwerk

At executicn of Praoles or Concurrent Prolog prograzs on
PTM- [, when & gosl succeeds in uwnificztionm with a ruia, a child
process (new resolvent) is generzted. However, even 1if & gosl
suceseds in unificatien with a faet, the pesult is only returned
to the PC3 in a psrest process and a child process 1s not
generated, [Cnai 847 shows that the average OR-relation number
is about 2 er 3 in Proleg programs that consist mainly of rules,
Therefore, 4t is possible to map an average process tree onto 2

evyelie pesh siructure,

In progrems of legie languages such as Proleg, when there
are several scluticns, location (depth) of ezch soluticn in the
D-0R tre= zre uspally different and elildren forked
simyltamesusly pereiy retwrn sclutions to 2 parent procsss &t the
sane time. Thaus, the mesh-type netWwork nods, onto Hhi:ﬁ the
upger part of a procesz tres iz maposd, only rarely gsts

overloaded by cocneentraticn of sslutiams returned to 2 perent

EProce=ss.

The zccess length of network nodes at execution on PEM=R iz
about 1, =ince most of accesses are betwesn nelgsbor nodes,
{(Acceszes to the Messape Board are smcmetimes net between neignbor

nedes.)

For these reasons, we chose mesh type structure for the
inter-IM network. (Figure 3.1-1) In the inter-IM network, nodes

are located 2t mesn peint= and an IM 13 connected to each npode,

Peze 30

Betwerk nodes ean dynagiceslly control the diztribution of =
child process to each IM using such infermatior as the input
bufffer length of the Packet Switech in a EBHIL raffie in netwerks
is bi=directicoal. Each npetwork node can be configured using
picrocomputers with coppunication functions and a high-spesd
memory, sucha as Trapsputers [Inmes Bh-b] (four channels, each
with a transfer rate of 10 Mbz and § Kbyte statie HAM with =

oycle time of 50 n=ec).

The retweork between IMs znd the SMM, or the TM=SMM network,
iz of Gthe egqual distance tyvpe and a2k preszent iz expected te be

implemented with & shared bus.
L. Software simulation

The simwlater for PIM-R 1= written in Prolog, and runs on

DECZ2060 or VAZ-11/T7B0 or VAX-11/T7ES.

B.,1 Simulation esnditions
Eimplation i3 perferzed under the following cenditicns:
(1) A network is ideal, exsluding packet econflicc,
(2) Ezch unit has a buffer of sufficient size.

(2) The perforzance of Pfs (process creation, renewal, and
deletien) and UUs i:x deterained by the mmber of =tess required
ihern they are written in aa ordinsry assenhbly language,
[Moto-cka 851 whe adopted the all goala copy method, shows that
the average time of a unifiecaticn and =2ize reduction in =

6-Queens program is about U2 psec.

Pagz 31

Since PIM-[uses the cnly reducible gozl copy method and the
amount of ecopying for this= methed is less than that for the all
goals copy method, we azssume that UU in PIM-R is avle to execute
2 unification and result zaking in 100 p=ec at lezst., (we think
that UU is able to execute those operztiocns in under 53 psac if
specizl harduare feor the UD i= implemented,.} Since the zverage
packet lengch through netdéorks of U=Queens 13 about 20 words

{about 600 bita), we assume that netwerk speed i3 10 Hbs and

averzge network delay is 60 psee.

{4) A new process is distributed te an IM at child gprocess
creation in Prolog programs and at AND-fork in Concurrent Proleg
programs according te distribution strategy. Thiz simulatien
adopts the following static and eyclic distributien strategy: IH

eoncarned, Fast IM, Seutk IM, IM concerned,...

Herta IMI

West IM-———— IM—> Ezazt IM:
‘—I/__—
n—d&—-n—-

[South IMI
{Fig.4-1 ia ipzerted.)
.2 Sinulztion results
4.2.1 Prolog program
Tne B-Jueens program was run to collect the necessery data,
{1) Effect of mmber of Infercnce Modules (Figure 4-1)

The YL-Queens progran increases in perforzance a3 the pumber

Pags 22
cf Inferesce Modules (IM)] increazes. Procsssing time decrezses
&s more Inference Modules are used up to seven or eight units,
Then it leyels off. This trepds roughly corresponds te the
averzge level of QB-parslleli=m, about &, resulsing from a
dynaric analysis [Onai 84)], The results shcow that FIM-TR is able
to enecute parzllel processing corresponding to the garallelism

in the Prolop progran.
{2} Balting dead child processing

The pumber of packets passing throusch the petwork i= =shown

vy their types in Table 4<1.

Taa IMs Four IMs
Total nuober of packets 151 207
Table U=t Mumber of true return packets 31 i
MNimmber of QR-fork packets i &d a0
Pork dewn packets | 60 | &0

The fork-down paoket iz uzed by a child proecess te irnforz
its parest proessz that it has entersed the desd =tate. IL is
goncerned with garbags eccllecticn, and 1= neot directly related ta
the =soluticp-obtziping procsszing, Therefore, AIf the Process
Pocl has sufficient =pace, lewer priorities ean b2 glven to dead
¢nild processing and the. generation and transfer of Forlk-down
Facketz in the PPFC. Bigner priorities are given to f[irst
executing proceszing reguired to obialn selutiens and to traansfer
the respective packet=z. This czn reduce the pumber of packets
passing through the network oy about L0S for teo and four IMsa.
Mus it alleviztes procezsing leoad in the PPC, resulting in about
8% and 15% reductions in preoceszaing time to obtain the first and

second soluticns for four IMs recpectively.

ot
i

b
Ls}

{3) Loezl executicn control using reduction level

Loezl pseudo depth-First execution was tried gZving higher
nrioritiez to Ready PC3s wilh deeper reducticn levels and to
the processing of t-ue-return rpackets frem child processes. At

the szme tine, lower priority iLs

.

ven to fork-down packet
pracaszsirz. The resulh wasz that 129 and 7% predustions in
rroceszing time to obtein the first and second sclutices for four

IMs respectively were achieved,
{4) HNetwerk leoad averzge and nebwork spead

The load averzze of ezch link i about 10% for two IMs znd
6% for four IMs., (There are 2 links for two IMs and & links for
four IMs.) The pore IMs the less network lecad average.

Sioulation eondisien (2) iz karely approprizte.

The maxic input buffer length of the Packet Switch i= 1%

forr twe IHMs a2nd 14 for fowr IMs.

If we gzeed uz ths natwerk frem 10Mbs to 60Mhs, we geat about

10% reduction in proecessing time fer four IMs,
{5) PPU lead averacs and dynemic procsss dlstributicn

When 60Mbs netwerk speed for four IMs i3 schieved, &the FPC
in eser IM recorded leoad averages of 42%, 553, 54%, and 80%.
Felatively wide discrepancies e:xiszt among these figures, because
the child process distributing atrategy at OR-ferk was fixed. 1In
this ecase, the averzge input buffer lengiths of the gpacket
switehes are 0,46, 0.60, 0.49, amd 4.5 units. These results

correlate with the leoad averzges of the FFC

Paze 34

When network nodes zro pzed to dynamiecslly distribute ghild
processes to the IM whoze packet msiteh has the =hortest input
buffer length, the processing tise necesssr fer obiiining the
first and 3secend soluticns cen e decreazed further by 10% and
149 for four IMs; then the FFC in ezch IM hazs balsnesd lLead

averages of 69%, 722, 62%, arnd 65X,

4.2.2 Concurrent Proleg progcam

The Quicksert (ten elements) program was run to eolleet

verious dzata item=.
(1) Effect of nimber of Inference Modules (Figure 4-1)

The Quicksert progrez inorezszes in perlorzence 25 Lhe umoer
of IMs dncrezze=. Frocessizz bime decrezzes as more Inference
Modules are used up to five or six units. Then 1t levels ofl.

Singe this= exenmple hzs a2 parallelisa of about 4, the resulis =how

thet FIM=% iz =

e

le to exscute parallel processing correspondin

te the parellelism in tke Cznourrent Prolog progran.

{2) Halting dead child proceszing

able 4-2 zhows the mober of reductions and ciher d

1]
«t
fa

at

the execution of Quickscrt.

[Nizber ef

reductions i 285 |
Taple 4-2 | Mimber of =successzes 146
hmper of fzilures] 14

Number of suzpended reductions | 69 |

Table 4-3 shows the number of packets passing through the

netveork during Cuicksort executicon by their types.

, B | Twe Iis ! Four THs |

Total numcer cf packets i 141 | 211 I

Mmber of true packetcs 1 17 | 17 |

Table 4-3 Humber cf END-forl cacietis i 21 24 |
Nimcer of ferl dewn packets | 21 . 25 I

| fi—har of }ME-peliasted psokets | Bz i 140 |

These tanles show thatb, wihile 284 reductions oeccurred and
106 of them succesded, 141 packets passed tharough the network for
twe TMs and 211 packets for four IMs. In cther words, a packet
passed throuzhi the netwerk each time zpout 1.3 er £ reductions
aeourred, Unlike the FProlog progam, the ME_relzted packets
s acount for 582 of the Sotal for two IMs and £6% for four IMs, as
=nown in Table H-3. Thi= means that hzaiting dead child
processing and genmerztion and tran=fer of fork-down packets, an
effestive approzch in the Proleg prograz, coulc reduce the number
of packets paszsing through tie pelwork by erly 15% for Lo IMs
and 123 for fuurk_" M=, Uplike the fork down packets, these
MB-related paaokets rrot heve = lower transfer prierif
attached; £ they do, no soluticon will be cohained. Therefcore,

faster packet transfsr is more oritleal for Copeurrent Prelog.
(3) Effest of Messege Board Cencroller (M=C)

A chancel cell is 2llocated on the M3 when unification
supceads in the UT, = new c=ild procsss iz returned to the PERU,
and there i3 a new channel, it execution of Quicksert, &2
phannels ar= stored on the MB and, as= Tabie 4=2 =nows, successiul
unifiecatiens total 106. This pequires the cell for & crnannel to
be alloeated on the M8 every tipe about 2.2 uniflicatioans succesd.
Thus the speed of allocating a chansrel c¢=ll on the MB infivences
PI}-E Gprocessing speed. This problem ecan be liminated by

introducing a Message Beard Controller (¥BC) to handle !D-related

Pare

Laf
T

processing. If the !B-relztsd procgszine were handled by the
FPC, instead of the }MEC, processing time would irnecrezse by 139

for cne IM &nd by 10% for four Ilis,
{4) AND-CR parallel execution

Wnen Conewrrent Proleg programs are executed 4n AMD-GOR
parallel, child processes disiributed in the different IMs From
the parent process have to check the commit tag in the pareat
procass through networks when guard esecuticn is sugcessiul.
Child processes have to wait feor the return packet from the
parent process. This increszes nelwork traffic. As the result,
the processing time of AND-OR-perallel “increases about 13%
over that of AND-parsllel in case of fowr IMs 2t executicon of
Quicksert. OR-parallel exscutier is not suitable for Concurrent

Frolog programs.
5. Conclusien

This paper dezgribed the architesturse of PIM-R, z
recuction-based parallel inference mpachine, parallel execution
achemes of Proleg &nd Coneurrent Prolog programs on FIM-RB, and

solftware simulation results.

To decrezze the aoount of copving and mizgellaneous
copying-related operzticnz dus to the uze of the structure-cony
pmethod and to minizize the npumber of packels passzing through the
nebtwork, PIM-I u=zes the only reducible goal copy and reverse
compaction schemes az well ass introducing the Process Life Block

(PLB) into a procgsss.

Page 3

itz for srchitesture, PIN-R uses & Messapge Beard (18}, i.e.,
distributed snared memcry for channels bebtwesn &lD-papsllel
proceszes, Lo handle Prolog and Cancurrent Prelog prograns

equally, I~ waes confirmsd thet the M2 perzits PIM-R to exeoute

L

cnourrent Proilecg fuseticns including back compunicabion and
fimite=length buffer comounicatiasma. The PIH-N arshitecture is
2i=s pharseterized by the introduction of netWwork nocez for
Fripient packet distributiecn, and by the use of structure mezcry

for storinz ground instances in largs-cczle structures d

-
RELS

fik

The simulztion vsing PIM-F soltware simulators dezonsirated
thet FI=0 is ahble to execute parellel processing corresponding
to the paralieli=m in FProleg and Cencurrent Froleg programs.
In cther worgz, the pusmber of Infersncs Modules does affeet

the perfersence of parsllel proge=zsing,

Tt wes zlso confirmed that the dynazic ¢istribution of child
processzes by network nodes, introducticm of the Meszsage Board
Controiler (M2C), haltinz of desd ehild procsssing, stopping
the gemerzticn and transfer of fork-down packelz, and local

psevde~depth-Sirst execution using reducticn level are zll

effeciive pezsures.

A4t Conecurrent Prolog execution, over half the packets sent
througa netwarks are ralated te M2 aceess. Therefcre, wWe think
that it is nmos sufficient to increaze packet transier speed. It
is al=zc necessary to decrease the relative mumber of ME-related
packets to other packets., It i3 2 way of introdueing modularily
into the lanpuzge te enlarge grain size aff AND-

proceszing of Conewrrent Proler.

Page 34

Chennels in Coneurrent Prolog are used lor cooounicziion and

synchrenizatien ameng gezls. Zines & channel iz a logcal

variable, a producer znd & consumer have to execud unifieztian

for sencing and recsiving & message rescectively, T@ causes s

reduction in speed of message transfer. Sines & velue and rmexs

du ks

chznanel zre usuzslly passed through a2 channel, meny channels have

to be used feor enly cne Qecam-likte crznrel [Irmes 84-z]. Al =0

=

since channels in Concwrrent Prolog are generated dynamieaily

-

gartage ecclleeticn for channel cells, that is, for the Mezszge
Board has to adopt & compliczted method like reference count
method, thet peeds CPU tinme andlcau:es netwerk traffie, (Qearly,
research inte the implezentation oproblem of communiecztion and
synchrenizeaticn in logle=type languages not using logiezl

variables iz necessary.

Thoegh PIM-F now adepts 10 ¥ 10 ergenizatien (Figure 3.1-1),
Wwe will investigste the hierarchical K X N organizeticon of PIM-R

and the clzuse gllocaticon problen in Clau=e Pocls.

AL present we are develcping a detailed softoware sioulztar
Written in Ocezm and & dedicated smipelation systexz copsisting of
sixteses giprocoTputers. We plan to conduet vericus deisiled
simulations of many programs, inciuding these for researching the

effect of shered structured data, with these tocls te velidate

and enhznes PIM-FH.

v

1H
]
ap
wid
wLd

[Referencas]

[Clarl 841 Clark, X.L. and Gregory, 5., MEARLOG :Parallel
Prograzoinzg in Logie™, FResearch HReport IDOC 8474, [Lept. of

Cooputin Ioperiazl Cellezs London, 1484,
¥ =1 :

[Irmas Bl-z2] Izmmos Lizited, "Jezam Programming Manu=l", Prentics

¥all Interncticns! Series in Computer Science, 1524,

[Iomes 84=3] Inmes Limited, ®IMS TH24 Transputer Referencs

Manual®™, 1984.

[Ite BB] Its, M. and desudz, K., ™Pzraliel Inference Machine
Based on the Data Flow Model™, FProc. of the Internztionmal

Workshop on Eigh Level Computer Architecture B4, 15204,

[Mato-al= B4] Meoto-ok=, T., Ta2peka,H., et &l., nThe firchitacture
aof a Farallel Inference Engine-FIZ- ", Proe. of Int, ¢Conf. on

=4

Fifth Cenerztion Computer Systezs, 1984, ICOT, 198%.171.

[0n=i B8L] Qo=l,B,, Shimi=u, H, et,al,, "Anzlysis of CSesuential

Proleg Prograzzsaf, ICIT Technieczl Reper. TR-048, 1933

[Fereira 8] Pareirs, L.M and Nazr, PB., T"DELTA-PROLCG: A
Distributed Logiec Languagst, Proo. of Imt. Conf. on Fifth

Gereraticn Computer Systems 1584, ICOT, 1964,

[Enapire 3] Shapire, E.¥., "4 subset of Concurrent Prolog and

Its Interpreter”, TCOT Technical Report TR-003, 1983.

[Turner 79] Turner, D.&., "4 New Ioplementation Technigue for
ipplicative Languages™ Software-Practice and Experience, MNo.?,

vel.9, 1879,

{ Appendix 1] Table of data types

Type Classification Ahbra- Hote !
Tvpe | SubTypel | SubType? viation
| Void-variable Void VarR is the type of variables stored in the |iteral
Variable | Varizble-1"st f War area or the structure area. [t refers to Void or Varl
{Yariable-Reference | f Yard in the variable area,
Urdef Channe| 15t UChi
ref. UChR Var1 is the type of variables in the variabie ares.
Channe| fiead Channe! 1st ACh
ref, AChR UChR, REhR and WChR are the types of channels stored
Write Channel 151 WChi in the literal area or the structure ares ; Chese
ref, KChR refer to ChIR in the variable area.
User Defined ATom | &tom
Nil Kil ChlR refers to Channel Information in the structure
Syslen Symbol Typed Syml area.
Atomic Tyned Syml
Tvpe? Sye? A Undef Channe! means that it cannot be determined
| Integer Int at comoile tise whether it is a read channel or §
Rezl | Real a write channe!. : ;
List List _ |
String Stra SynC are built-in predicates such &5 "< and ™", E
Vector | Vett Iwhich reguire no variable binding. E
Structured | Channel Information ChIR E
keference Symt are built-in predicates such as "is™ and "="
And Parallel | Para which require variable binding.
Sequential | Seq !
Literal | | Lit Sym2 are built-in predicates , such as "guerd”, i
Pointer | | Poi "true”, and "fail” processed by FPU, i
Variaple void $PV0 !
var 15t 5PV The type of Lit contains 2 pointer to a gozl in the E
ATOmiC SPAL iteral area. i
Structured | Non Ground List SPNL !
in 844 | (not instantiated) String SPNS The type of Poi refers to Clause Pool or Process :
Vectar SPNY fooi. i
Ground (st SPEL |
{instantiated) siring 5PEE "Structured in SHHT i3 the type of structured data
Vestor lsegv | stored in SHM. !

Fzz= b1

[Appendix 2] Iaternzl =tructure of a precaszs and
intererelaticnapips among procasses

(Zxemple A4-2-%1) For PFroleg
prograzs, 2= follews:

7= EO.

& = 21, B := B1.

a = &2. b = hZ.

In this progre=, first a process wheze PIE 1s "go:-g,b" is=s
genarsted and the goal a, the reducible goal in the goal seguence
Pa, b7, is sent tc the UU for reduetion (the OB-fork count is 3).
Thi= resuli=z in three child processes being generaised under the
corresponding FCE. When one of these child processes returns the
scluticn Ma:-21", & new PLE-FI3 pair (go:-b) is g=nerated and the
geal b in turn beccmes reducible. Figure A-2-1 illustrates the
relaticnship betwesn procszsses after the goal b 1= sent to the UU

and two proecesses in OR=Tork relztion are generated.

8
PCE count 2
—————P(3 PC3]
| OR-fork count :1 OR-fork count 2 |
s return count 1 | rlev. 1 '
: L Tr] |
T PTE
| {g0:-a,b) {go:-b)
' 1
1
OR-relation OR-relation
8 T .| ps EERRIE
- [Pe8 count 1| ¢ . |PcB count 1 | | |PCB count 1 | | |PCB count 1
1 T ﬁ"_w_—
Lbes LPL‘B Cs . —PCB ,
[rlev.2 Colrlevz 1P Trjev.2 o rlev.2
1 t - 1 B L
P18 RN IT T b
| ta:-a2) - | {a:-a3) PE [(bi-b1) - [tb:-2)

Fig. A-2-1

(Unless cthervise specified, the retura count is 0 and the

CR-ferk ecount is undefined., "rlev.™ i3 an abbreviation for the

reduction level, 2 dotted =guare indicates a2 Erocess 2

process is stored in the Process Fool in the same IM.)

(Example A=2-2) For Concurrent Frolog

prog-zns, as follows:

T~ ED.

g0 :- true |} a, b, (7," Zs a parallel AND-operztor.)

& := ag1 i abl. b := Eg1 | bol.

2 ;= ag2 | ab2., b := bg2 | bb2.

(Qther clauses are cmitied)

In this progrem first "go® is executed. Wnen "Lrue® is
suppessfully processed, the commit eperation L3 perforzed and the
rrocsss is upcatsd. Then goals & and b are AlD-forked to become
different processes, which are then executed in parallel. Flgure
A-2-2 illustrates the inter=relztionship tetwesn proceszes
immadiately gfter reducticn iz performed on & and b. In
Corncurrant Proleg, CF-releted clauses become PCE-PTE palrs under
the same FLE (i.e., they sre stored in the szaze IM} and ccoplete

for executice of their guarc parts.

PLB

C-tag ON
. r= PC3 count 2

i ‘ ‘ return count 1

G2 AND-fork count
rlev. 1

[

:

FTE
{ (go:

-a, bl

.

(ﬁ(ﬂﬂﬁfurk count in this casze)

: AND-relation '

TTTTTSF SRR P S ——

I
(IR]
[1}]
=
=

L3 C=-tag OFF
PC8 count 2

—PLE C-1ag
PCE count 2

OFF

nt In this case)

(ﬁ{ﬂﬁ-rurh coi

Fig., a-2-2

l GR-refation é : OR-relation
D ;
- Pe3 Fca - bes PCB |
o lrlev. 2 triev. 2 | P riev. 2 ‘ rley.2 E
: ! ! 11 ! l
- BTs ‘ P13 BERIE P18 i
| (a:-agt fabt.) |(a:-ag2 ab2.)] | | | (b:-bgt |bbi) | (b:-bg2 ibb2.)

"1
il
[}
L]
A=
L

[Appencix 3]

tzsume that a poal seguence piX), o(i?). In this ezze, ¥ iz
& exannel, Then the PT2 of p(X) czn ke deseribed in simplified

form a3 follows:

= #iob I 3¥mb 1= a pointer to
& enannsl ec2ll on the IE.

. {¥ and £ are oot yet channels)

Since the charseteristic of & chanpel i:= inoheritad at
unificztion with gos=l p(*¥ik), Y and I beegcze czannels and =
czll iz zlloeczted on the ¥ fer eze® (OFR-eolause., By eontrast, ¥
in geuerd gosl g1 and g2 i= not used as a chanzel at a2 onild
proce=zz ievel, because it hes ne guard goel in & copowrent
relation. Twerefore, ¥ in gl zad g2 has no new cell acguired on
the M3 and g! and g2 share the chanpel informatien of ¥ with the

head side, {In PIM-[, arguments are copled ezgerly &t redeoctiion.)
B

[=0

| i

The uwnificetiop rezults are shown kbelaw.

When g1 and g2 succsed in unificatieon, these PCE-FIE pairs
check the C-tag in FLE. Only one P(E-PTB pair which first turns
on the O-tag ean perforn the commit opersticm and writa loozl
data in Xob on the BB, If the guard goel gl 1s nested a3 in the
following example, £1 and £2 share the channel Inferzation with

the head aide, sinee they have po pmuard goal in a concurrent

PLE

commit tag off

- 91(=Y11)

pi=)

b=).

amb

¥mb1
Imb1
Yah?
Iap?

L1
ik
L

i
S
[w]

PC3-PTH pair 1

5 | Y
|

ple=) .= g2(»Y|2)

L

«Imbi

i

[b2(s).

L

PCB-FTE pair 2

*Xnb | t] = Y12 [avabZ > | oInb2
[P] |
| ' T ,J I
|
|
relation. Ween a PCE-FTS peir succeeds ia woifiestiem, the
eantents of ezch loezl ta @&rea are reiurned zs z binding

emvirerment ta tha

When g1(*¥1}
oparztion
cn the tE,

PC2(S?C2)=-PTE

baclizrd to aogess the

Lready been

sucnsads

is perfeormed,

pair is

written

creazted,

ghannel c2ll on the M.,

in the eell, it is activated;

in um

tilieztion and

When a suspension happen= for a rested

the chennsl

loezl datz ares of the perent PCE-PIE pair.

the coomit

the locgl datz iz writien in M=k and T=b

guard and =
irforzation is traoced
I =&

valus hzas

if mot, the

SPE is recorded on the Suspend Process List,

._‘
W

i
m

Asstme in this exasple that the guard of PCE=FI2 peir

I

]

first succssds in wnificzticn and tne larzl data vaius of T11 at

)

time is Y=val. After the commit operaticn, the ME

ct

tha

updated as followza:

bifa New PC3-PTE pair

i1.l
L Ha

«Imb3) imb | s{Y¥-val,=Ind1) |
Ymbt | Y-val
Iab1

it

iz

Hetwork Hodes

Inferenca ™
Hodule 31 e e | 2
: —
[— - {
IM-SHM Network —I_

Structure
Heaory

Hodu le

Fig. 3.1-1 Conceptual configuration of PIN-R

1
Infarence Hodule

|
| ——

[
Process PE'E-F Unit

': Pachet ‘: M§ Controllens====== Passa:e
i Switch
PP Euntrullc1<=--===ﬂ Process ‘ §

Fool

-

T
|
|

Gnification Unit

gutout buffer 4—! | matcher “"““’I._ ‘

L
L

T ‘ Clause
| T—I: L i Pool
Or-fork countsr }:— Unifier k====n->!

£

-

Fig. 3.4-2 Inference Wedule configuration

| Int Clause length

¢0 | Int | Head address of structure area | Header
Int | Head adérese of literal header
Int | Number of variables E
_ ‘ _"m”nh".”m._"ﬁ Variable area
L}nt Literal count B _ '
Type | Head Ift;ral _ Literal header

Type | Body IiEEraI ﬂ

Type | Body literal 1

Literal area

. Structurs area

Fig. 3.1-3 The configuration of the Clause Definition Block
(Type is either Pof,Lit,Sym, or Para)

Int | 23] Clause length
int [21 30 Head address of structure area | Header
Int 5 1 Kead address of literal header
int | 2 12 | Number of variables
Varl | X 3 ' | Variable area
Vard 1
int | 3 35 120 | Literal count !
Lit dip 25 1 Head |iteral Literal header
Lit Bir i 32 Body literal 2
i it 11244 £8 83 Body literal 1
Int 3 $d #
Pai |p 101 %5 Head literal
[nt 1 i1 |36
List| O [KIYI]#812 |37
It | 3] 113 |28 Literal area
Poi |1 §14 | 38 Booy literal 2
Varf | 3| X #1151 210
VarR 36 |
Int 3 317 | 312
Poi | q 318 1 #13 | Body literal i
Int 1 210 1314
VarR{ 3| % 320 | #15
vark | 3 21 |0 CAR Element Structure area
Varft| 4 222 | #1 | COR Eleaent

Fig. 3.1-4 Clause Definition Block of p(1,[X1Y¥]):- a3, X) & r{X.¥).

Int 23 [Int 19
g Int N WiInt A7
$1| Int 5 Int L]
2 | Int 2 Int 2
$3 | Vari X int 2 | <-new binding environment ¥ = 2
#jvarl Y vart Y is stored
wInt 3 Int 2| <-decreasing the literal count
Lit 4 Lit 4 by one
Lit 8 Lit B
Lir 12 Lit 12
Int 3 Int 3
Poi D Pei
Int 1 varR i
List ¢ i__i.I_s'_t______
Int 3 Int 3
Poi r Pai
VarR 3 vark 3
Vark 4 Varfk 4
Int 3 k— ~{Vark 3| <-removing the ¢ portion and
Poi aq % varfk 4 moving SLructure ared upward
Int 1 =
Var® 3
29 vark 3 |
varf 4 i

Fig. 3.1-%5 Reverse compaction processing

[Y I -
llun.ia.i:lf‘lc (¥ b

joa - !

gn

/Q“ichﬁnr;’

— 7

Fie. +- Efiet o Mumess o

it

Tpfarance Modulas

|-

/

4@;!::!‘1-5

£

Numper oF [nterence Moduig

