ICOT Technical Report: TR-101

TR-101

Horn Clause Logic with Paramenterized

Types for Situation Semantics Programming

Kuniakl Mukal

February. 1983

alita Rokosai dg, 21F (A 456-3191—5

“ :D | 1= Mita 1 Chome Telex ICOT J3290t
Minatee-ku Tokyas 108 Tapan

Institute for New Generation 66mputer Technology

Horn Clzuse Logic with Parameterized Types
for Situation Semantics Programming

by

Funiaki Mukai

Third Researchk Laboratory
Eesearch Center
Institute for New Generation Computer Technology

Mita Eokusai Building, 21F.
L-28, Mita 1=-Chome, Mirato-ku, Tokyc 1CB Japan

Ebstract

In thiz paper, we give an ocutline of a programming language. The main
moctivation behind the language iz to describe computational medels
of discourse understanding [BHrady & Berwick 1¢82] based on situztion
senantics [Barwise & Perry 1083, Barwise 10B84]. The underlying logic

of the lapguage 18 Horn cleause logic, Farameterized types and
indeterminates are added to logic programming te represent objects
in situation semanties. A=z a be=ic control fezture to process demons,

the language uses the control primitive called Mfreeze™ in FProlog II

[Colmeraver 1982], also known &z bind hook control. The language can
be expressed by the term

Horn clause logic
+ pararetarized types and indetermirates
+ bird hook control.

The language has the clear denotational semantics ard operational
semantica. We have implemented an experimental version of the language
on top of DEC-10 Proleg [Bowen 1981]. Some program examples are
included.

Contents

Introducticn

. Utterance and Discourse Situation

. Term, Predicate and Clause

. Type, Indeterminate and Urnification
» Fropramming

. Implementation

. Conoluding RFemarks

=] DN IS) A

AFPENDIX 1: Sumnpary of Situation Semantics
APPENDIX 2: TFrograc Examples
APPENDIX 3: Interpreter ip DEC-10 Prolog

Page 2

1. Introduckion

Ais is well known, knowledge and contexts play importart roles in
discourse understanding process models [Brady & Berwick 1982]. We
express knowledge and contexts in the form of parameterized types (types
for short) and situations, respectively, where situation is taken in
the sense of situation semantics [Barwise & Perry 1683, Barwise 1084].

Our observations on discourse understanding and situation semantics
are as follow:

1) Creating computational models of discourse understanding is a very
difficult problem in natural language processing. The central
difficulty is how to develop models for the efficiency of language.

2) Situation semanties 4is a promising approach which provides a
frape-work for discourse understanding.

3) The theory of =ituaticn semantics has been formalized as 2 kKind
of type theory [Barwise 1GEM].

4) There are efficient implementaticns of Horn clause loglc on several
comput ers.,

5) "Demon” iz one of the standard control models of discourse
understanding processing.

With these facts in mind, we have written a situation semanties based
progracming language for the discourse understanding system here at
ICOT [ICOT 1985].

The language is ocalled CIL (Complex Indeterminates Language). CIL
is built around 2 Horn clause lopie and ineludes types. CIL has the
basic control feature called M"reeze" in Polog II [Colmeraver 1981]
or bind hook control . 1In CIL, demcns are defined by wusing "freeze"
statements. CIL can be approximately defined by the equation

CIL = Eorn clause logic
+ types and indeterminates
+ bind hook control.

CIL is a =imple language with easily understandable sepantics. We
believe that CIL has the capacity to deseribe the objects in di scourse
understanding processes bty using types, indetermirates and conditions.
Cne of the major reasons for this is that CIL expresses situations
as contextual parameters in & uniform manner te describe
context-dependent concepts. Using the type of discourse zituation,
the meanings of the words "I" and "you", for instance, are defined
to denote the speaker and the hearer respectively in any given
di seourse. Actions in plan-pgoal problems, to teke = sophisteated
example, could be handled as instances of complex Lypes which have
precondition, action body, and postcodition slots. Note that
preconditions and postconditions are ponditions on contexts, Now ,
we take context to be the same as situation, which makes CIL a eitvation
semantics oriented programming language.

Our goal is to apply CIL to discourse understanding based on situation
semantics as a test domain. 80 first, let us take a brief look at
the principles of discourse understatnding based on situation semantics.

1) Each lexical element has a type.

2) A grammar has 2 function which synthesizes the type of a sentence
from these terminal types according to the parsing tree of the
sentence. Types play & smilar role to that of intentional feormulas
in the semantics of Montague grammar; that is, they conform to
Frege's compositionality principle.

3) Let d, e, and e be indeterminates of the types discourse situation,
connective situation, and described situation, respectively. &
discourse situation has & disocourse location, speaker, hearer, and
expresssicn as parameters. L connective situation imvelves
information such a= "whe" refers "what" to "what", "who" presupposes
"what", ™what" are antecedents for pronouns, and other contextual
informetions. There i= 2 condition M on these parameters &, o,
and e such that the wmesring of &an expression s uttered ip the
discourse situation d is defined to be the situation type §, where

G = [eiMid,e,e)].

L) Dircourse understandirg is, formslly, a condition DU on the
sequences of corplex indeterminates,

i<gl, g2, ..., an>),
where gi is an irstance of the desecribed situatien type Qi,
Qi = [eiiMldi,ei,ei}], (1=<i=<n).

Thus, our formalized discourse understanding syster is given by the
two majer conditions ¥ and DU. The motivation behind CIL is to provide
a simple and efficient programeing language for describing both of
U and M. An illusrative version of M and U will be described in
the fellowing =ection 2.,

¢, Utterance and Discourse Situvation

An illustrative prograz named "du" is described in detail, which shows
some ideas of situation semantics prograoming. "du™ is a fragment
of the discourse anzlysis model DU described in the introduction., This
example includes the following features in discourse models:

1) definitions of lexical elements as types,

2) a defipnition of & grammar including syntax end semantics
desoriptions, as consiraints over these types,

3) the definition of discourse situation as & type,

L) the defirition of meaningful option as a type,

5) the simple conversational constraint over discourse that the roles
of hearer and speaker change from the one to the other in turrn,
and

6) the meuning of = sentence depends on the discourse situaticn,

The last feature will be demcnstrated by the sentence "i(=I) love you".
The sentence will have two interpretations depending on the discourse
situvations involwved,

The definitions of discourse situation and meaningful cption are taken
from [Barwise & Perry 1683)]. No connective situations are included
in the example,

The notetions {X!C} and [HIT] are used for type and list respectively
to aveid confusion between them. These conventions are only in the
section., The term [HIT] is the 1ist whose head and tail are H and
T, []1is fer the empty list. The form

(L,(R, A1, ..., En}, F)

is for the abstract located fact that the objects &1, ..., Ain stand
{P=1) or do not stand (P=0) in the relation R at the leocation L.

The type of discourse situaticn
di scourse_situation = {5 | C}
, Where

C = in(S, (Here, (speaking, I}, 1))&
in{3, (Here, (addressing, You),1))&
in(8, (Here, {utter, Expl),1))},

is translated directly into CIL as follows:

dol (di=scourse_situation, 5 ,
(speaker:I, hesrer:You, disc loc:iere, expression:Exp),
in(S, (Here, (speaking,I), 1)]&
in(8, (Here, {addressing, Youl,1))&
in(s, ((Here, (utter, Exp),1))
1

It iz written &= in(2, X) that the set & includes X as & mewter., The
symbols "speaker", "hearer®, fdisc loc', and "expression®™ are the names
of the perameters glven by the user.

The following ic an example description of the type of meaningful option
of the sentence.

del(meaningful_option, sem!SCAT, (ds: ds!SCATI,
sentence{ SCAT, expressionlds!SCAT, [1)
}I

The term dsl!SCAT referes to the velue of the nrgs" =lot in the oomplex
ipdetermirate SCAT. Generally speaking, the term of the form S!X refers
te the vzlue of the slot 3 in the complex indeterminate X. A varizhble
ran be written for S. The eguality "Betty = mother Jagk™ ecan be
read as Betty is the mother of Jack.

The type definition expresses that the meaning of the sentence depends
cn the discourse situvation. T™e constraint "sentenece" delines the

Fage &5

syntax and semantics of the example language.

Ihe syntax categerics in the example language are "sentence", "noun",
and "verbn, Tne lexicons are "i","you", and "love®™, Each category
iz defired by the predicate with the same name of it, Each predicate
has three arpuments, The first argument is an indeterminate which
has all or part of the following slots depending on the predicate,

1) ds t the discourse situation,

2) agent: the agent ca:ze,

3) obj : the object ca=me,

b) sem : the semantics of the category its=elf, and

E) eit : the =situation to which the category has some contribetion.

The last two arguments together as a difference list represent the
given segquence of lexicons. Let p and » be a syntax category symbel
and a set of features and let b and t be twoc sequences of words, The
atomic formula of the form pix,h,t}] means that the seguence of the
words given as the difference between h and t is in the phrase category
p anc that » is the festures of the seguence.

The sentential forms and its semantics which are allowed in the example
lenguage are described by the predicate "sentence™. Any sentence nust
be the sequence of a noun, 2 verh, and arother noun in order. The
iritial part of the right hand side of the defirition describes the
necessary unifications among the slots in the indeterminates appearing
in the rule. The sentence category is assumed to have 2 dizocourcze
situation and 2 described situation in the "ds" and "serx" slots. The
clause of the form E<-E mears that B implies H. The s=ymbal F&" is
feor the logical conjunetien,

sentence (3, &, B)<-

D= de!S &

dal!¥ = [&

ds!lY = D &

gs!V = I &

sem!ls = =emlV &
sem!¥ = apent!V &
zen!Y = abjlVv &

noun(X, A, 481) & verb(V,A1,42) & noun(Y, A2 ,B).

The noun category iz asswuwed to have a context and an aobject in the
"ds"™ and "sew" slotz. The object is the denotztion of the noun phrase
and appears in the context,

nouni(X, A, Bl<- 41(X, A, B).
nouniX, A, Bi<- youlX,4,B).

The verb ecategory iz assumed to have several semantie features., The
values of these features are in the "sit", "ds®, Mobji", Magent" =lots.
This expresses that that the Tagent® and "obj" stand in the relztion
given by the verb in the situation Msit?, The discourse situation
fds" provicdes the locetion of the circumstance.

verni{X, Y, Zi<~ lowel(X,¥,2).

Page €

The followings are the definitions of the lexicons, The first eclause
defines the pronoun "i" as the speaker of the given discourse situation.
The value of the " " will be unified with the "zem" slot of the
indeterminate of the first arpument as the semantic value of "i" ilself.
The others are defined in similar ways.

if¥,[118],48)<-
sem!¥ = speaker!ds!X.
youl¥, [youlal,A}<=
sen !X = hearer!ds!X.
love(X,[lovel2],2)4<-
in{sitlX, (disc_loclds!X,{lcve, agentlX, ob] 1X), 1313,

The predicate "du®™ is the sopstraint over the cornversatiopal discourses
in the example language. The general form of the uyse of the predicate
is wpitten as "™u(X, ¥, Z, Fxps, Mds)". ¥ and ¥ are the two
participants of the discourse. I is the discourse location of the
beginning of the conversation. Exps is the sequence of &ll the
sentences spoken by ¥ or Y. MOs is a2 wvariable for the sequence of
the meaningful options of these sentences in the corresponding order.
The constraint concerning the conversational roles is described by
the predicate "change role" below.

dul(X,¥,Z,Exps,Mi=)<-
instance (L3, discourse_situatlon,
(speaker:X, hearer:Y, disc loc:Z}) &
du1({Ds, Exps, Mis).

The occurrence of the predicate "instance™ means that DS is an instance
of the type discourse_situation with the speaker X, hearer ¥, and
disc loe (for disecourse_location) Z.

dul{D, Exp, MO)<~

\+ Exp= _¥_ &

Exp= expression!D &

instance(MO* , meaningful_option, ds:D).
du1(D, Exp*R, MO ¥S) <~

Exp= expressionlD &

instance(MO* , mesningful_option, ds:D)&

change_role(D,Next) &

dul(Next,R,3).

The symbol "\+" is for negalion. The s=symbel "EF is for the stream
eonstructor. The symbol "_" is for anolyEous variables.

The following is the conversational "maxim" describing that the rcles
of the speaker and the hearer must change with each other in turn every
time the speaker has uttered each sentence. The special form is
introduced to represent successive discourse locations far convenience.
Location is cutside of the scope of the paper.

change_role(l, Mext)<-
instance(Next, discourse_situation,

Fage T

{speaker:hearer!Dd,
hearer:spealker 1D,
di=z¢ loc:next (disc_loelD) 1.

Executien is as followsz:

» duf jack, betty,loell,

> [i,love,youl®[i,love,you] ,Miz)k
» print(MOs).

{loc0?,{love, jack, betty),1)¥
{next{loc01),(love, betty, jack),1)

2N00BERES

The result shows that the =ame sentence has the different meanings
depending on the disoourse =ituations.

3. Term, Predicate and Clau=se

CIL i= Horn clause based programming language like DEC=10 Prolog for
instance., A CIL progrs— consists of Horn cleuses and defipitions eof
t¥ypes. CIL has predicates for "freecing" goals and for instantizting
and gccessing indeterminates. CIL hes & oconditional statement like
the one ip Lisp, but it does not have the "cut" statement.

The characteristic buili-in statements of CIL are ¥°Y ("freeze"), V=AIX
{zslots accessing), del (¥, Y,Z,0) (type declaration), and
instanece(X,Y,Z,U) (instantiation;.

3.1 Variable and Indeterminstc

A =ymbol which bepgins with 2 ecapital letter is 2 wvariztle, An
indeterminste in the sense of situation semeantics is represented by
the special form of dipternal data structure. The data structure i=
glso called indeterminste. Let us make & convention that & wvariegtle
iz an indeterninate.

3.2 Terms

An integer is 2 term. 4&n atom symbel i= & term. For a functor symbol
f and terms &%, ..., &n, the form fl&1, ..., an) is a term. Every
term falls in one of these categories, The term of the foro (A!B)
is a potetion for the term C such that role_of (A, B, C). The atomic
formula roele of (4,8,0) can be read that € is the velue of the olot
L ip the complex structure E.

2.3 Clauses

f. term of the form H €= B is palled clzuses. H is the head of the clause,
B is the body of the clause,

3.4 Loglcel Connectives
Let ¥ and ¥ be any terms. The termes of the form X & ¥, X N Y, N+

¥, and "X are called a conjunction, disjunetien, negation, and delayed
negs tion,

Page &

3.5 Conditional Terms,

Let Ci and ¥i pe any terms (1=< i =<n and 0<n). The term of the form
{C1=3¥X1, C2=>X¥2, ..., Cn=>¥n !

ie oalled a conditional term. JTts reading is that if C1 then X1 else
if €2 then X2 else ... else if Cn then Xn, Some conventions are used.
For any i<n, Ci=>¥i is written simply as Ci if ¥Xi dis "true®. Cn=»>Xn
tan be written simply as ¥n if Cn="true".

3.6 Logieal Constants

The predicate true and false are the system ones which always succeed
and fail respectively.

3.7 Freezing

The control primitive Mfreeze" is a means to describe demons. The
system predicate """ freezes goals. For the veriable X and goals ¥,
the form X°Y freeze the poals Y until the verizble X iz bound.

3.8 Meta Call

The system predicate solve is a meta rpredicate. The form solve(X)
is to solve the posls bound to the variable X.

3.9 Unificeation and Slot=filling

The form X=Y is to unify X with Y. The form V=5!X which is the notaticn
for role_of (S,%,V) is to unify V with the value in the slot & of X
The symbel & can be a variable. The form X:= (Y,8,C) unifies X with
the complex indeterminate Y|C(S5) for the given indeterminate Y and
condition C with the zlots 5.

2.10 Test Predicates
CIL has following systen test predicates.

bound(¥) : ¥ is bound.

vnbound{(X} ¢ ¥ is unbound.
indeterminate{X): X is an indeterminate.
atom{¥X) : X is an atom.

integer(X) : ¥ is an integer.

gtomic{X) : X is atomin.

same(X,¥) : X is identical to Y.

3,11 Type and Instartiation

4 type can be declared by the predicate del =nd be instentizted by
the predicate instance.

del(T,X,P,C)} : T is the name of the type [XIC], and P are parancters
of €. This is the statiec way of type declaration.

Page ¢

More detailed explanations follow. Let N, ¥, C be & name,

indeterminate, and condition. And let T be the type defirition of
the form

del{M, X, (51,5 ,...,%0), C)

vhere 51 dis a =slot of the form Ki:Xi (1=<i=<n). The defirition T means
that N iz a name of the type

(x| cl.
Let T be a type of the form [X|C(X,P1,...,Pn)]. In CIL, the parameters
F1, ...y Pn have their "slot names™. The user can also supply a rame
for the type T. Slots in the indeterminate can only be accessed by
CIL's bBuilt-in procedures. Indetermiates appear to users as abstract
objecta,

fAn ipstance of the type T has a eopy C' of the constraint C, The
constraint ©' iz executed &s soon as the instance is created, This
simple way of solving constraints does not restriot CIL's poWer since
CIL has the primitive "freeze" for suspending goals if necessary until
g specified variable is bound,

The basic built-in Minstance® has the several forms of uses as feollows.
its precise defirition is given in the Appendix 2, (ne way of use
is to oreate an instance through the type definition. The other is
to create it dynemically.

0) instance(X) : X is an indeterminate,

1) instarce(X,Name): if Meme is bound then X is an instance of the
type whose neame is= the value of Name,

2) instance(X¥,Y¥): il Y 4is unbound then this is egivalent to
instance(X,¥Y,void, true).

3) instance(X,Name,W) : if Meme i= bound then ¥ is an instance of

the type Hame with alots W.

L) instance(X,¥,C) : 4if ¥ is unbound then this is egquivalent to
instence(X, Y, vodid, CJ.

5) ipstance(X,¥Y,W,C) 1 ¥ is a2 ccoplex indeterminate with slots W and
constrained te the condition C.

5.12 Utilities

"eopy" 1s the predicate for copying terms=. The geoal copy(X,Y) oreates
& renamed version of X apnd unifies with ¥. The predicates mipht be
needed for handling multi_enviromment handling. The moal evellX, Y
recduces the term ¥ to the eguivalent term which has po part of the
form (AIB).

3.13 Internal Primitives

The followings are rpol for user primitives bet internel ones of CIL.
They work behind the zkove menticned functicns.

Page 10

1} pre_instance(¥,N,C) : make an irstance X of the type named N, and
return the condition © given in the definition of the type

2) create_complex(X,S,¥) : make the indeterminate X have the slots
5 and unify X with the other indeterminate Y.

} rele_of (N, X, V) : the value of the slot N of X i3 V.

) slets of (¥,¥) : the slots of X are all Y.

) merge_role(X, ¥) : merge the slots of X with the other slots ¥

) binding(X,¥) : ¥ is the current value of the indetermirzte XK.

) value{X, Y) : ¥ is the current velue of X.

=] N =L

4 Type, Indeterminate and Uni ficztion

The semantics of CIL can be described formally along the lire which
is given by Lloyd [Lleyd 10821 for instarce. Both of the denotational
and operationzl semantics are described in the section. The foecii
are types and indeterminates. They are new objects in logic programming
language. The description should be useful for the reader to understand
the behaveirs of the new objects. Tt will be interesting to nzke clear
the relation between the two semanties. The task, however, dis the
putside of the scope of the work.

4.1 Types and Complex Indeterminates

Situation semantiecs uses types and indeterminates as & formel basis.
Indeterminates are instances of their types and behave &s lopical
variables with slots and constraints. Types are divided into btesic
types and complex typesz. Fach ecomplex type is represented by a pair
of indeterminate and @ condition. Copplex indeterminates are instances
of complex types. We are using the word "indetermirate™ for both Dbasic
and complex ones. Each type T is supposed to have sufficiently many
indeterminates T0, TV, ++s -

Definitions of both sentence mesning and and discourse understanding
were given in the introducticn. They are defined in an elegant way
veing types, indetermirates and condi tions.

The Horn olauses in CIL are responsible for executing the conditions.
Indeterminates are objects that satisfy the conditions. CIL haz two
priritive funetions which oparate on types and indeterminates, One
creates indeterminates of given types. The other ls ihe slot-filling
function.

Let © be a condition with parameters ¥, X1, ... ¥n:

C = CEKD, Xi goaay III].
The measring of the cendition C is defined to be the =et, say &, of
211 the anchors f such that C(F{X0), £{X1}, ..., f{¥n)) helds. The
meaning of the type T=[X0IC] is defired to be the set

{ (X0,f) | £ is an anchor in 4 }.

in element 4in the set represenis an ipatance of the type T, l.e., a
value of an indeterminate of the type T. So we can say that the

Page 11

funeticen of an interpreter for CIL is to create instances of given
types.

4.2 Datz Domain ard Computation Domairn

4 domain is defined in the section to give the denotational and
operational semanties of CIL., Tt is necessary to extend the usual
Herbrand universze to inelude the so celled siot-filling features, this
iz an extension of that first order terms (Herbrand universe). 3o,
CIL iz & netural extention of the usual Heorn clause logic programming,

The domain D is nalled the datz domain. Let H be a nonempty set of
ground terms which i= eclosed under the operations of sub-term
construction and term copposzition for some fixed set of functor symbols
and atomic symbels., Let us fix the Herbrand universe H henceafter,

The datz domein D is defiped as the mmallest extensinp of M satiefying
the following conditions:

[1) For ary % in D e=d any partial function £ from D to I, the pair
<%, > is in D.

D2} I is closed with both of the oprations of taking sub-term and
composition,

It is necessary to extend the data domein D for including
indeterminates, Lt U be the mindimu extension of D satiszfying the
fellowing conditions:

U1) D is a subset of 1.

U2} D includes all ipdetermirnates.

U3} For ary x in U and any partial function £ from U to U, the pair
<%, f» is in U.

W)} U iz cleosed with both of the operations of taking sub-term and
compoal tion.

The domain U is called the compubtation domain. An element of the doemain
i=s ealled a pereralized term.

The =memanticas of the unifying predicate "= iz defired the minimum
set E of atomic formulas of the form "="(x, y) for some x and ¥y in
the data domain D such that the following conditions hold,

E1) for any x in the Herbtrand unverse B, "="(x, x) is in E.

F2Y if "="{u, v) is in E and f and g are compatible then "="(Lu,f>,
v,g*) iz in E, Here, f and g are =aid to be compatibtle if the
following C1 implies C2 for any % and ¥ in the data domain:

C1) x and ¥ =tand in the relztion E, and f{x) and f(y} are defired.
f2) fix) and f{y) stard in the relation E.

It is easy to check that the relation "=" 45 a equivalence onmne over
the the domaip 0,

The sementics of the slot-filling predicete "role of" is defired clearly

Fage 12

using the domain D and E. The denctation of the predicate iz delirec
to be the set of =1l stomic formulas role_of(v, s, x) for scme Vv, 5,
x in D such that x= <y, f» and f(s)=v hold for seme ¥ in D and some
funetion © from D to D.

4,3 Denotztional Semantics

Let B be the =zet of all the atomic formula each argument of which is
in the data domain of I, B is called the base set. Let P be a set
of clauses in CIL. P is a program. The semanties of the program is
gefined te be a minimal subset S of the base s=et B such that following
condi tions holcd:

21) 5 includez &ll the peositive ground atomic formulas for any system
predicate which are delirecd to be velid by the system. For
instence, the predicate true is in 5, but false is net in £,

%) 8 is a super set of both the set "=V and "role _of".

53) For any clzuse H<=T in the glven progran and any substitutien s,
if s{T) is satisfied by & then also =(E) is in 5.

A condition is said to be satisfied by the meodel = if and orly if it
peets one of the following conditions.

Vi) If ¥ is in 5 then X is satisfied (by).

V2) If ¥ is not satisfied by £ then = X 1s aatisefied.

v3) If ¥ and Y arc satisfied then X & Y 1s satisfied.

Vi) If X or Y is satisefied then X\/Y is satisfied.

v§) If €1, ..., Ci are not satisfied and C(i+1) and ¥(i+1) are satisfied
for somc i=< n, then iCi1=>X1, ..., Cn=>¥n} is satisfied.

VE) If G is sati=fied then X6 is satizfled.

Vi) The atopie formula instance(X,Z,T,G) is satisfied if both of the
equality ¥= <¥, L> and = formula F ie satiefied whore the triple
(¥, 8, F) iz a copy cf (Z, T, G) and the function L i=s the =slots
g seen as 2 function.

L.4 Unification

The uwnificatien 1in CIL is described in the section, The ecruciel point
ie the followipng which comes from the theory of tyre used By situvation
cemantics., Let T be a type written as T = [X|C] for a condition Q
and an indeterminate %, and let T0 be an instzrece of T. Let f be an
anchor which is defiped &t both 10 and X then f(T0) and £{¥) should
be the =ame.

Let By F, and ¥V be the szet of atems, funclor syebols, and
indetermirates. Let U be the computation domaln over them. For eany
cuhset E of U, an egivelence relation R over U is celled a unifier
of F if the follewing conditions hold.

M) For any two generalized terms X and y ir E, they stard in the
relatien Rix,¥).

U2) Any two generalized terms which have dgistinet main functors <o
not atand in the relztion R,

113) For ary twc generalized terms of the form hKitl, ..., tn) and hisl,
..., sn) standing in the relstin B, then also ti and si stand in

Fage 13

k for any 1=<i=<n,

U4) For ary two dindeterminates of the forms “u,f> and <v, g* which
stand in the relstion R, the indeterminates v and v =tand in R
and the functicns and g are able to be merged to each other in
the following sense. That is, f{x) and gly) stend in the relation
R for amy x and ¥y which stand in the relation R and which are in
toth of the domainps of the two functicns [and g

Aunifier R of E di& ealled firer than another unifier & of E if for
any pair of terms irn the computation domain U standing in the relation
R, the s=zame terms elsoc s=stand in 5. For any twe relstions Rl znd R2
over U, the relation R is called the "meet" of B1 and B2 if for any
® ¥ in U, Rix,v) is egivalent to the corjunction of M{x, ¥) and R2(x
¥

Proposition. For any two undfiers of the set E, the meet of them =zl=o
a unifier of ¥ and is finer than any of the two unifiers.

Froof, It i85 essily checked that the meet of the twe relations
satiszfies the conditicons ™, U2, U3 and U4 above. It is clear from
the defindition of "meet" that the meet iz finer than both of the glven
two unifiers.

Theorem. For any subset E of the computation domain U, there is at
most one firest uwnificr of E.

Froof. Assume there zre two unfiers K1 end RZ2 which have neo firer
ones except themselves respectively. From the proposition, the meet
of B1 and R2 iz & unifier of E which is finer than botk of R1 an R2.
This i= 2 econtradiction,

If slotz are neglected, our unificaticn becomes identical to ordinary
first order unification. The implemetaticn in DEC-10 Prelog is incuded
in the Appendix 3.

L.5 Operaticnal Semantics

In CIL, & goal i= solved just 1like & FProlog goal, i.e., top down,
depth_first, and left_to right.

f computaticn in CIL L= formalized as 2 sequence of computation states.
£ computaticn stale Lz a pair of the form (G,A) where C and A& are a
goal term and am enviromment, An emviromment is a peir of an
equivalence relation over the computztien domairn and a =et of pairs
of indeterminates apd demonz.

f transitien relztion "=3" between the computztion state 1z defired
below, For a given goal term © and initial epviromment & the computailon
iz defined t¢ be & maximal sequence of the computaion states (G4, Al)
{1=<1 =<n) for =ome 1=<n, where G0=G, A0=4, and Gn=true. There iz the
possiblility thet there are more than twe computation for the glven
iritiel computation =tate.

The intvitive ideas of the computation model 25 follows, Indeterminates
are variabtles with slots and constreints, For ary two indeterminates

Fage 114

the unifier irweckes frozen grals or merges demons which are attached
to them, according to whether they have been instantizted or not. CQur
goncept of wunification shoule be best understood from the examples
given in the section &,

Some function notaticons are iptroduced for convenience.

Let unifier(E, ¥, Y¥) denote the finest unilier F such that ¥ and ¥
stand in the relzstion F and that E is finer than F.

Tt 48 s=aid that the demon Y is attached to the indeterminate X in the
erviroment <E, D» if the peir (¥, ¥) is in D.

Let demon(E, F, D) dencte the conjuncticn of =all the demons attached
to the indeterminate in D which are unbound in E and bound in F.

Let freeze(D, X, Y) be the union of T and the =zingleton (X, ¥ih.

Let merge{E, %, &, V) be the unifier unifier(E, (T:U), (35:V)) where
¥ is the indeterminste of the form <Y,f>» and £(T)=U for some Y, I,
T, and U.

For a geperalized term ¥ and an equivalence relation E over the
computation domain, let val(¥, E) is the set of all the generalized

terms which are pot indetrminates and stand in the reletion E with
xl

Let var(X, E) denote the set of 2ll the unbound indeterminates which
appear in some term in val(X, E).

Let us start the defirition of the transition relztion "-3" as the
ninimm relztion satisfying the following conditions:
Urnify :(X=¥, <E, D») -> (demecn(E, F, D), <F, D») where F is

unifier{E, X, Y.

Fillipg slot : (role of (5,%,V), <E, D») -2 {demon{E, F, D}, <F, D>}
where F is merge(E, X, 5, V}.

Indeterminate : (X:=(Y, & €} , A)=> (X=I & solve(C), A) where Z iz
the indeterminate <Y, 3>.

Instantietion: (instarce(Y, X, S, C),A) => {¥=¥1 & selve(C1), A) if
(¥1, St, C1) is & copy of (%, 8, C) and Y1 is the pair <X1,31>
for some X1, 31, 01, and ¥Yi.

Conjunction : (X&Y, &) =» (Y, B) if (X, A)}=> (true, Bl.

DMsjunction @ (X\/Y, A) => (X, &) and (XWY, R) -> (¥, &).

Freezing : (X"¥, <E,C») => (true, <E, freeze(D, X, ¥)») if ¥ is unbourd
ir E. (X"¥, <E, D») => {Y, <E, D») if X is bound in E.

Negatien : {(“+ X, &) => (true, AR if there are no E such that (X, A)=>

Fage 1E

(true, B).
Delayed negation : (= X, <E, D»} =>(suspend(var{X, F), (%+ X)), <E, D2}.
Suspending : (suspend(V, G), <E, D>} -> (solve(G), <E, D>) if wvar(V,E}
is empty. (suspend(V,G),<E,D>)=>{X"suspend(W,G),<E, D>) if
for some indeterminate X and set W, var(V, E} is the wunion
{X} and ¥ and any indeterminate which is equal to X is not
in ¥W.ne

Conditienal {} ¢ ({C1=>¥1, ..., Cn=>¥n}, &) => (¥i, B), where i is
the first index such that (Ci, A) =» (true, B).

Motz calling : (solve(X), &) -» (X, A).

Meta callirg : (X, <E, D>) => (G, <E, D>) if the veristle X is bound
to G in E.

Other instances: similer toc the above "instance™.
Eound + (bound(X), <E,D>) =» (true, <E, D>} if ¥ is bound in E.

Unbound (unbound(X), <E, D>} =» {(true, <E, D*) if X is not bound

in E.

Indeterminate: {indeterminate(X), A) =-»> (true, A) if X is =zan
indeterminate,

Atom, integer, estomic : similar to the above.

Idertical : (same(X,Y), <, D») => (true, <E, D>} 4if the values of
¥ and ¥ are the same.

User predicste: (G, &) =» (G=H1 & T1, A) if there is some clause
of the form H<-T and H1<-T1 is a copy of the clause.

This ie the end of the defirition of "-3"
5 Programming

Here are scme examples of CIL programs. The symbols '>' and '»2' are
system and user prompte for inputs respectively.

5.1 Unificetion and Accessing Slots.

The first example show that the introduetion of the logiecsl variable
with slots are patural and useful for inferential processes. Notice
that the indeterminates PBoy and Child in the example sre unkown except
that they are idertical to each other. It is diffieult to represent
the egivalent inference in the usual Horn clause logic.

3 jagks father ! Boy & betty= nother | Child &
5 Boy = Child & Who = father ! Child & print(Whel.
Jaak

Success

Fage 16

2 1= al¥ & 2= alY & X=¥,

fail

1= al¥ & 2= bIY & ¥ Y & samelX, Y).
SUCCESE

It is pozzible to put the slot rame unknown:

> jack= Wkat | B & ¥Ys father! Z &
Ezbetty & B=Z & print{{Y,What,Z)).

{ jack,father,betty)

suCcess

>

Let ¥ and & be a complex indeterminate and a2 constant. The effect
the goal X=4 is that the vlauve become the constant A. For =ny complex
indeterminate ¥, the e&ffect of the poal X=Y is that ¥ and ¥ are unified
with eackh other including their slots,

For twe irdeterminete % and ¥, same(X, Y) mesns orly that the current
"walues™ of the twe indeterminates are identicsl to each other. In
other words, they may have incompatible =mets of slots even when they
ere anchored to the same value, alse the different twe classes of
irdeterninates may have been bound to the same value, Such & ocase
is shown by the following two examples.

1= al¥ & 2= 21Y & X= ¥,

fail

B 1= 21¥ & Z=a!¥Y & X=3 & ¥Y=3& samel(X, Y).
SUuCCess

> X=zal!y¥ E Y= bl7 &

Y f=slf & &= bBIE & Z=E & print(X).

1

Tuccess

5.2 Delayed Regation

CIL has twe type of negations as feilure, i.e., eager_negation (\+)
and delsyed=-negtion {(~). The latter uses the form of =uspend(X,Y),
which suspernds the geal Y until the term X become to héas no unbound
irdeterminates.

The "diff" staterent ip Prolog II is defined by using this.

¥ ohe (X=7).
feil
»oTX
succes
o7
BUCCES
>o"{¥ = 1) & ¥= 1.

fzil

> UMY, 1)=0(2,70) & X=2 & ¥=1,
fail

1.

T

= 1) & ¥= 2.

LE]

E,3 Instantistion of Indeterminailes

Page 17

The predicate "instance" has the following four forms of application
for convenience:

instance(X),
instance(X,¥),
instance(X,¥,2), and
instance(X,Y,Z,U}.
The uses of each of them are expleined in the section 3.
» instence(¥, ¥, Y=1)&print(X).
1
BUCCEES

Two instances of the same type are different toe each other initially.

» instarce(X¥,¥,true} & instance(Z,Y,true) &same(X,Y).
fail

The "if filled demons™ are easily attached to any slot as follows,
> instence(X,Y,a:2, 77 print{Z))& 1= alX,
1
BUCCEES

5.4 Freezing Goals and Coroutine Frogramming

The primitive form of bind hooking is "¥"¥", The goal Y 1is suspended
while the verisble ¥ is unbound,

> X"(print{aaz)&nl) & Y {print(bbb)&nl)&X=Y&¥=1.
aaa
bbb
SLUCCESS
The following is a program well knowp under the name "Eratosthenes'
sieve", which penerates the prime mmber sequence 2,3,5,7,11,13,...
This example uses the "freeze" statement. T"pript®, "nl", "=:s", "ig"®
have the same functicns as the eveluable predicates with same names
rrimes<- X primes(X)&integers(2,X).
primes([P|X])<~ print(P)& nl & X"sieve(P,X,Y) & Y primes(Y).
sieve(P, [N]E], 8)<-
[(N mpod P=:= 0} => K sievelF, R, 5},
S=[K|T]& F*sieve(P,R,T) }.
integers(N,[NIR])<- K is M+1 & integers(M,R).

The execution i= as followa:

Fage 18

prinmes.

>
2
3
5
7

£.5 Demons Watching Conterts

it i=s easy to realize both of the conjunctive and digjunctive depons.
The predicetes "ind® &nd "diai_fipd" realize demons., The defirition
of thex are in the arpendix 2. They are defired by using Yreezel
primitives. A demon iz & sequence of goals that can be epabled during
the execution of scme other goals and that wetchez & giver context
te detect patterns for which it is responsibtle. The demon cen be frozen
ard 2et to resure its control later.

The goal find(X,D,C) means that ¥ is the first element in C such that
the copdition D{EX) holcds, where C 158 2 stresn of some coptextuml
informztion, The last element of the stresm should be "end®.

Let Gi {(i=1,...,n} be dewons. Each Gi iz &ssumed to have the form
(¥, b, C) for scme indeterminate X, condition D, and stream C. Suppose
ve want satisfies one of the demons and Lt 1s not necessary to saticly
the other demons. This preblem is written es &isj_find((01;G2;...30nl).

Program execution looks like thisg)

> fipd(¥, X=1l&print{ok;&nl, C)& instream(C).
>3 3. 2. 1. end,
ok

SUCCEES

> disj_find{((X,X=1 & print({zaa)érl, C);

> {Y,Y=2 & prirt(bbb)&nl, C})) & instream(C).
5y 3,

>y 2,

bbb

1.

23 end,

EuUCCess
»odisi_final ((X, X=1
> (Y, ¥=2
*» 3. end.

fail

print{aaz}énl,
printibbb)&nl,

(2 lw]

o
e
e

) & instresm(C),

. Implementaticn

irn this secticn, we describe the vnderlyirg CIL interpreter lpplemented
on top of DEC=10 Preleg. We eall the ipterpreter HREDUCE, The wmain
funeticns of RELDUCE are:

Page 19
1) to effect "freezing® and "resuming" of procedures, and
2) to define scme primitives for complex indeterminates,
Impl ementation of Mfreczing® and "resuming" proceszses is built around
the datz structure of indeterminates, The HREDUCE program is listed
in fppendix 3.

6.1 Structure of Indeterminates

Each indeterminate is represzented a2z =2 term whose maip functor iz a

certain designated symbol 'I'. Slots and frozcemn pgoals inm the
irdeterminate are represented as a difference list for easy merging.
Fach indeterminate contains some "pointers" to otheres, The =et of

all indeterminatesz invelved in any computetion forms & 8¢ celled forest
under these pointers, which represent the equivalence relation over
the set.

6,2 Unifier

Let V bte the zet of el]l the indeterminates. Let T be the set of all
the non=-varizble terms. The data structure of the unfier i= a forest
over ¥, Eech component of the forest is & tree and represents an
eqivelence clzss of V., [Cach of the clas=es 1is s=upposed to have the
representative node, which is the root node of the close zoen 2= &
tree. Each indeterminate contains =lots (poseibly null), frozen pgoale
{(possibly pull), and the wvelue to which it is anchored. The velue
is a non-variable term if it is defined. These slots and goals are
merged inte the representative indeterminate, The term is equal to
the ope which i= assigned tc the representative node.

€.3 Freezing and Unification

When any representative indeterminate with frozen posls 13 unified
with a2 non-varisble term, the gogls resume thelir controle. Each
indeterminate has a flap for the frozen pgoals so that they are not
executed mere than once.

The details of these mecharisps ere described under the two predicates
Ffreeze™ and "unify" in Appendix 3.

New, how do we freece the specified gealz 7 The foerm of the "freeze®
statement iz XY, where, gensrally, the grals Y contain the variable
X For instance, frecze(X,p(X)) is reduced to X = 'I'{_, ..., _, Dp(X})
in DEC=1C FPrelep unification. In other words, we use infirite trees
to assoclate the frozen goals with the specified indeterminate.

Our unifier collects all the goals bhoocked on te suck a warlable V
appearing in X or ¥ that V iz instaptiated through this unification
process, For ipnstarce, suppose peals p and g are hooked on to variables
A za2nd B repectively. Then the goal pég is returned through the
upifiecatien f(A,%) with £(1,8). Also, the result of the unificetion
fla,a) witk £01,1) will be p.

T. Concluding Remarks

Pege 20

We described the =simple but powerful language CIL for situation
semantics oriented programming. The key idea was to build parametarized
types into the languape bzsed on unification. Complex indetermirates
gre implemented as logical varisbles with named slets and constrainta.
M=o we discussed the generality of CIL's power using the discourse
understanding model, We have shown some examples irnvelving contexts
Lo demonstrate the uszefulness of CIL for describing discourse models.

The old version of CIL was used in the pragmatics processing part of
the discourse understanding system called DUALS [DUALS 1985] on top
of DEC-10 Prelog. Situation semantics forms an essentisl part of the
conceptual aperatus of DUALS also.

The target mackine on which we plan to implement CIL efficiently l1s
the PSI machine [Uchice & Yokei 19847, which iz now available to us.
The PSI has machine primitives for bind hook contrel &nd is flexilble
cnough &6 that we can build parameterized types without losz of
efficiency.

Suzukdi [Suzuki 1984] suggested a relation between types and frames.
CIL seems to be a programming language capable of realizing this
reletion.

ACYN OWLEDGEMENTS

Ir. F. Pereira of SRI Internatinal & CSLT gave meny valuable comments
to the work during the invited stay here at ICOT. flec he improved
the memery efficiency of the interpreter for the proposzed language
which hae been implemented in DEC-10 Prolog. T would like to thank
oy cocllezagoues H, Miyoshi, H., Yazsukawa, H. Hirakawe, and Y. Tanaks
for many stimulatipg discussicns on computaticnal models of diseourse.
Ir. BE. smith of ¥erox PARC & CSLI suggested a sitvation semantics
progracmirvg langwage to us during his short visit here. flse, I would
like to thank T. Yokci, the Heac¢ of the Third Laberatory for his ugeful
comments and encourapement.,

Fage 21

REFERENCE

[Barwise & Perry 1683] J. Barwise & J. Perry : Situations and
Ettitudes, MIT Press, 1083,

[Parwise 1978] J., Rarwise: Admizsible Sets and Structures, 3Springer
Verlag, 197%5.

[Barwize 16841 J, Barwioe: Lectures on Situation Semantics, Winter
Quarier at CSLI, 1084,

[Bower 1681] D, Bowen: DECsystem-10 Prolog User's Manusl, Department
of Artificizl Intellipence, University of Edingburgh, 1981.

[Brady & Berwick 7682] M, DBrady & R. Berwick (eds.): Computaional
todels of Discourse, MIT Fress, 1982.

[Colmerauer 109621 A. -1 merauver: Froleg 1I: Reference Manual and
Thecretical Model, Internal Keport, Groupe Intelligernce Artificielle,
Universite Aix~Marseille 1I, 1082,

[ICOT 1985): (ir preperation as an ICOT technieal repert)

[Furukawe & Yokoi 19084] K. Furulmwe & T, Yokodi: Bagic Scftware
tystem, in the FProceedings of the Irternatiopal Conference on Fifth
Generation Computer Systems 1C8Y4, edited by ICOT, ppuT-4E, 1984,

[Lloyd 1984] J. W, Lloyd: Foundations of Logic Programming, Technical
Report B2/7 {revized March 1984}, Department of Computer Science,
Urdversity of Melbourne,

[Suzuki 1084) H. Suzuld: MAID: a Man-machine Interface for Domestic
iffairs, Institute for New Generation Computer Technelogy, ICOT TH=GOSE,
1984,

[Ushida & Yokoi 19840 5. Uchida & T. Yokod; Seguntiel Inference
tachine: SIM =Progress Report-, in the Froceedings of the International
Conference on Fifth Generation Computer Systems 1984, edited by ICOT,
FpoE-64, 1984,

Page 22

APPENDTY 1. Summary of Situation Semantics

Cur formal basis of s=itvation semantics are in [Barwise 1984].
We list awioms and defiritions given there for conveniencies.

-- Set theoretic zssumptions are these of KPU [Barwise 1675].

- Axiom of real situvations {(1):
Every real situation s determines a set of facts, the set fact(s) of
facts f that obtain akout in internal structure of =

—= Axiom of real situations (2):
Every resl situation s is completely determined by the set fact(s).
That is, if fact(s)=fact(s') then s=3",

== fxiom of real facta:

There are located and unlocated facts., A located fact [comsists of
a sequence x1,...,%0 (n»=0) of objects standing, or not standing, in
a spatio-temporal relastion r at & space time lccation 1. An unlocated
fzet f consists of & sequence x1,...,xn (n>=0) of objects =sianding,
or not standing, in & certain non-spatio-temporal relation r.

-= Notation of "real fact':
We scmetimes describe & located fact £ by writing

at 1: r,x1,...,xm; 1
ar
at 1: ryxly...,xn; 0

depending on whether or not the fact f im that the objects do or do not
stard in the given relatieon at 1, Similarly, we write

ryxt,...,xm; 1
or
FeElye e xm; 0

for urlocated facts. The mnumbar 1 or 0 iz called the polarity of the
fact £ and is deveted by pol(f). The other items are called
eonstituents of the fact, .

== Definition of "circumstance™:

We define an mp-ary (abstract located) circumstance to be a2 sequence
f of the form <1, r, %1, +.., ¥, pol> where 1 is in L, r is an r-plece
cpatio-temporal relation, X1,...,¥n are arbitrary objects and pol is
¢ or 1. An n-ary (abstract unloeated) circumstance f comsiste of a
cequence <r, ®*1, ...q xn, polr ,where r 15 an r-ary ron=spatlo=tenporal
relation, fxdom 3 insures that each faet f can correspond te & unigue
ciroumstance f'= abs{f)., If a circumstance f' corresponds to a (located
or unlocatec) fact, then f' is called an abstract (located or unlecated)
faet,

Fage 23

-- Definition of "abstract situation”:

We define an eabstract situation s' to be any set of abstract facts.
By axiom 1, we can e=s=ign to each resl situation 3 an abstract szituation
s'= aba(s) by: s'=s {abs(f)! f is in fact(s) }. We say tkat an abstract
eituation 5' corresponds to a real situation s if s'= abs(s); we say
that s' correctly classifies s if &' is a subset of abs(s). We say
that en abstract situation s' is factual if each f in &' is an abstract
fazet. On the other hand, we say that s' is actuwal if s' corresponds
to some real situation s,

== fydiom of factusl =ituvation:
Every factuazl sbstract sitwaticn s0 is & subset of some actual abstract
situation s1.

—— Defimiticon of "coherent":

We say that an abstract situvation s is coherent provided:

1) no two circumstances in s differ only in their polarity;

) there iz no object x such that the circumstance < =, x, %, 0> s in s5;

%) there is no distinct objects x end y such that the circumstance
< oz, X, ¥, 1» {H.e we zre using "=" to denote the idertity
relation.)

-- Axdom of actual situwatlion:
Every &sctual situwstion is coherent,

-- Axiom cof objects:
Every object iz the constituent of some fact.

-— Adom of types:

Emong the types of objects are the following basic types of objects:
IND, the type of individuzl object

REEIT, the type of resl =ituation

SET, the type of set

S5IT, the type of (abstract) situation [actually redundant]

LOC, the type of space-time leocation

BOL, the type of the "truth velues™ O and 1

EELn, the type of r=ory relations

-- Axdom of indeterminates:

For each of btesic types T, there gre ipndeterminates T1, T2, T3,...
whichk may be "anchored" to things of type T. Distinct types have
distinet indeterminates.

-= Definition of anchors:

En anchor iz a function h with domain some net of basic indeterminates
sueh that if %, s=ay Tn, is ir the domair of h, then h(x) is of type
1.

-= Fguivalence of Anchora:

Two anchors za2re eguivaient if there iz & repumbering of the
indeterminates that takes cone anchor to the other, We are really
interested in anchors only module to this equivalence relation,

== Mailr zasumptions on conditions:
1). Each ecordition C has some non-empty fimite set pars{C) of

Page 24

parameters, a set of basic indeterminates,

2). A condition C is & condition on anchors h with gpara(C) a subset
of the domain of h.

3). & condition € either holds or does not hold of any anchor it is
g condition on.

4}, Given ary finite set X of conditions, there is a condition that
C with para(C) the union of =all the parameters of X, and such that
C holds of h just irn case each condition in X holds of h.

5). Conditions are equivalent if there is a renaming of thelr parameters
that takes one to the other; that is, if they put conditions on
egquivalent anchors,

§). For each condition C and each perameter X of C there is a complex
indeterminate X|C. The parameters of X|C are those of C, except for
%, We impose the following constraint on anchors: if R(XIC) ds
defired, then h(X) is defined and equal to ni{xic), and h meets condition
C.

7). Fach complex inceterminate X determines a type T(X]. Fquivalent
irdterminates determine the same tYLpe.

Page 2%

APFENDIX 2: Program Exampl es

The useful primitives and utilities are defired in the language as
below. The fist group of examples iz for instantiation of
indeterminates. The =econd gne io for demon progracming. The third
ppe is for printing complex indeterminates. The fipal cone is an
illustrative spplication of the T"type" of "stery structure® defired
tw the language.

{1} Instantisticn of Complex Indeterninates

It is fundamentzl to instantizte objects as indeterminates. The following
are several versions of irstantistion which are primitives for the user.

instarce{X)<<- indetermirnate(X).

instanee(¥Y, XJj<<-
fbound(X)=> tyre_of (Y, X, void),
instarnce (Y, X, true) 1.

instanece(Y, X, Z}<<-
[bound(X)=> type_of(¥y, X, 2),
eopy((X,Z),(X1,21)) &
preste complex(X1,veid, Y1) & ¥Y=¥1 & solve{Zl) .

instance(Y, X, 5, Cond <<~
copy((X,S, Cond},(X1,51,Cond1)) &
create_complex(X1,51,¥1) & ¥=¥1 & solve(Condt).

type_of (¥, N)<<-pre_instarce(X,N, Cond)&solve(Cond].
type_of (X, N, void{<{-type_of (X, N].
type_of (¥, N, W)<<-pre_instance(X,N, Cond)&merge_role(X,W)&sclve(Cond).

¥izH <=

{

value(k, V)& functor(V, F, 1
indeterninate(Z) &
argl{l, V, Z) &
rele_of (F, Z, ¥},

R= (Y,5,C)=> create_complex(¥, 5, X1}J& X=X1 &sclve(C),

R= (¥,C)} =» X:= (¥, veoid, C)

}.

)=>

carg{N,¥, Yi<<-value(N,N1)a&value(X, X1)darg(M,X1,A)3A=1.
efunctor{X,F,N)<<{-valua(X, X1)&functor{X1,F1,N1) LF=F1aN=K1.
mrunctnr{x.F,HIC<-vulueEF,F1}&value{H.H1}&funetnr{11,F1,H1}&x=11.
eval (X, Y)<d-

{atomic(X]l=> Y=X,

unbound(k)=>¥sX,

efunctor (¥, F, N)émfunctor (Y, F, Nj&eval (N, X, Y)}.

evalll, X, Yi<<-

{N==0C,
carg(N, ¥, A)scarg(N, Y,B)&
eval(A,B) &

Mis H-1 &

eval (M, X, Y)}.

same(X, Y)d{<-

{unbound(¥X)=> unbound(Y }&X==Y,
unbound(Y¥)=> unbound(X)&X==1Y,
cfunctor (X, F,N)&efunctor (¥, F,N) ksame(}, X, ¥}

same(N, X, T)<<-

{N==C,
carg(N, X, A)kcarg(N,Y,B)&
samelh,B) &

Mis K-1 &
samel(M, ¥, Yil.

copy(¥, Y)<<-copy(X,_,Y).

copy({ X, M, Y}<<=

{unbound(X) => map(¥X,M,Y),

efunctor{X, F, N)&mfunctor (Y, F,N)©(N, ¥, M,

copy (N, ¥, M, Y)<<-

{N==0,
capp(N, X, A&
carg(N, Y,Bl&
copy(h, M, Bl &

J iz N=1 &
copy(J, X, M, Y},

mapl(X, ¥,2)<<-

[unbourd(Y)=> ¥= (X-Z)"_ ,
¥Y=(U-2)"V=> {same(X,U), map(X,V,Z)3}}.

not{¥X)<<~{eolve(¥)=>fail, truel.

undefined(X}<<{=unbourd(X).
defined(X)}<<=bound{X).,

{2) Demons Watching Streems

when_ali(X, D)<<-

{¥=[]1=> solve(D),
true=> X=[Y!2]& Y wher_alll(Z, D) b,

when_somelX, D)<<-hook_or{X,G)& C"D.

hook_or(X,G) <<=

{x=[1,

¥=[Y!Z] =» ¥"(G=1) & hook_or(Z, G) .

Fape

Ll

The follewing "™wher_all" and "™wher, _some" &re another
the freezing ("°").

26

variztions

cf

Page 27

find(X, D, C}<<=
Eﬂ.
[C=A®R=> {X=A & solvel(D),
find(X, D, R) }y
true =» X=0 & solve(D)
|

disi_find(Ds)<<- disj_find(Ds, F).

disj_find(Da,F){<{~
{Gs= (H:T) =» disj_find(H,F) & disj_find(T, F),
Ds=(¥,D,C) =» disj_find(V,D,C,F) }.

disj_find(V,D,C, Fid<-
(C*set(Switch,c)) & (F" set(Switech,f)) &
Switch °
ISwite&:::!‘ 5
C= A%F=>
{v=8 & =.2ve(D) & F=1 ,
dgisji_finpd(V, D, R, F)
} 5
true =z» V=C & solve(D) & F=1
k.

set{0,X)d<d-
fbouwnd(0), 0=X 1,

instream{¥)<<- prompt(P, '>> 'J&read(Y) &
{ ¥==end => X=Y,
¥= (¥Y*) & instresm(T) } &
prompt{_, PJ.

produce(X, ¥, 2)<<~

{unbound(¥)=>Y=X*¥Z,

¥=_# & produce(X,U,2)

}.
out stream(¥, Y)<<-

{X=(A¥B) => ¥= A® I & outstream(E, Z),

Y= X

.

in(35, fo-

b

{ 8= (X *_),
S (_ * T) =» in(T, X),
3= X

}.

has(s, ¥)<d=
{
5= (¥X*),

{_®T} =» has{T, X),
X

W

o

Page 28

(3) Printing Objects
print(X)<<- cali{print(3)).
vprint{X)<<~ eval(X, Vl&print{V).

print_context(X)<<-
{unbound{X},
¥=(Y#2)=> print_obi(Yléprint_context(I),
print_eobj{Xx)}.

print_obj{0)<<-
plEprint(0)&print{{*z:"))Enlk
{indeterminate(0)=>
slots of (0, S)&print_slote(S),
truel,

print_slots(S)<<{-
{unbound(&),
S=(H,T) => print_slots(E)&print_slots(T),
print{' ')&print_slot{S)
i.

print_slot{K:B)<<-
{E==context => print('context: *¥ cmitted %#1),
print{K:B) &nl }.

plX){<=print{X}&ttyflush.
{4) Story Summary Baszed on PFlen Goal Models

The following is a simplified version of suwmarizing stery program.
The program uses several demons who are responsible to detect scme
their own patterns watching the story context z2s 2 stream,

del(plan_goal, _,
(
intention: Intention '
perscn: Ferson,
cbstruetion: T,
expected_situation: E,
planned situation: FS,
action: &,
context: CJ,
{
intend(Person, Intention, C}&
obstruct (T, Intention, Cl&
expecti{Perscn, F, Cl&
want{Person, B3, Cl&
action(Ferson, &, C))).

intend{Perscn, dutylPerscn, Context)<- true.

obstruet{T, I, Context)<-

Page 29

in{Centext, (_, (fird, Person, T), 1)) &
in(Context, (_, {(swprise, Person, T), 1)).

expect(Perscn, E, Context)<-
in(Context, (_, (irvclwve, T, E), 1)).

want(Person,Want, Context)<=-
in(Context, (_,(command, Perscn,_,Want),1)).

action{Ferson, Action, Context)<-
find{fction,
same(zction, typeliction) &
same(Ferscn, agentlfcticon),
Context).

story_summary <-
instance(5, plan goal,
(perucn:Eell_san,context: Context)) &

instance(Roll_sa. . &
irstence(Fuchigemi_san) &
instance(Captainlé
instarce(Smoke) &
instarce(Fire! &

instance(Cxplode) &
irstance(ToPrepare } &
instance(Telnform) &

irstance(Command) &
instarce(Emergency) &
instance(Gush)} &
instarnce(Flight! &
instance(Service) &

Flight = duty!Captain &
Sevice = duty !Stewerdecss &
Captain = apent!Command &
action = type!Command &

S = 'STORY' &

Roll_san = "ROLL_SAN' &
Fuchigami_san = '"FUCHIGAMI_SAN' &
Command = "COMMANDY &

Smoke = 'EMOEE' &
Fire = 'FIRE" &
Explode = 'EXPLODE' &
Torrepare = '"TO_FREPARE' &
Tolnform= PTO_TNFORM' &
Emerge ney= "EMERGENCY' &
Gush= "GUSH' &
Flight= PFLIGHT' &
Captain = Foll s=an &
Stewardess = Fuchigami_s=an &

cut stream(

Fage 30

{ Foll _=an ® (_,(gush, Smoke),1) *®
Fuchigami =an ¥ (_,{find, Roll san, Gush], 1} *
Smoke # {_,{surprise, Holl san, Gush}, 1) *®
Fire # (_,(invelve, Fire, Explode),1) ®
Explode # (_,(eall, Rell_san, Fuchigami san},1) #®
ToPrepare #{_,(command, Rell_san, Fuchigami san, ToPrepare),1) ¥
Tolnform *# (_,(ask if, Fuchigami_san, Roll_san, TeInform),1) ®
Emergency * (_,(prepare, Fuchigami_san, Emergency),1) "
Gush *
Flight #
Command #
Captain #
Stewardess), Context) &

print_obi(S J&nl.
The execution of the goal looks like this:
> atory_summary.

ETORY:»:
intention:FLIGHT
person:ROLL_SEN
ocbestruction:GU3H
expected_situation:EXPLODE
planned s=ituation:TO_PREFARE
action:COMMARD
context: "% omitted #%

SUcCCcess

>

AFPENDIX 3: Interpreter on DEC-10 Prolog

(1)
(2}
(2
{4)
()
{6}
(7
(8)
(9)

Operators Declarations

Reducing Goals

Instartiation and Merging

Interpretation of CIL Primitives and Utilities
Calling and Tracing Uzer Rules

Lemon

Complex Indeterminates

Unification and Binding

Testing Equality

(10) Printing
{11) CIL Mair and Debupging

Page 31

t=piblic reduces1.
t=public &f0,0dls0.

{1) Operators Declaraticns

i—op{1100, xfy, (<=1).
r=op(1100, xfy, (<<=}).
i—apl 060, =fx, (:)).
i-op(930, =y, (=2)).
i-op(020, xfy, (\]).
i=op(910, xfy, (&)).
=-0pEgnD! f}'; (-}}-
r=op(700, xfx, {(:=)).
:=opl400, xfy, %)
:=op(150, xfy, (1)).

{2} Reducing Goals

i=faatcode.
r=mode reducel+).

reduce{true):=1,

reduce(Goala):i=
reduce_first{Goals, Rest),
reduce{Rest).

i=mode recduce_first{+,-).
reduce_first{true&P, Q):-1, reduce_first(F,Q).
reduce_firat{ (F&Q)&R, S):-1,reduce_first(P&{(Q&R),3).
reduce_first(P&Q, R&Q):-I,

reduce_first{F, R).
reduce_first{P\/Q, E):i=l,

(reduce_first(F,R);

reduce_first(Q,EB) J.
reduce_first({P=>Q}, Q)}i-reduce(P),!.
reduce_first{{P=>C,R}, Q@):=reduce(P),!.
reduce first({P,R},true):-reduce(F),l.
reduce_first{{_,R},{R}}:=1.
reduce_first([FP},P)i-1.
reduce_first(¥X=Y,G):=1,unify(X,Y,0-true].
reduce_first(¥X"Y,0):-1, freeze(X,¥,0).
reduce_first((\+ X)), fail):-reduce(X),!,fail.
reduce_first({\+ X), true}:-1.
reduce_first(~(¥), G):=1,suspend(X,[], (\+ X}, G).
reduce_first(suspend(X,¥,2},6):=1,suspend(X,Y,2,G).
reduce_first(solve(X),G):=1,reduce_firat(X,G).
reduce_first(X,G):-

bincing(X,G), 1.

{3) Instartietion and Merging

reduce_first(pre_instance(X,N,Cond},G):-1,
value(HN,N17,
instentiate(N1, X1, Condl),
uni fy(Cond, Cond1,G-H],

Fage 32

Fage 33

undfy (¥, X1, truel.
reduce_first(create_complex(X,C,¥),true):-1, oreate complex{X,C,¥).
reduce_first(reole of (N, X, V),E):=1,
represzentativel(X, RX),
slots of (RY,Slots),
merge_slot(Slots, N:V,E-true},
reduce_first(slots of (¥,5lets),Eli=1,
representativelX, RX),
slots _of (RX,5),
uni fy(8lots, S, E-true).
reduce_first(merge_role(X, Roles),E):= 1,
representativelX, YJ,
Elots_ﬂf{l',z}:
merge slots to left{Z,Holes,E=true).

{4) Interpretation of CIL Primitives and Utilities

reduce_first(birdipg(X,Y), true):=1,bdnding(X,Y).
reduce_first({velvel{X,¥Y),true}:=1,value(X,¥}.

reduce Tirzt{unbound(¥ ,..:=1,unbound(X, Y).
reduce_first{bound(X),¥):-1,ound(X, Y},
reduce_first(irdecerninate(X),true}:-indeterminate(X),!.
reduce_first{irdeterminate(¥),truel:~1, create_complex{_,void,X).
reduce_first{aton(X),¥):=1,atom(X, Y).
reduce_first(ztemie(X},Y}:i-1,atomic(X,Y).
reduce_first(irteger(X),Y):=1,integer(X,Y¥).

Peduce_firat(¥==%, true):=1,value(¥,U),value(¥,V),U==V.

{5) Calling znd Tracing User Rules

reduce_first(X, G):=
functor (X, F, NI,
fupctor{¥,F, N},
(defined{{1<<="), ¥),1,(¥<<-2)

defined((<=1}, Y),!,{¥Y<-2) Y,
upd fy (X, ¥,G-U1,
modify_if debug(X,Z,U).

reduce_first{X,true):-call(¥}, !. ¥ Note that "call® has chcice points,
{6} Demcn

freeze(X,Y,G):-ver(X),!,create_indeternirate(X),freeze rep(X, Y, G).
freeze(¥,Y,0):=indeterninatel(X), !,

representative(X, R),

frecre_rap(R,¥,G).
freece(1(Y, Vi, L, 2&{U"2)) =, expand_sugar{I{X,Y),U,5).
freeze(X, ¥, 1),

i= mode freeze_rep(+,+,7).
freeze_rep(X,Y,¥):-anchor_of (X, A),nonvar(A), .
freeze repl¥,¥,0):-demon_of (¥,D),tail(D, (Y&) ,C-true).

Page 34

t=mode suspend(+,+,7,~1.

suspend(X, Y, Z, Gl:-var(X),!,freece(X, suspend(X,¥,2),0).
suspend(X, ¥, Z, G):-indeterminate(X),!,suspend_1(X,Y,Z,G).
suspend(X, ¥, Z, CG):-atomic(X),!,suspend(Y,Z,G).
suspend{1(X,¥),2,U, Stsuspend(V,Z,U)) :=1, expand_sugar(1({X,Y),V,8).
suspend(X, ¥,2,G) :-functor (X, F, N),suspend([(N,X)IY],Z,6).

:= mode suspend_1(+,+,7,-).
SuspenG_JEH,Y,E,G}:-ug_uf{x,u},nonvar{U},!,suspenq_1{ﬂ,f.z,ﬁ}.
suspend_J(H,Y,Z,G}:-anchur_nftﬁ,h].var{ﬂj.I,freezeiI,auapend(I,Y,zJ,G}.
suspend 1(X,Y,Z,0) t=anchor_of (X, A),suspend(A, ¥,2,08) .

r=mode suspend(+,7,=7.

suspend([1, Z, Z):~I,

suspend([(0,_)IR], Z, €):-1,suspend(R, Z, G).

suspend([(I,X)IR], Z, G):- arg(l, X, A), J is I-1,
suspend(4, [(J,X)IR], Z, G).

r=pode defrost(+,7).
defrost(X,H-F) :=flag of (¥,F),nonvar(F), 1.
defrost(X,(E&)=H}:=

flag of (¥,1},

demon_of (¥, D),

put_end(D, E).

t-mode put_end(%,-).

put_end{X, true):-var{X),!.

put_end(X, D):-irdeterminate(X),!,binding(X,B),put_end(B,D).
put_end(X&Y, X&Z):-1, put_end(¥,2).

put_end(X,X).

(7) Complex Indeterminates and Test Predicates

% The complex indeterminates are represented by terms of the form of
i

i 1I'{{lass, Up, Anchor, Slots, Flag, Demon)

s=tinde represzentative(+,-).

representative(X, X):-up_of (X, V) ,var(Uj, 1.
representative(X, ¥):-up of (¥,0),representative(U, Y).

= mode velue(T,-1.
value(F,V):=indeterminate(F), !, binding(F, V).
value(F,FJ.

1~ mede binding(?,-).

btinding(¥X, Y)}:- indetermirate(X),!,
representative(X, R),
anchor_of (R, ¥).

r=mode bound(?,=-).

bound(X, true):=var(X),!,fail.

bound(X 1Y, Z&bound (U}):-1,expand_sugar(X1Y,U,2).
bound(X, true}:=-value(k,V),nonvar(V}.

i=mode unbound(?,=).

unbound (X, true):-var{X),!.

unbound(X 1Y, Zsunbound(¥)) : =1, expand_sugar(X1¥,U,Z).
unbound(X, true):-value(X,V), var(V),!l.

unbound(X):-indeterminate(X), 1, binding(X, ¥),var(Y], I,
unbound(X):-var(X).

i=gode atomic{?,-J.

atomic(¥, _):-var(X),!,fail,
atomic(¥!Y,Zkatomic(U)):=1,expand_sugar(X1¥,U,2).
atomic(X, true):-value(X,V),atonic(V}.

r-mode atom{ ?;=).

atom(¥, _):-var(X),!,fail.

atom(% 1Y, Zeatom{U)) :=1, expand_sugar(X1Y,U,2).
atem{¥, true}:-value(X, V) ,aten(V).

r-pode integer{7,-).

integer{x, _J):-var(X],!,fail.
integarikl!,Z&inLegerEU}]:-I,expand_augarfxlf,u.zi.
integer(X, true):-value(X,V),integer(V).

ipstantiated(¥):=unbound(X),!,fail.
ipstantisted(X).

indeterminate(X):~nonvar{X),functor(X,'I',J},!.
1= mode class of (+,-).
clase of (¥,¥):= argl1,X,¥).

1= mode up of(+,-]).
up_of (¥,Y):- arg(2,X,¥).

1= mode anchor_of(+,-).
anchor_of (X,¥Y):=arg(3,XY).

:~ mode slots—cf(+,=).
slots of (¥, Y):=arg(l, X, ¥),

= mode flag of(+,=).
flag of (¥,Y):-arpg(5,X, ¥).

c= mode demon_of (+,-).
demon_of (¥, ¥):=argl6,X, 1),

1=~ mode ecreate_indeterminate(=).
ereate_indeterminate(X):-functor(X,'I',6).

= mode create complex(=,+,=).

sreate complex(Ird, Slots, Xj:=1,
create indeterminate(X),
(Slots==svelid, 1,5=_

é:[Slots._i],

Page

35

Page 36

slote_of (¥, 5),
ereate_indeterminate(Ind),
clagg_of {Ind,C), cless_of (X, C),
flag of(Ird,C), fleg of(X,C},
up_of (Ind, X).

1= mode instantiate(+, =, =}).
instartiste(N, X, E&kCond):-
del(N, Ind, Slots, Cond),
expand_sugar(Ind, R, E},
oreate complex{R, Slots, X).

(B) Unification and Binding

- mode eipand suger(?,-,=).
expand_sugar(X, X, true):=var(X),!,create indeterminate(X).
expand_sugar{¥,R, true):-indetermirate(X), !, representative(X,R).
expand_sugar(!{X,Y),Z,Eérole of (¥,U,Z)):-1,
create_indeterminate(Z},
expand_sugar{Y,U,E},
expand sugar{¥, Y, ¥=Y)}:- create indeterminate(Y).

unify (X, ¥):=unify(X, ¥,_).

uni fy (X, Y, E)t=var(X),!,unify_var(X,Y,E).
unify(X,Y,E):-var(Y),!,unify_var(Y,X,E).
unify((X, ¥),Z,(PEU=Z&H)=E) =1, expand_sugar(1(X,Y),U,Fl.
unify(Z, MX,¥), E}:=l,unify(1{X,¥),2,E).
unify(¥,¥,E):-irndeterminate(X), !,unify_ind(X%,Y,E).
unify(X,Y,E):-irdeterminate(Y), !, unify_ind(1,X,E}.
undfy (X, ¥, W=

functor (X, F, N},

functor(Y,F,N),

unify term(0,M, X,Y,H),

:= mode unify_term(4+,+,+,+,7).
unify_term(N,N,_ ,_ ,P=Fji=1,
unify_term{J, M, X, ¥, P=-Q):=

N is J+1,

arg(N, ¥, 4},

arg(N, ¥, B},

urd fy {4, 5,P-0),

unify_term({N,M, X, ¥,B-C).

1=~ mode unify_war{-,%,7%).

unify_var(i, ¥, P=Fir=var(¥),!, X=Y.

unify_var(X¥,X, P=Fli=atomic(X),!.

unify_var(E, ¥, P-Pl:-indeterminate(X),!,representative(X,R}.
unify_var(X, 1{Y,Z),(P&¥=U&H)-H) :=1, expand_sugar{ (Y, 2),U, P},
unify_var(},Y,P-P)}:-create_indeterninate{X),anchor_of (¥,Y).

= mode vnify ind(+,7, 7).
urd fy_ind(X,Y, P=Pl:-indeterminate(Y),class of (¥,C),elass_of (¥,D),C==0, I.
unify_ind(X,¥,E):-indeterminate(Y),?,

roprozertativel{X, R),

Page 37

representative(y, 8),
merge_class(R, S, E).
unify_ind{X,¥,E):-representative{X,R)}, bind_class(R,Y,E)}.

r= mode bind eclas=(+,7,7).
bind_class(¥,Y,E):- anchor_of (¥, A),var(h},!,
A=Y,
defrost(¥,E).
bind_class(¥,¥Y,E):-
anchor_of (X, 4),
unify{a,¥,E).

r=mode merge_class(+,+,7).
merge_class(X, Y, P~-Q):-
anchor_of (¥, A),var(t},
anchor_of (Y, B) ,var(B), I,
demern_to_left(X, ¥, P-R),
merge_to_left(¥,Y,R-QJ.
merge_class{X, Y, =0l :-
anchor_of (¥, A),varii),
anchor_of{Y,EB), !,
defrost (X, F=R},
merge to left(Y,X,R-Q).
merge_oclass(X, Y, P=Q):=
snchor_of (¥, A),
anchor_of (Y, B) ,var(E), !,
defrost(Y, P-R},
merge_to_left(X,Y,R=-0).
merge_class{X,¥,P-0Q):-
ancher_of (X, 4),
ancheor_of (Y, B),
urd fy (A, B, P=R},
merge_to_left{X,Y,R=Q).

t= mode demor_to left{+,+,7},
demen_teo_left(¥,¥, El:=-
flag of (¥,F), flag of(Y,F],
demon_of (¥, DX}, demon_of(Y,DY),
tail(DX, DY, EJ.

1= pode merge_to left(+,+,7).
merge_to left{X,¥,Ml:=
class_of (¥,C), class of(¥,C),
up_ef (¥, X7,
alots of(¥,8X), slote of(Y,SY),
merge_slots_to_left(SY, 3Y,M].

1= mode merge slote to left(+,7,7).

merge_slots_to left(X,¥,H-1):-unbound(Y)}, L.

merge_slote to left(X,¥,P-Q):~unify(Y,(S,T),P-R),1,
merge_slots to left(X,S,B=-R1},
merge_slots to left(X,T,R1-Q),

merge_slots_to left(X,S,E):-merge_slot(X,5,E].

i- mode merpe_slot(+,7,7),

Page 38

merge_slot(X,s, P=0):-
vnify(8, K:U, P=R),
find_key(E, X, V, B=K1},
undify (U, Vv, R1=0Q).

find_key(k, X, V,E):-unbound(X),!,unify(X, ((K:V),_}, E}.
find _key(F,5,V,P=0) i~

unify(%,(H,T), =R}, I,

(find key(¥,H,V,R-Q);find_key(K,T,V,B=Q}), .
find_key(K,S,V,E):-unify(K:V, 5, E},

tail(X, ¥, E):-unbound{X},!,unify(X,Y,E).
tail(X, ¥, P-Q):-unify(¥, _&, P=R},
tail(Z, Y, R=-CJ).

{9} Private Fortray

i=public out_form/2,
s=mode cut_form(?,-).

portray (X):~out_form(X,Y),write(Y),fail.
portray(_).

out_form{X,X):=
(var(¥):atomic(X)), 1.
out_form(X,Y):-binding(X,B), 1,
out_form(D, ¥).
out_form{¥, ¥):-
functor(X,F, N},
functer(¥,F,N},
out_form(H, X, ¥).
out_form(0,_,):=1.
out_form(N, X, ¥)z:=
arg(N, X, A),
arg(N, Y,B),
out_Torm{L,B),
Mis N-1,
cut_form(M,X,¥).

{10} CIL Medin and Debugging

t=public portray/1,binding/2.
or= gegpuide(cost,_,100),cil.

cil i-repeat,
prompt{_, "> '],
read(X},
(X=[1,1 ;
reducel (X},fail).

reducel ((X3¥)) -
reduce(X),
print{Y),
ignore_or(K),
(K\==5¢,!,nl,print{success),nl

Page 390

T
truc).
reducet{ (X:Y)) :=1,nl,print (nomeore],nl.

reducet(X):~ reduce(X),!,nl,print(success),nl.
reducel(X):- nl,print(fail),nl.

ignore cri{Com) =
ttygetC(X],
({X == 31,1, 00m = ¥J ;
([x] == " ", !, ignore_cr(Com)} ;
¥ = Com, ignore_cr(_)).

snap(h,B)t=snap flag, !,
print(A),print(B)},print(" 7 '),
ignore_cr(K),
interpret{K].

snapl_y_J.

interpret{31):-1. % <CR>
interpret(B):-"L"=[E],!,cil.
interpret(A}:=-"a"=[A],!,abort.
interpret(N):="n"=[N],1,0f f.

push:i- setof(¥, snap declared(X), D},D\==[],1,
asserte(trace_saved(D)),
print('SAVED' (D)),nl.

push:- print('##% NC SPYPOINTS *&#'),nl.

pop:-retract(trace_saved(D)), 1, on(Dl), prirt('UNSAVED'(D)),nl,nl.
popi-print("##% EMPTY SPY-STACK #¥%'),nl,nl.

of fi- setof (¥, snap_declared(X}, D}, I,
abolish(snap_declered,1},
nochaze,
print('SFY-POINTS OFFED: '},
print{D),nl,nl.
of f:- nochase,print('#%%* NO ACTIVE SFY-POINTS *%%'),nl.
of f([1).
of f{[X!1]1):i-{retract(snap_declared(X)),fail;true}, of f(Y).

chase:-assert(snap_flap),assert{snap all flag).
nochase -abolish({spap flap,0), abolish(spap_all_flag,0).

on{[]):=1.

on{[X!¥1):-1,assert(snap flag),ont([X{¥1}.
on(¥):=on{[X]).

ont{[]).

ont {[X1¥]):-assert(sne}_declared(X)),on1(¥].

si=-show.

show -
antive spy_points(ASF),
show_getive(LSF),nl,

Page 40

show_stack,
show_active([1):-
print(€% KO ACTIVE SFY-POINTS kET) nl.
show_active(LSP):-
print{'ACTIVE SFY-FOINTS: '),
print(ASF),nl.

show_stack:-empty_stack, |, print("##% EMPTY SFY-STACK LLLLI IS
show_stack:=print('SPY=STACK: '),nl,

trace_saved(D), print{' '),print(D),nl,fail.
show_stack.

active_spy_point=(E):-setof(X, snap_declared(X), E), L
active spy_points([1).

empty_stack:~- trace_saved(_),!,fail,
empty_stack.

