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ABSTRACT
4 set of Horn clauses, asugmented with a "guard' mechanism,
iz shown to be a =imple and yet powerful parallel logic
progracping language.

1. INTRODUCT ION

L set of Horn clauses sllows procedural interpretation [Kowelskdi TH]. it
was given & sementicz a3 2 sequential programming language by Prolog [Fousse]d
T8}, and Prelog has proved to be a simple, powerful, and efficient =seguentizt
programeing language [Warren et al. 79].

As [Kowalski T4] peints out, a Horn clause program allows perallel «or
eoncurrent executiocn as well as sequential execution, However, although & =esd
of Horn clauses may be useful for uncontrolled sezsrch as it is, 1t dis
inadequate for 2 parallel programming language which is capable of describing
important concepts such as communication and synchronization. We need =ome
additional mechani=sm to express these concepts. This paper shows that only one
construct, "guard', is adequate for ouwr puwrposes.

In the felliowing chapters, we introduce guarded Heorn clauses., The gpane
Guarded Horn Clzuses (abbreviated to GHC)} will be used alsc as the mame of our
language. Compariscns of GHC with other logic/parallel programming lenguages
are included.

The languege GHC 1= intended to be the machine-independent core of the
Kernel Languazge for ICOT's Parallel Inference Machine,

2, DESICY GOALS AND OVERVIEW

Our goal is to obtzin a logle programming language that allows parallel
execution., It is expected to fulfill the following requirements,

{1) It must be a parallel programming language by nzture'. It must pot be a
sequential language summented with primitives for paralleliss. Taat is,
the lznpuage must assme as little seguentliality betweern  priziiive
cperations as possible, in order to preserve parallelism interest in & Hern
clause prograz. This might lead to & clearer formal semantica, as well as
to an efficient implementaticon on 2 novel architecture in the future.

(2) It must be an expressive, general-purpose parallel programming language.
In particular, it must be able to express important concepts in parallel
programming--processes, communication, arnd synchronizztion.

{3) It must be a =imple parallel rprograoming language. We do rot have much
experience with elther theoreticsl or pragratic aspects of parailcl
programming. Therefore, we must first establish a foundation of parallel
programming on a simple language.

(4) It must be an efficient parallel prograpming languzge. We have a lot of
aimple, typical problems toe be described in the language &8s well as compl ex
ones, It iz wvery important that such programns run as efficlently as the
comparable ones in existing parallel programming languages.

Conecurrent Prolog [Shapiro 83] and PARLOG ([Clark and Gregory 84al seem to
lie pear the solution. Both reslize processes by geales, and commurnication by
streams, Synchromzation iz realized by read-only variables 1in Concurrent
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Frolog and by one-way unification in PARLCG.

OHC inherits the " guard' construct and the programming paradigm founded by
hese languages, What is the most characteristic with GHC is that the guard is
the enly svntactie eonstruet added to Horn clauses. 1In GHC, synchronizaticn is
real ized by the semantic rules of a guard.

GHC is expected to fulfill all the above recuirements. We have succeeded
in rewriting most of our Concurrent Prelog programa. Miyazaki and Uede have
independently written 2 GHC-to-Prolog compiler in Prolog by modifying the
different versions of Concurrent Frolog compilers on top of Prolog [UVeda and
Chikayama B4][Usdz and Chikayama 85].

3. SYNTAXY AND SEMANTICS
3.1 Syntax

L GHC program iz a firite set of guarded Horn clauses of the follewing
{form

H := 01, «osy Gm | B, ..., Bo. {m>=0, n>=0).

where H, Gi's, and Bi's are atomie formulas that are defined as usual. H is
celled a clause head, Gi's are ecalled guard goels, and Bi's are czlled body
gozls, The operator °}' is called a trust operator, The part of a clause
btefore ~|' {including the head) dis called a passive part or & guard, and the
part after ~|' is called an active part or a body. A set of all clauses whose
heads have the same predicate symbol with the same arity is called a procedure.
Declaratively, the sbove guarded Horn clause should be read asz "H is implied by
61, ..., and Cm and B1, ..., and Bn". '
A& goal clause has the following form:

i=- E1| % E§ E'n!- I:n>=|:|}'

mis ocan be regarded a5 & guarded Horn clause with no pes=zive part. A goal
plause is palled an empty clzuse when n is equal tc 0.

In this paper, we use syzbels beginning with uppercase letters for
variables and ones beginning with lowerczse letters for function and predicate
symbols, following DECsystem-10 Prolog [Bowen et 2l, 83], The nullary predi-
cate “true' is used for denoting an empty set of guard or body goals.

3.2 Sepantics

The semantics of GHC io quite simple. Informelly, to exccute a program 1s
to reduce & given goal clause to the empty clause by means of input reselution
using the olauses constituting the program. This ocan be done in a fully
parallel manner under the following rules of suspensicn:

o Aules of Suspension

{a) Any piece of urnification inveked directly or indirectly in the passive
pa=t of a clzuse cannut bind a variable appearing in the caller of that
ciguse with
ti) a non=varighblie term or
(ii) another variable appearing in the caller
until that clause is trusted (see below).

(b} hny piece of unification imvoked directly eor indireectly in the active
part of a2 clause cannot bind & variakble appearing in the passive part of
that clause with
(i) a non-variatle term or
{11} amother varisble appearing in the pasaive part
yntil that clause is trusted.

4 piece of unification which can succeed only by making such bindings 4is

“m
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suspended until it ean succeed without making such bindings or until it
turns out to fail,

Another rule we have to add is the trust rule. Whern some clausze =uceceeds
in solving its gmuard goals, that clause tries to be trusted. To do so, it must
first econfirm that ne other clauses belonging to the same procedure have been
trusted for the same call. If confirmed, that clause is trusted indivisitly.

We say that a set of goals succeeds (or is soclved) if it is reduced to the
empty =et of goals by using only trusted clauses,

It must be stressed that under the rules stated above, enything can be
done in parallel: Cenjunctive goals can be executed in parallel; candidate
clauses for a goel can be tested in parallel; unification used for rescluticn
can be done in parallel; head unification and the execution of guard goels can
be done in parellel. However, it would have to be even more strassed that we
ean also execute a set of tasks in a predetermined order &=z long a=z it does not
change the mearning of the program.

The rules of suzspension could be more informzally restoted as follows:

{a) The paszive part of @ clause cannot export ary bindings to (or, mezke amy
tindings which is observable from) the caller of that clause before trust,
and

(] the aotive part of 2 clause cannat export zny bindings to {or, make any
bindings which is observable from) the passive pert of that elause before
trust.

Bule (a)} 4is used for =ynchropization, =0 it could be cezlled the rule of
synchrepizaticn, Aule (b)) iz rather tricky; it stztes that we can sclve the
body of a non-trusted el ause, However, the zbove restrictions gusrantee that
this pever affectz the selecticn of candidate clzuses nor the other goals
running in perellel with the caller of the clzuse., So Fule (b) iz effectively
the rule of sequencing.

In Consurrent Prolog, the result of urification which is performed in a
passive part before trust and which would export a bindipg is recorded lecally.
In GEC, such unificztion simply =svwspends i1nstead. Suspension of unifieziicen
due to scme pesaive part may be relsz=zed when =cme geoal runndng in parallel
with the cne for whicn the pasaive part iz executed has instantiated the
variablie that caused suspension.

An exemple may help understandlng the rules of =suspension. Let wus
consider the following program:

Goal: = pldl, gqlX}, (1)
Clauses: plok) = true | ... . {14)
qf{Z) = true | Z=ok. [144)

Clause (ii) cannot instantiate the argument X of its caller to the constant
‘ok', zince this unificatiorn is executed in the pessive part. This clause has
to wait until X is instantiated to “ok' by some other gogl, On the other hand,
Clause (iid) ecan instantiate ¥ to “ok' after it is trusted, and this alavse can
be trusted almost immedistely. Therefore, no metter which of the two goals in
Clause (1} starts first, the head urnification of Clause (ii)} ean succeed orly
after the "I=ok' goal in Czuse [i41i) has completed.

The semantics of the feollowing program showld be more carefully under-
stocd:

Goal: = p{X), qlXJ, (1)
Clausez: p(Y) = g(¥) | ... . (1iv)
qlZ) 1= true | Z=ok, (444)

Te sclve the passive part of CQause (11i'), we have to do two things in paral-
lel: unifying X and ¥ (i.e., parsmeter passing), and =olving g{Y¥). Let wua
f'irst assume that parameter paszsing occurs first. Then the goal qlY) tries to
unify Y (which is now identical to X) with “ok'. Howeyer, this unificatien
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connet inscantizte X because it is indirectly invcked by the passive part of
{Dause (1i').

Let u=s then consider the other case where the goal gqlY) is executed pricr
to parameter pocsing. The variable Y is bound to "ok' beeause this itselfl does
not export binding to the caller, p(X), of Clause (ii'). However, this binding
causes the cubseguent parameter passing to suspend because 1t would export
binding. Hence, no matter which case actuzlly happens, (Lause (ii') behaves
equivalently to Clause (ii) as for bindings given te the varlable X

Some importent consequences of the above rules follow:

(1) Any unification operation which is intended to “export' bindings through

head arguments to the caller of the clause must be specified in the active

part, Such unifization cen never be specified enly by the unification of &
clausze head; it must ba done by calling directly or indireetly the
predefired predicate "=' which unifies its twe arguments, The predicate

-t pannot be defined ir the langusge and should be considered as =

redqefined predicate.

The urificaticn of head argements and the execution of guard goals can s

executed in persliel.  That is, the execution of the guard geals can silar.

before the unification of the head arguments has coxpleted. However, tne
usual way of execution that sclves the guard goals ornly after the head
unifiecption is alsa allowed; it does not change the meaning of a prograg.

(3) The executicn ¢f the active part of =2 clause may, but need not, start
before thai ciause has been trusted. The tindings made by the zetive part
is unobservable from the pezsive part before trust, so the meaning of thae
program remains the seme whether the active pert starts DSefore or eoly
af ter trust,

{4) The unification of the head arguments of a clause may, but need not, be
exeouted in perallcl. It ean be executed seguentially in any pre
determined order.

{5) We reed not implement a multiple ervirorment mechanism, & mechanis=m for
binding esch wverigble with more than one value, This mechani=m i= in
general necessary when more than one candidate clause for a goal is tried
in parzllel. 1In GHC, however, at most one clausze, & trusted clzuse, carn
export bindings, thus eliminating the need of a mul tiple emvircroent
mechani =,

=
mW

4, PRCGRAM E¥AMPLES

4.1. Eipary Morge

mergellE£1¥], ¥, Z) 1= true | Z=(8W]l, merpelX, ¥, W).
merge (X, (i), 2) :- true | Z=[AWW], merge(X, ¥, W).
mergel{[], ¥, Z) i- true | Z=1.
merge (X, [I, 2 1= true | I=X.

The call “merge(Ys, Ys, Zs)' merges two streams X5 and ¥s (implemented as
1ists) in=o one streaz Z2s3.  This Ls an example of nondeterministic progronc.
The language ~ules of GHC do not state that the selection of clauses should ¢
fair. Ir a gpeod implevsntetlon, however, the elegents of Y= end Y: is exfecled
Lo wppear on 28 almest in the order of arrival.

Note that no binding ecan be exported frem the passive parit; the binding to
7 must be done in the sotive part. This programming style, however, servesz Lo
shew eausality eclearly. In most cases, the bi= {cr multi-) directionality of a
logic program is only an illusion; it seems far betiter to speclly the data flow
whnich we heve in mind end to emsble us to read i% from & glven prograz.

Note thet the declarative resding of the above program gives the usual,
iogicel specificaticn of the nondeterministic merge--arbltrary interleaving of
the two input streams mekes the output stresanm.



4.2. Generating Primes
primes(Max, 5) := true | gen{2, Max, N), sift(H, 5).

gen(N, Max, S} := N < Max
Max

=[N151], M :i= M+1, gen(M, Max, S1).
gen(l, Max, S) i= N >= =[]

sift([PIL], S) := true | S=[Pi51]}, filter(P, L, K), sift(K, S1).
sift([], 5} := true | S=[1].

rilter(P, [QIL], K) := O mod P=:=0 | filter(P, L, K).
filter(P, [QIL], K) = Q mod P=\=0 ;

=[QiK1], filter{(P, L, K1).
=EI!-

The call "primes(Max, X)}' returns through ¥ a stream of primes up to Max.
The stream of primes is generated from the stream of integers by filtering out
the multiples of primes. For each prime P, a filter goal “filter(P, L, K)' is
generated which fiiters out the multiples of F from the stream L, yielding K.

The birary predicate “:=' eyaluates itz right-hand side operand asz an
integer expression end unifies the result with the left-hand side cperand., The
binary predicete "=:=' evaluztes its two operands as integer expressions and
succesds 1ff the results are the same, These predicates cannot be replaced by
the “=' predicate because "=' never evaiuates its arguments. The predicate
“=\=z' is the negation eof “=:='.

The readers may wish to improve the above program by eliminating unneces-
sary filtering.

K

4,.3. Bounded Buffer Stream Communication

test(N) :- true | buffer(N, H, T), ints(l, 100, H}, consume(E, T}.

- P

buffer(N, H, T) := N > 0 | H=[_[B1], N1:=k-1, buffer(Ni, Hi, T).
buffer(N, H, T) := W=:=0 | T=

inta(M, Max, [HIL]) :=
ints(M, Max, [NI|_1) :=

b N=M, Miz=M+1, ints(M1, Max, L.
»= Max | N="EQSY,

consume(l{HiHs], P} := Hv="E0S' | PF=[_ITs], consume{Hsa, Ts).
conzume([H|Hs], P) := H ="E0S* | P=[].

The above program uses the bounded-buffer concept first shown in [Takeuchi
and Furulmwa 83]. The predicate "ints' returnz 2 stream of integers throuzh
the third argument in &8 lagy manner; it never generates & new box by itself,
It only fills a given box created elsewhere with a new wvalue. In the above
prograr, the goal “consume' creates & new box by the goal “P=[_|T=s]' every time
it has consumed the top element H of the stream., The top and the tail of the
stream are initially related by the goal “buffer',

4,5, Meta-Interpreter of GHC

call{true ) := trues | trus.
esll((a, B)) :- true | calll(a), eall(E).
eallia ] = clauszes(4, Clauses) |

resolve{i, Clauses, Body), call{Body)l.

resolve(d, [CiCs], B) :- melt_new(C, (A :- GIB2)), ecall(C) | B=E2,
resolve({d, [CiCal, B} :- resolve(d, Cs, B2) | B=E2.

This program is & GHC version of the Concurrent Prolog meta-interpreter in
[Shapiro B4]., The predicate "clauses' is a system predicate which returns in a
“frozen' form [Nakashima et al. 1984] a 1list of all clauses whose heads are
potentially unifiable with the goal A. Each frozen clause is a ground term in
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which originmel variables are indicated by =specizl constant symbols, and it is
mel ted in the guard of the first clause of “resolve' by "melt_new'. The goal

melt new(C, (A := GJEZ))

crestes & new term (say T) from 2 frozen term C by glving 2 new variable for
each " frozen' varizble in C, and tries to unify T with (A& :- GIBZ)}.

The predicate “resolve' tests the candidate clauses and returns the active
part of arbitrary one of the clauses wnose passive parts have been successfully
solved., This mary-to—one arbitration is reslized by the nest of binary clause
selection performed in the predicate " resolve'.

It is essential that each cendidate colause is melted after it has been
brought inteo & guard. If it were melted before passed into the geoard, all
varisbles in 1t would be protected against instantiaticon frem the guard.

5., IMPORTENT FEATURES OF GHC
5.1 Simplicity

GHC nas only & =mall number of primitive operations all of which are
consldered small:

{1) calling a predicate leaving all its arguments unspecified--i.e., after
maling sure only that they are neyw distinet variables,

(2) unifying 2 variable with another varizhle or a ror-variable term whose
arguments are =11 distinet variazbles, and

(3} trust.

Furthermore, the semanties of guard and trust is powerful encugh to
express the fellowing netions:

(1) conditicnal branching,
[2) nondeterpzinistic cholice, and
13) synchronization,

8.2 Descriptive Fower

We have succeeded in rewriting mest of the Concurrent Prelog programs we
have. In particular, we have written a2 CHC program which performs bounded
buffer communication, and a meta-interpreter of GHC itself (see Chapter 14},

5.3 Efficiency

It cannot be immediately concluded that GHC can be efficiently impl emented
cn parallel ocomputers. The efficiency of GHC owes very much Go the Iuture
resegrch on the lenguage itself and its impl ementation.

However, GHC 1is more faveorable than Concurrent Proleog for lmplementation:
It needs no mechamlsn for multiple emviromments; it provides more information
on synchroplzation statically.

£. POSSIELE EXTENSIONS

This chapter suggests some possible extensions. The extensions shown
below are ouwrrently neot part of GHC. Their necessily, loplementability,
compatlibllity with other lenguage features, and =0 on are yet to be examined
before they are actuslly introduced,
6.1. Otherwize

The predicate "otherwise' proposed in [Shapiro and Takeuchi 83] can be

#
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introduced to express " negation as failure'. The predicate “otherwise' can
appear only as a guard goal. A goal "otherwise' succeeds when the passive part
of all the other candidate clauses for the given goal have failed; until then
it suspends.

This predicate could be convenlently used for describing a “default!
cl ause.,

6.2, Metacall Faecilities

We sometimes want to see whether a given goal suceeeds or fails without
making the test ditself fail. Consider, for example, a moniter prograz. A
monitor program may create several processes, some of which are user programe
and others are service programs. In this case, the user programs must be
executed in a fail-=afe manner because if one of them should fail, so does the
whole system. Furthermore, a monitor program must have some means to abort its
subordinate user programs.

Another example iz a program ftracer. A Pprogram tracer mpust execute &
given program, generating trace information every moment. Even if the program
fail=, the tracer should gererate appropriate diasgnostic information without
Tailing. The tracer may even have to trace the execution of passive parts,
which is really an impure feature =ince information should be extracted from
the place from where no bindings must otherwise be exported.

A partial evaluator is another example, A partiel evaluator rewrites a
program clause by executing the goals in the clause. For example, the first
clause in the following program

plY) = q(¥) |
a(Z) := true | Z=ok.

in Section 3.2 can be partially evaluated to the following clause.
plok) := true | ... .

To do such rewriting, it must be possible to execute a given goal to obtain a
fipite set of substitutions and, in the case of suspension, & fipite set of
reczining (suspended) goals. In this casze, the initial goal and the resulit
pust be represented in a frozen form. For if ordinary variables are used, the
solver of the initisl goal cannot know when that goal has been fully instao-
tiated, nor can we lmow when all bindings have been made; the delay of binding
iz not guaranteed to be bounded,

In the following subsections, we propose two kinds of metacall predicates
which are expected to support the above applications: one which solves a given
geal possibly by communicating with other goals, and one which solves a given
gral without communication.

6.3.1. Metacall with communication

The metacall predicates whose call may communicate with other goals will
have the following formats:

¢all(Goal, Write_enabled term, Result, Interrupt)
program_cail{Program, Goal, Write emabled term, Result, Interrupt)

Both versions sclve Goal and if sueccessful, try te unify RHesult with the
constant " success' and otherwise with the constant “failure'., The argument
Interrupt is wsed for aborting, interrupting, or resuwming the execution of
Goal. T™e abave features are essentially the smame as proposed in [Clark and
Gregory B4b],

The Write emabled term argument 1s important for communication with other
goals: 0Of the varlables in Geal, only those appearing in Write enabled ternm
may be instantiated by the metacall predicates, When =ome unification invoked
bty the metacall predicates 1s to instantiate other variables in Geal, 1t

r
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suspends. The "program call' predicate uses Program (given in compiled form)
to solve Goal, The “eall' predicate uses the current program given by the
nearest parent “program_call'! gozl or glven at the top level,

If we let Write erahbled _term be sScme ground term or a variable appearing
nowhere else, Goal is completely passive. If we let Write enabled term be
identical to Geoal, Gogl can freely communicete with other goals runming in
parallel, & Write enzbled term 15 used for specifying the oommunication
streams used while =olving Goal.

Note that this metacall faeility is impure, as stated before, in that 1t
introduces a new kind of nondeterminism. Consider the following exampie (idea
taken from [Sato and Sakurai B47).

s= call(X¥=0, X, _, _), X=1.

If the first goal is executed first, X becomes ¢ =sinece it is write emabled.
T™en the unification X=1 feils and so does the whole colause. If the second
goal is executed first, X beccmes 1. But since the first goal never fails, the
whole clause succeeds. This is & new kind of pondeterminism resulting from the
order of unification; without this facility, all nondeterminism would result
from the arbitrary selection of trustable clauses.

Note also that a program which uses the predicate “otherwise' can be
reWritten to the program which uses "eall' with ground Write enzbled term but
not "otherwize', and vice versa.

£.3.2., Frozen metacsll

The purpose of frozen metacall is to emable its user tv know when all
tindings have been supplied. For this purpose, we have to let the metacall
rredicate know where variables appear in the initial geal, and the metacall
predicate has to tell where variables appear when the goal has been solved. In
such a case, each variable must be indicated as a constant symbol (or scme
other ground term) which identifies that variable; that is, the initial and the
final goals must be represented as frozen terms.

The predicates for frozen metacsll may look like the follewing.

frozen eczll{Goal, Final_goal, Remalning goals)
frozen program_call{Prcgram, Coal, Final_ goal, Remaining goals)

Goal is the initial goal to be solved, Final goal i=s the fipal, instantiated

goal. This is returned as a different arpgument since Goal is frozen and hence

cannot be instantiated., Remaining goals is a conjunction of geoals which has

remgined irreducible, If Goal is reduced out, Remaining goals will be bound to

“true'. If Goal turns out to fail, Remaining goals will be bound to "fail’.
For example, given the following one-clause program,

pl{X) :- true |} ¥=5, q(X, ¥). % '$VAR(_)' stands for frozen variables
the goal
- frozer_call(p(t&VART(1)), &, B).

ray bind & to p(f) and B to qi(5, "$VAR'(Z2)).

7. IMFLEMENTATION CUTLINE

The purpcse of this chapter is to demonstrate that the suspension mecha=
nism of GFEC can be implemented. We will first show an easy=to-understand but
possibly inefficient method: pointer coloring. Here we do not consider the
suspension of aective parts, The active part of a clause is assumed to start
after the clause has been trusted.

When = term in a goal and a variable in the passive part of a clausze are

oy
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unified, we color the pointer which indicates the binding. A term dereferenced
using one or more colored pointers camnot be lnatantiated., When the clause is
truated, colored pointers created in 1ts passzive part are uncolored. For this
purpose, the passive part of & clause must record all pointers colored for that
passive part, Uncoloring can be done in parallel with the other operation= in
the active part.

Care must be taken when the term in a goal to be unified with the variable
in the passive part is itself dereferenced using colored pointers. Conzider
the following exampl e,

= p{f{Al). - (i}
p(X) := q(X) | +.v ——e (11)
q(Y) :- true | Y=£(b), -—= (i41)

If the variable Y should directly point to the term f(A) by a colored pointer
and uncoler it upon trust of (lause (iii}, the veriable A would be erroneously
instantiated to the constant “b'., There are a couple of ways to get around:

f1) Disallew pointers which go directly ocut of nested guards.

(2) Let each pointer lmow how mary levels of guards it goes through.

{3) [Miyvazald BS5] Allow pointers to go directly through nested guards.
However, let each colored pointer know for what passive part it 1s colored.
When directly pointing a term dereferenced using colored pointers, that new
pointer must be recorded in the pessive part which records the last colored
pointer in the dereferencing chairn.

The polnter-coloring method explained above 1s gemeral, In many ecazes,
however, we can anmalyze suspension statieally. The =simplest case is the
following elause, -

pltrue) = ..o ) ous

The head arpument claims that when "p' is ealled, its argument must have been
instantizted to “true' for this clause to be trusted. We can statically gene-
rate the code for this chesk, 30 we need not use colored pointers in this case,

In general, 1f guard goals consist only of system predicates for =simple
cheoking (e.g., integer comparison), compile-time analysis 13 easy because o
conaideration is needed on other clauses, On the other hand, if a user-defined
predicate 15 called in some guard, global amlys=is iz necessary to determine
which unification may suspend and which unification cannot. There mey be no
general method for static enalysis. However, in many useful cases, atatic
analysis 1ike PARLOG's compile-time mode analysis [Clark and Gregory 84c] will
be effective,

8. COMPARIECON WITH OTHER LANGUAGES
E.1., Comparison with Conourrent Prolog and PARLOG

GHC is like Concurrent Prolog and PARLOG in that 1t is a parallel logic
programming language which supports committed-cholice nondeterminism and stream
communication. However, GHC is simpler than both Concurrent Prolog and PARLOG.

Firatly, unlike Concurrent Prolog, GHC has no read-only annotations, A
rezad-only annotation is= not very sulted for fully parallel exeeution of a2
program [Ueda B5]. In GEC, the use of passive parts enmnables process
synchronization.

Secondly, Concurrent Prolog needs & pultiple emviromment mechamlam while
GHC doez not. In Concurrent Prolog, bindings pgenerated in each guard must be
recorded in the local enviroment until trust. These bindings must be exported
inte the global ermvirorment upon trust, but this expertation ocannot be done
sequentially. Furthermore, we have to do pultiple walts for suspended
variables., In GHC, we are free of all these burdens. More importantly, we
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have never obtalned arny evidence that we need multiple enviromments in stream-
ND-parallel prograoming.

There is ancther probler with multiple enviromments: We have te define
precisely when inconsistency (or ununifisbility) between the local and the
global information must be detected if any, which we found i3 very difficult
[Ueda B5].

Thirdly, unlike PARLOG, we reguire no mode declaration for each predicate.
PARLOG's mode declaration is nothing but 2 guide for translating PARLOG progrem
into Eernel FPARLOG [Clark and Gregory B84c]. Therefore, we can do without
modes, In fact, GHC is more similar to Kernel PARLOG than to PARLCG. However,
unlike Kernel PARLOC, we have only one kind of unification. Although each
unification operation cceourring in & GHC program might be compiled inte cne of
several specialized unification procedures, GHC itself needs (and has) omnly
one,

inother difference from (Kernel) PARLOG is that a (Kernel) PARLOG progran
requires compile-time an2lysis in order to guarantee that it is legal, i.e., it
eontains no unsafe guard which may bind variables in the caller of the guard
[Clark and Gregory Blic]. On the other hand, a GHC pregram is legal if and only
if it is syntactically legal; it can be executed without anmy szemantic amslysis.

B.2. Comparison with Qute [Sato and Sakurai 84]

Qute is= a functional language based on unification. Qute allows parallel
evaluation which corresponds to AND-perellelism in logic programming languages,
but the result obtained is guarenteed to be the same irrespective of the par-
ticular order of evaluation., That 13, there i3 no cbservable nondetermini em,

Mthough Qute and GHC are independently developed and leck differently at
a2 glance, their suspension mechanisms are essentially the same. The Qute
counterpart of GHC's guard is the condition part of the if-then-else construct,
from where no bindings can be exported.

The major difference between Qute and GHC is that Qute has no committed-
choice nondeterpinism while GHC has one. Quie does pot have copmitted-choice
nondeterminism (though [Sato and Sakurai B4] suggests it could) because it
pursues the Church-fosser property of the evaluation algorithm. GEC has one
because our applications inelude a system which interfaces with the resl werld
{e.g., peripheral devices].

inother difference is that Qute has segquential AND while GHC does not. We
deliberately excluded seguential AND, ©because our programming experience with
Coneurrent Prolog has never called for this construct. Sequential AND could be
used for the specification of scheduling and for synchronization. However, the
primitives for scheduling should be considered at a different level from thal
of GHC, and sequential AND as a synchronization primitive has proved to be hard
to define so that it mey (it well in the computation model of CHC.

8.3, Compariscn with CSP [Heare T8]

GHC ie similar %o CSP (communicating sequential processes) in the follow-
ing points.

{1) Both encourage programming based on the concept of communicating processes.

(2) The guard mechanism plays an important role for conditieonal branching,
nopdetermini=m and synchronization.

{3} Both pursue simplicity.

The major difference i1s that CSP tries to rule out any dynamic constructs
--dynamic process creation, dynemic memcry allocatien, recursive call, ete,--
while GEHC does not. Another major difference is that CSF has the concept of
asequential processes while GEC does net., To put them differently, CSF 1s at
the level nearer to the current computer architecture.



§.4. Comparison with (sequential) Proleg

Comparison with sequential Prolog must be made from the viewpeint of logie
programming languages, not of parallel programming languages.

First of &l1, GHC has no concepts of the order of clauses or the order of
goale in a clause. OHC 1s undoubtedly nearer to the Horn clause legic in this
point, The semantics of Prolog must explaln its sequentiality; without 1it, we
cannot discuss some properties of & program such as termination.

GHC deviates from first-order logic in that it introduces the guard
construct, It will be hard to give the semantics of the pguard within the
framework of first-order logic, However, Prolog also suffers from the same
situation because of the notorious but useful cut operater. The trust operator
of GHC is the parallel of the cut operatar. However, since the trust operator
has been introduced in @ more disciplined way, 1t shouwld be easier to glve a
formal semantics te it

One protlem with Prolog is that the use of *read' and “write' predicates
prevents the declarative reading of & program. In GHC, we no longer need
imperative predicates because the concept of stresms can well be adapted Lo
input and eutput.

#.5. Comparison with Delta Prolog [Pereira and Naar B4]

Delta-Prolog is an extension of Prolog which allows multiple processes.
Communication and synchromization are realized using the notion of “event'.
The underlying logic which explains the meaning of events is called Distributed
Logic,

One of the differences between Delta-Prolog and GHC is that Del ta-Prolog
retains the sequentiality conecept and the cut operator of Prolog. Both of them
scemed to be & peculiarity of Prolog, so GHC did not atick to them., A parallel
program in Delta-Prolog may lock quite different from the comparable sequeptial
programs in Delta-Prolog itself and in Prolog. On the other hand, a class of
GHC programs which have only unidirectiomsl information flow {like pipelining)
is easlly rewritabtle to Prolog by replacing trust operators by cuts, and a
class of Prolog programs which use no deep backtracking and each of whose pre-
dicates has only one intended input/output mode is also easily rewritable to
GHC.

9, CONCLUSIORS

We have proposed a parallel loglie programming language, Guarded Horn
flauses. Its syntax, informal semantics, prograoming examples, important
features, possible extensicns, implementation technigue of synchronization
mechani=r, and comparison with other languages have been desceribed.

We hope the simplicity of GHC will make it sultable for a parallel
computation model as well as a programming language. The flexibility of GHC
makes its efficient implementation difficult compared with CSP. However, 2
flexibtle language could be appropriately restricted in order to make simple
programs run efficlently. On the other hand, it would be very difficult to
eytend a fast but inflexible language nmaturally.
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